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Abstract
Several genetic and immunological risk factors for severe COVID-19 have been identified, with monogenic conditions relating 
to 13 genes of type I interferon (IFN) immunity proposed to explain 4.8% of critical cases. However, previous cohorts have 
been clinically heterogeneous and were not subjected to thorough genetic and immunological analyses. We therefore aimed 
to systematically investigate the prevalence of rare genetic variants causing inborn errors of immunity (IEI) and functionally 
interrogate the type I IFN pathway in young adults that suffered from critical COVID-19 yet lacked comorbidities. We 
selected and clinically characterized a cohort of 38 previously healthy individuals under 50 years of age who were treated in 
intensive care units due to critical COVID-19. Blood samples were collected after convalescence. Two patients had IFN-α 
autoantibodies. Genome sequencing revealed very rare variants in the type I IFN pathway in 31.6% of the patients, which was 
similar to controls. Analyses of cryopreserved leukocytes did not indicate any defect in plasmacytoid dendritic cell sensing 
of TLR7 and TLR9 agonists in patients carrying variants in these pathways. However, lymphocyte STAT phosphorylation 
and protein upregulation upon IFN-α stimulation revealed three possible cases of impaired type I IFN signaling in carriers of 
rare variants. Together, our results suggest a strategy of functional screening followed by genome analyses and biochemical 
validation to uncover undiagnosed causes of critical COVID-19.
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Introduction

In December 2019, cases of flu-like disease were first 
reported resulting from infection with a novel coronavirus, 
SARS-CoV-2 [1, 2]. As of 2023, cumulative incidence of the 
resultant disease, COVID-19 [3], has surpassed 500 million 
cases, with deaths exceeding 6 million [4]. Disease severity 
ranges from asymptomatic to death [5–7]; complications 
include cytokine storm, respiratory failure with acute 
respiratory distress syndrome (ARDS) [8], and multi-organ 
failure [9–13]. COVID-19 presents with a wide range of less 
debilitating clinical characteristics, the most common being 
cough, myalgia, headache, and fever [8, 9, 14]. During the 
first pandemic wave, the infection fatality rate was estimated 
to 0.15–0.82% [15–17]. Several risk factors have been 
identified for severe illness, including age above 50 years, 
male sex, and comorbidities such as obesity, hypertension, 
diabetes, kidney disease, and severe asthma [18–27].

Multiple independent efforts have been made to identify 
genetic contributors to critical COVID-19. Genome-wide 
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association studies (GWAS) performed across patient 
groups with different levels of disease severity [28, 29] 
found that the strongest association with severe disease is 
conferred by a risk locus on chr3p21.31. The highest linkage 
disequilibrium is at an intronic polymorphism (rs17713054) 
in LZTFL1 [30], encoding a protein involved in cilia 
function [31–33]. Further associations are with the ABO 
blood group locus and in interferon (IFN) type I-related 
loci including IFNAR1 and TYK2, and IFN-induced genes 
OAS1, OAS2, and OAS3 [28, 29]. Functional assessments 
exploring mechanisms by which these variants confer risk 
allow the possibility of personalized therapy development 
targeting those affected. However, the utility of these data for 
clinical risk prediction has not been evaluated. Furthermore, 
interpreting results of these studies faces the challenge of 
applying risk loci from ethnically homogenous cohorts to 
ICU patients of more varied ethnic backgrounds.

Monogenic diseases have also been uncovered in 
COVID-19 patients. Zhang et al. studied a global cohort 
of patients with critical COVID-19 (defined as requiring 
ventilation, developing septic shock, or organ failure), 
reporting enrichment of rare, predicted loss-of-function 
(LoF) variants in 13 genes associated with susceptibility to 
influenza A pneumonia with roles in viral sensing and type I 
IFN signaling [34]. They concluded that genetic deficiencies 
in these signaling pathways may dramatically increase the 
risk of critical COVID-19, accounting for up to 4.8% of such 
cases [34–37], or up to 10.7% in children under the age of 16 
who suffered critical COVID-19 [38]. Specifically, X-linked 
LoF variants in TLR7, encoding a receptor for single-stranded 
RNA highly expressed in plasmacytoid dendritic cells 
(pDCs), have been estimated to cause 1% of critical COVID-
19 cases in males under 60 years old [39–41]. Furthermore, 
patients were identified with rare biallelic LoF variants 
in autosomal recessive genes previously associated with 
susceptibility to severe influenza virus infection, including 
variants in TLR3, IRF7, IRF9, IFNAR1, and IFNAR2 
[42–46]. Only rare missense and predicted LoF variants were 
considered in these analyses, potentially underestimating 
the burden of non-coding variants reducing expression of 
crucial gene loci [47]. Furthermore, although the effect of 
these biallelic or hemizygous variants on disease has been 
established in patient cells and in vitro assays, the disease 
contribution of heterozygous variants in autosomal recessive 
genes remains unclear. Notably, a genetic meta-analysis by 
Povysil et al. identified only a single LoF variant in the 13 
loci examined by Zhang et al. out of 713 severe COVID-19 
cases [48]. Povysil et al. observed that since missense variants 
in controls were not characterized, a direct comparison 
of cases and controls in Zhang et al. was not possible. We 
therefore hypothesized that functional assessment of relevant 
pathways in patients may aid the diagnosis of inborn errors of 
immunity (IEI) in critical COVID-19 patients by identifying 

individuals with, e.g., heterozygous dominant negative or 
non-coding LoF variants.

Although many IEI patients diagnosed before their 
infection with SARS-CoV-2 required hospitalization, those 
who died usually had further risk factors [49–51]. However, 
IEIs associated with autoantibodies to type I IFN (hereafter 
referred to as autoantibodies), e.g., AIRE variants causing 
autoimmune polyglandular syndrome type 1 (APS-1), 
significantly increased the risk of life-threatening disease 
after SARS-CoV-2 infection [52–54]. Autoantibodies have 
been identified in 5.2–10.0% of severe cases where no IEI 
is diagnosed, with increases in prevalence commensurate to 
age [55–61]. Further studies can validate these figures and 
determine if these assays are useful for directing targeted 
treatment in the clinic.

We assembled a cohort of adults with critical COVID-19 
treated at the Karolinska University Hospital intensive care 
units (ICU). To reduce other risk factors which may confound 
any genetic contribution to disease, we limited our study to 
patients under 50 years of age, who lacked comorbidities, such 
as cancer or known causes of secondary immunodeficiency. 
We performed comprehensive clinical, immunological, and 
genetic analyses of these critical COVID-19 patients during 
convalescence to evaluate the efficacy of functional assays and 
potentially identify new variants causative of IEI.

Methods

Cohort Collection

The study was conducted in accordance with ethical 
application Dnr 2020–01911, approved by the Swedish 
Ethical Review Board. Informed written consent was 
obtained from all patients (n = 38) and samples were 
collected between October 2020–November 2021 and 
processed accordingly. For cellular analyses, donors from 
the Karolinska Hospital Blood Bank represented healthy 
controls.

Intensive Care Unit Data Collection

Data on physiological parameters in the ICU, severity scor-
ing, information on invasive ventilation, comorbidities, and 
laboratory parameters was extracted from the ICU medical 
record systems Clinisoft and Take Care.

Genetic Analyses

Genomic DNA was extracted from whole blood. Whole-
genome sequencing was performed as previously described 
[62]. Base GWAS data was retrieved from the GENOMICC 
summary statistics depository r3 [29]. PRSice-2 was used 
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to calculate PRS on our cohort and the 1kGP [63]. R pack-
ages ggplot2 and pROC were used to create density plots 
and receiving operator characteristic (ROC) curves. R pack-
age logistf was used in gene and pathway burden testing as 
specified in the supplemental methods.

Immunological Analyses

Absolute cell numbers and phenotype were quantified 
in whole blood. For functional assays, peripheral blood 
mononuclear cells (PBMCs) from cryopreserved samples 
were stimulated as detailed in the supplemental methods. 
Patient plasma was screened for autoantibodies.

Statistical Testing of Functional Assays

Statistical analyses were performed with R (version 4.1.1).

Results

Demographic and Clinical Characterization 
of Critical COVID‑19 Patient Cohort

We identified patients aged 18–50  years treated in the 
ICU in the Karolinska University Hospital, during March 
2020–March 2021 with SARS-CoV-2 infection (Fig. 1A). 

Of 90 patients, seven were deceased and samples unobtain-
able. Twenty-one were excluded for having other reasons 
for admission to the ICU, medical conditions associated 
with severe immunosuppression (i.e., stem cell transplan-
tation, immunosuppressive treatments, or cancer), or more 
than one COVID-19-related risk factor (diabetes, obesity, 
asthma, kidney disease, and hypertension). Sixty-three 
individuals meeting the study criteria were invited to a 
follow-up clinical visit with optional study participation 
(Fig. 1A). Twenty-five patients declined to participate. Of 
38 patients who enrolled, 76.3% were male and the average 
age was 40.2 ± 7.8 (Table 1, Fig. 1B). Average BMI was 
31.9 ± 6.4 kg/m2 (Fig. 1C, Supplementary Fig. 1A). Regard-
ing COVID-19 risk factors, included were 3 patients with 
diabetes; 1 with kidney disease; 8 with asthma; and 4 with 
hypertension. We reasoned that our strict exclusion criteria 
could increase the likelihood of identifying individuals with 
IEI.

Self-assessed symptom scoring was collected retro-
actively for the time of admission, 3 months after dis-
charge, and time of follow-up (Supplementary Fig. 1B), 
demonstrating a typical constellation of symptoms during 
disease and convalescence for critical COVID-19 [8]. The 
progression of disease in our cohort was similar to sub-
sets of critical COVID-19 patients in two other clinically 
characterized groups of patients: a multi-center study 
of patients admitted to Wuhan ICUs in February 2020 

Fig. 1  Patient demographics 
in the CovPID-20 cohort. A 
Flowchart detailing the exclu-
sion, invitation, and acceptance 
of patients to join the cohort for 
further clinical, functional, and 
genetic analysis. B Distribution 
of cohort patients over sex and 
age range; black bars represent 
males. C Plot depicts the BMI 
of each patient against their 
total time spent in the ICU. D 
Proportion of patients who had 
each complication of critical 
COVID-19 in our cohort; the 
ESID cohort studied by Meyts 
et al. and the Wuhan cohort 
studied by Yu et al. complica-
tions indicating disease severity 
were severe ARDS, defined as 
degree of hypoxemia  (PaO2/FiO2 
ratio) ≤ 100 [64]; mechanical 
ventilation required; and acute 
kidney injury
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(“Wuhan cohort,” n = 226) [65]; and patients with pre-
diagnosed IEIs who were followed during SARS-CoV-2 
infection (“ESID cohort,” n = 15) [51] (Fig. 1D). Thus, 
despite our selection criteria of relative youth and lack of 
comorbidities, our cohort displayed objective features of 
critical COVID-19 disease with single to multiple organ 
failure requiring intensive care.

Immune Phenotypes of the COVID‑19 Patient Cohort

Lymphocyte subpopulation numbers and frequencies were 
analyzed on blood samples drawn at the time of follow-up 
(mean = 249 days post-ICU discharge). Relative to adult 
healthy controls [66], a small increase was observed in 
frequencies of central memory  CD4+ T cells (p = 0.04, 

Table 1  Cohort demographics 
and clinical characteristics

Demographic and 
clinical data

n = 38 % Range SD

Age (at ICU admission, years, mean) 40.1 18.2–49.8 7.6
Sex – male 29 76.3%
Sex – female 9 23.7%

Comorbidities
BMI (at ICU admission, mean) 31.9 23.4–51 6.3
Diabetes mellitus type 2 4 10.5%
Hypertension 4 10.5%
Asthma 8 21.1%
CKD stage 2 1 2.6%
Vitamin D (nmol/L, mean) 41.8 18–98 19.3

Ethnicity
Middle Eastern 14 36.8%
East African 5 13.2%
Northern European 4 10.5%
Southeast Asian 4 10.5%
Southeast European 4 10.5%
South American 2 5.3%
Central American 1 2.6%
Eastern European 1 2.6%
Western Asian 1 2.6%
Unknown 2 5.3%

ICU clinical data
Length of ICU stay (days, mean) 14.6 1–57 12.5
Days between ICU admission and assess-

ment (days, mean)
249.2 166–344 48.5

Invasive ventilation 25 65.8%
Tracheostomy 12 31.6%
ECMO 3 7.9%
Prone positioning 2 60.5%
Acute kidney injury 4 1%
Continuous renal replacement therapy 6 15.8%
Pulmonary flow index,  (PaO2/FiO2; kPa) 12.6 6–28 4.8
Mild ARDS (PFI > 26.6 kPa) 1 2.6%
Moderate ARDS (PFI 13.3–26.6 kPa) 13 34.2%
Severe ARDS (PFI < 13.3 kPa) 24 63.2%
SAPS III score 46.9 32–59 7.2
SOFA score (max) 5.8 2–13 3.5
SOFA score (mean) 4.5 2–9.1 2.4
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unpaired T-test), although no change was seen in central 
memory  CD8+ T cells nor in activation markers  CD38+ or 
HLA-DR+ [66], suggesting that cells were not activated 
above baseline (Supplementary Fig. 2A).

Lymphocyte reactivity was assessed by flow cytometric 
assay for specific cell-mediated immune responses in 
activated whole blood (FASCIA) on samples drawn at 
the time of follow-up [67]. Six patients (15.8%) showed 
a decreased reactivity of  CD4+ T cells to SARS-CoV-2 
whole virus compared to 65 seropositive healthy controls, 
whereas four (10.5%) patients showed a markedly increased 
reactivity (Supplementary Fig. 2B). Increased reactivity was 
interpreted as prolonged immune activation and decreased 
reactivity may reflect an impaired immune response or 
memory formation.

Anti‑type I Interferon Autoantibody Analysis 
of the COVID‑19 Patient Cohort

Autoantibodies to type I IFN constitute a biological risk 
factor for critical COVID-19, but in the general population 
are only present in 0.18–0.30% of individuals below 70 years 
of age [55, 68]. To identify whether any patients in our 
cohort harbored autoantibodies, we assessed plasma from 
patients during convalescence. Patient plasma samples were 
mixed with recombinant human IFN-α2 and incubated with 
healthy donor PBMCs. Fixed cells were stained with anti-
phosphorylated STAT1 (pSTAT1) and assessed by flow 
cytometry (Fig. 2A). Of the 38 patients, two had neutralizing 
autoantibodies to IFN-α2, comprising 5.3% of patients in 
our cohort (Fig. 2B, C). As such, severe COVID-19 in two 
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of the 38 patients could be explained by acquired IFN type I 
autoantibodies. Notably, one of the patients identified with 
autoantibodies, P15 (who also had the longest ICU stay of 
57 days), was later diagnosed with a thymoma.

Common Genetic Variant Contribution to Critical 
COVID‑19

To identify genetic factors predisposing to disease, all 
patients were subjected to whole-genome sequencing. 
GWAS have previously identified the locus with the greatest 
risk score for severe COVID-19 as rs17713054G > A 
[28], corresponding to a gain-of-function (GoF) variant 
in LZTFL1 [56]. We observed a 4.0-fold enrichment 
of rs17713054 in a heterozygous state in our cohort 
(MAF = 0.224 compared to MAF = 0.055 in GnomAD; 
p = 0.0000084, X-squared test) suggesting that common 
risk variants could be explanatory in our cohort. We also 
calculated an odds ratio (OR) adjusted for ancestry principal 
components (PCs) of 5.23 (CI = 2.51–10.76; p = 0.000018) 
when our cohort was compared to the 1000 Genomes Project 
(1kGP). Summary statistics from a study by GENOMICC 
were used to perform polygenic risk score (PRS) analysis 
to calculate the degree to which common COVID-19 risk 
variants were predisposing our patients to severe disease 
[29]. Using the 1kGP as a control group, the mean PRS in 
case and control groups was determined (Fig. 3A), giving an 
area under the curve (AUC) of 0.552 (Fig. 3B). These results 
indicate that common risk variants only partially explain 
disease severity in our cohort. The separation between our 
cohort and control individuals was not significant. Thus, 
PRS did not prove a useful predictive tool in young and 
previously healthy critical COVID-19 patients.

Analysis of Very Rare Genetic Variants in Type I IFN 
Pathways

In previous studies of familial clusters of patients with 
severe COVID-19 across Sweden, we identified two 
brothers with a homozygous LoF IRF7 variant [43], as well 
as two brothers with a novel X-linked TLR7 LoF variant 
[39]. Although these patients did not meet the current 
study criteria, we hypothesized that similar monogenic 
afflictions may explain additional sporadic cases of critical 
COVID-19 in young, formerly healthy individuals. We 
analyzed very rare variants (MAF < 0.001 in GnomAD) 
in 21 gene loci involved in type I IFN production and 
signaling in all study patients (Fig. 4A, Supplementary 
Table 2 [69–74]). Very rare variants were identified in 
31.6% of the patients (Table 2, Fig. 4B), after filtering by 
predicted pathogenicity by including only variants with 
CADD score over a gene-specific tolerance threshold 
calculated by the mutation significance cutoff (MSC) set 
at 99% [75, 76]. However, such variants were also present 
in 21.2% of the 1kGP cohort (p = 0.12, unpaired T-test). 
No structural variants in any of the genes were identified 
in the patients (Supplementary Fig. 3A-S). To understand 
the impact of all type I IFN pathways on disease, OR 
analysis was performed on all patients and controls 
for autosomal genes (Fig.  4C) and on male patients 
and controls for X-linked genes (Fig. 4D). Significant 
enrichment of rare, predicted damaging variants was 
observed in IKBKB, UNC93B1, IRF9, and TRAF3, but 
a clear overall enrichment of variants across type I IFN 
genes was not apparent. Ethnicity was used as a covariate 
when constructing the model (Supplementary Fig. 4A). 
The 1kGP was used as a control cohort to calculate PCs in 
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ancestry analysis, and for OR analysis. To determine the 
validity of significant results amongst the type I IFN genes, 
this analysis was repeated with a gene set associated with 
handedness, i.e., not linked to viral immunity, and each 
with the approximate metrics of a type I IFN gene included 
in the analysis. Overall, genes associated with type I IFN 
and with handedness demonstrated similar distributions 
of statistically significant enrichment (Supplementary 
Fig. 5A), suggesting that there may be an inflation in OR 
caused by small numbers of observations. However, the 
OR of a summary of the variants in all autosomal genes 
considered displayed statistical enrichment in type I 
IFN genes (p = 0.0003) whilst handedness genes did not 
(p = 0.09). Moreover, since rare variants were identified in 
five pathway components, we also evaluated enrichment 
of rare variants in the type I IFN signaling pathway in 
our cohort compared to the 1kGP and found significant 
enrichment (p = 0.045, Table 3, Fig. 4E), which was absent 
in the overall assessment of the counterpart handedness 
genes (p > 0.05, Supplementary Fig. 5B). The absence 
of clear enrichment across type I IFN genes compared to 
handedness genes suggested that increasing the number 
of genes evaluated is unlikely to substantially increase 
diagnostic yield, even in young and previously healthy 
COVID-19 patients.

We also noted that some patients were carriers of more than 
one heterozygous variant within one or more pathways under 
investigation. Such individuals could experience a cumulative 
oligogenic effect of functional differences in two or three 
proteins, as has been previously observed in IEI [77–79]. Thus, 
we assessed the impact of variant carriership on duration and 
severity of illness. However, increased carriership of variants in 
these pathways did not correlate with length of time spent in the 
ICU (Fig. 4E) or with any of the parameters used in the ICU to 
measure disease severity (Table 1). Furthermore, no significant 
association was observed between variant carriership and 
obesity, which could have suggested that very rare IFN gene 
variants were increasing the risk of individuals with healthy 
BMI and no risk factors.

Rare variants may convey missing heritability from 
GWAS data, which includes common variants only [80–83]. 
We therefore hypothesized that taken together, PRS and rare 
variants in the IFN pathways may give a better prediction 
of COVID-19 severity than either variable individually. 
Initially, correlation between rare variants and PRS was 
evaluated and found to be very low (R2 = 0.096, p = 0.56; 
Fig. 4E). Having established that no correlation existed 
between these covariates, their correlation to length of ICU 
stay was examined in our patient cohort using multiple 
regression. Correlation within the model was found to 
be negligible (R2 = 0.2467, p = 0.31). We thus concluded 
that, although rare variants in the type I IFN pathway were 
enriched in critical COVID-19 patients, neither PRS nor a 

binary variable indicating the presence of rare type I IFN 
pathway variants, nor a combination of the two, predicted 
the duration of ICU treatment for COVID-19.

Functional Interrogation of Type I IFN Pathways

As very rare variants in type I IFN responses (TLR7, 
TLR9, and TLR3 pathways) were identified in nine of 38 
patients (23.7%) in our cohort, we developed an in vitro 
flow cytometry assay for the sensitive detection of IFN-α 
production. Cryopreserved PBMCs were stimulated 
with agonists to TLR7 (imiquimod) or TLR9 (CpG 
oligodeoxynucleotide [ODN]), known to induce strong 
IFN-α and TNF expression by pDCs. Patient pDC numbers 
in the blood were within a healthy range (Supplementary 
Fig. 7A). As a positive control for the detection of defective 
cytokine responses, we compared analysis to patients 
previously diagnosed with IEI in IRF7 or TLR7 (Fig. 5A–C). 
These patients demonstrated the expected pattern of pDC 
responses considering IRF7 is required for IFN-α but not 
TNF production with both TLR7 and TLR9 stimulation. In 
contrast, in cells from patients with TLR7 deficiency, TLR7 
responses were abolished but responses to TLR9 were 
unaffected (Fig. 5A, B). Thus, we hypothetically increased 
the chance to also identify structural or non-coding variants, 
which are more challenging to predict from genomic data. 
Comparing healthy controls to patients from our cohort with 
identified variants in the type I IFN production pathway, and 
patients with no relevant variants, we did not observe any 
significant differences in IFN-α or TNF production between 
the groups. This suggests that the heterozygous expression 
of variants in genes associated with type I IFN production 
by two of our patients did not affect protein function 
sufficiently to cause a functional defect. Patient PBMCs 
were also stimulated with a poly(I:C), a TLR3/MDA5/RIG-I 
agonist demonstrating redundancy in stimulation of blood 
leukocytes [74]. As expected, poly(I:C) stimulation was not 
significantly different between controls and patient groups in 
TNF expression by BDCA-3+ dendritic cells (DCs) (Fig. 5C).

Our genetic analysis revealed that five of the 38 patients 
(13.2%) harbored very rare variants in components of the 
signaling pathway downstream of type I IFN. Additionally, 
P30 carried a rare variant (p.Thr204Arg; MAF = 0.004, 
CADD = 24.0) in IFNAR2 in a homozygous state. This was 
the only rare homozygous variant identified in a gene of 
interest. To assess whether these variants had a functional 
effect, cryopreserved PBMCs from healthy controls 
and patients were stimulated with IFN-α2 and assessed 
for upregulation of pSTAT1 and pSTAT2 (Fig.  5D–E). 
Upregulation of pSTAT1 and pSTAT2 had a correlation of 
0.55 in  CD4+ T cells (Supplementary Fig. 7B). Induction 
in  CD8+ T cells was also examined as an internal 
control and correlated with the  CD4+ T cell responses 
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(Supplementary Fig. 6A, 6B). Examination of  CD4+ T 
cells demonstrated similar levels of induction of pSTAT1 
upon IFN-α stimulation in healthy controls compared to 
most patients with no identified relevant variants. However, 
pSTAT2 induction was significantly lower in patients than 
in healthy controls (p = 0.0001, Welch T-test), and three 
patients with identified IFNAR1 or IFNAR2 variants—P29, 
P30, and P35—had pSTAT2 responses below the range in 
healthy controls. To further interrogate type I IFN signaling 
in critical COVID-19 patients, we quantified protein 
expression of interferon-stimulated genes (ISGs) MX1, 

IRF7, and IFIT1 by flow cytometry (Fig. 6A–C). Although 
there was no significant difference between the patient and 
control groups, P29, P30, and P35 all had low expression of 
ISGs, correlating with low pSTAT2 induction (Fig. 6 D–F), 
suggesting that their interferon receptor gene variants may 
confer reduced function compared to wildtype protein.

Genomic Screening for Variants in Other IEI Genes

While efforts within the field of IEI research have identified 
susceptibility loci in the type I IFN pathway, GWAS 
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studies link other pathways to life-threatening COVID-19 
susceptibility. To explore other immune genes potentially 
implicated in life-threatening COVID-19, we identified 
very rare variants (MAF < 0.001) in known IEI loci using 
the clinical characterization of each patient to inform 
variant selection for further investigation. Analysis of IEI-
associated genes revealed a very rare variant in CSF2RA, 
c.940G > A (p.Glu314Lys; CADD score = 13.2, GnomAD 
frequency = 0.00004), in P2, the patient with the longest 
stay in ICU and who had required prolonged mechanical 
ventilation with high inspiratory fraction of oxygen (Fig. 7A), 
ultimately culminating in extracorporeal membrane 
oxygenation (ECMO). Locus examination revealed a 
second CSF2RA variant, c.491G > A (p.Arg164Gln; CADD 
score = 12.9, GnomAD frequency = 0.0051), categorized 
as rare. CSF2RA encodes the α-subunit protein of the 
heterodimeric receptor for granulocyte–macrophage colony-
stimulating factor (GM-CSF). CSF2RA-deficient patients 
have previously been reported with pulmonary insufficiency 
during infections, including Mycoplasma pneumoniae 
and influenza due to defective macrophage clearing of 
surfactant in the alveoli, interfering with gas exchange in the 
lungs [84]. Variant co-occurrence estimation in GnomAD 
indicated a 100% probability that these variants occur in 
different haplotypes, with no individuals identified in the 
database who carried both. We thus inferred that the patient 

likely is compound heterozygous for the two variants and 
sought to functionally test the GM-CSF signaling pathway 
in cryopreserved PBMCs from the patient. PBMCs were 
stimulated with GM-CSF before flow cytometric analysis 
for pSTAT5 induction, which is downstream of GM-CSF 
signaling. Gating on monocytes which express high levels 
of the GM-CSF receptor, we found that P2 had a similar 
pattern of pSTAT5 induction as healthy controls (Fig. 7B). 
This finding suggests that the variants in CSF2RA identified 
in P2 do not confer an impairment in GM-CSF signaling. 
Furthermore, we observed a novel NLRC4 c.1003A > C 
(p.Met335Leu; CADD score = 18.2) variant in P14. Given 
the autosomal dominant inheritance mode of GoF variants 
in NLRC4 and the previous description of critical COVID-19 
in an NLRC4 patient [85], this variant was especially notable 
and could be investigated further in the future.

In summary, we did not identify impairments in novel 
immune signaling pathways as potential causes of critical 
COVID-19. Nonetheless, our catalogue of rare variants 
represents a resource for further genetic investigations.

Discussion

We performed a comprehensive clinical, genetic, and 
immunological functional screening of 38 young adult ICU 
patients with minimal known risk factors for COVID-19. 
While critical COVID-19 could be explained by type I IFN 
autoantibodies in two patients, genetic and functional screens 
as well as specific investigations did not identify additional 
patients with monogenic IEI. However, seven deceased 
patients who met study criteria but were not possible to 
include could have carried type I IFN autoantibodies or IEI-
causing variants.

Autoantibodies to type I IFN are more prevalent in 
patients with severe COVID-19 and explained critical 
COVID-19 in two cases from our cohort. Our rate of 5.3% 
(2/38) is consistent with the rate of type I IFN autoantibodies 
discovered in younger, critically ill COVID-19 patients 
(5.0% and 6.8% of critically ill patients under 40 years or 
between 40 and 49 years of age, respectively) [68]. Notably, 
neither of our patients with type I IFN autoantibodies carried 
rare variants in the non-canonical NFκB signaling pathway 
[86]. In one of our patients, type I IFN autoantibodies likely 
arose due to thymoma of type AB (Masaoka grade IIa, pT2), 
as previously described [87, 88]. Thymomas are associated 
with development of a variety of antibody-mediated 
autoimmune disorders and paraneoplastic syndromes, 
reflecting dysregulation of T cell selection in the thymus 
[89]. Thus, autoantibody screening may identify patients that 
will benefit from plasmapheresis [52].

With respect to genetic causes of critical COVID-19, we 
observed a significant trend towards enrichment of very rare 

Fig. 4  Identification of very rare variants in type I IFN pathway 
genes. A Plot depicts the primary known proteins involved in type 
I IFN production and signaling, divided into three visually distinct 
pathways. Proteins coded for by genes included in the study are 
colored by pathway: TLR3-stimulated IFN production is in blue, 
TLR7/TLR9-stimulated IFN production is in orange, and IFN signal-
ing via the type I IFN pathway is in green. These type I IFN proteins 
were collated from field literature and are evaluated in subsequent 
analysis. Proteins visualized in gray were not included in the genetic 
analyses. B Venn diagram of cohort patients carrying variants with 
very rare GnomAD MAF < 0.001 variants in any one or more of the 
three pathways defined in A. C Forest plot of odds ratios (95% con-
fidence intervals) of very rare variants above the 99% mutation sig-
nificance cutoff in autosomal genes involved in type I IFN production 
and signaling; and the sum of very rare variants in individual genes 
in the type I IFN signaling pathway; compared to very rare variants 
meeting the same pathogenicity prediction criteria in individuals in 
the 1kGP dataset. Ancestry PCs were calculated for patients in the 
CovPID-20 cohort and individuals in 1kGP and the first four were 
included in odds ratio analysis as covariates. D Forest plot of odds 
ratios (95% confidence intervals) of very rare variants above the 99% 
mutation significance cutoff in X-linked genes involved in type I IFN 
production identified in male patients, compared to very rare variants 
meeting the same pathogenicity prediction criteria in male individu-
als from the 1kGP dataset. E Boxplots show the distribution of time 
spent in the ICU for patients with 0–3 rare variants with MAF < 0.001 
in the type I IFN pathway. No correlation was observed between vari-
ant carriership and time required to recover from critical COVID-19. 
Patients with anti-IFN autoantibodies detected are represented in red. 
F Boxplots show PRS distribution for individuals with 0–3 identi-
fied genetic variants with MAF < 0.001 in the type I IFN pathway. 
Patients with anti-IFN autoantibodies detected are represented in red

◂
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Table 3  Carriers of very rare variants above the 99% MSC threshold, in autosomal IFN genes

Carriers in cases Carriers in controls

Gene Heterozygous Homozygous Possible compound 
heterozygous

Heterozygous Homozygous Possible com-
pound heterozy-
gous

DDX58 1 0 0 51 0 0
IFIH1 1 0 0 35 0 2
IFNAR1 1 0 0 28 0 0
IFNAR2 1 0 0 21 0 0
IKBKB 1 0 0 1 0 0
IRF3 1 0 0 43 0 0
IRF5 0 0 0 25 0 0
IRF7 1 0 0 44 0 1
IRF9 1 0 0 17 0 0
JAK1 0 0 0 36 0 0
MYD88 0 0 0 28 0 0
STAT1 0 0 0 20 0 0
STAT2 1 0 0 10 0 1
TBK1 1 0 0 35 0 0
TICAM1 1 0 0 83 0 1
TLR3 0 0 0 11 0 0
TRAF3 2 0 0 13 0 0
TYK2 1 0 0 30 0 1
UNC93B1 0 0 1 61 0 4
All included genes 10 0 2 517 0 10
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Fig. 5  Stimulation of type I IFN pathways in healthy controls, IEI 
patients, and ICU COVID-19 patients. A, B pDCs responses after A 
TLR7 stimulation with imiquimod or B TLR9 stimulation with ODN. 
Cells expressing IFN-α (upper) and TNF (lower) were quantified 
by flow cytometry. In addition to healthy controls, four IEI patients 

were also included who had been diagnosed with IRF7 or TLR7 defi-
ciency. C DCs response after TLR3 stimulation with poly(I:C). Cells 
expressing TNF were quantified. D, E CD4.+ T cell responses to 
stimulation with IFN-α. Plots show the quantification after stimula-
tion of D pSTAT1 and E pSTAT2
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missense variants in the type I IFN signaling pathway in our 
cohort when adjusted for ancestry PCs and compared to a 
set of genes not associated with viral immunity but with 
similar size and constraint metrics. In this cohort, no patients 
displayed functional defects as severe as those identified in 
TLR7, IRF7, or type I IFN receptor deficiency [41, 43–45]. 
Although there was no significant difference between the 
responses of carriers and non-carriers of a very rare variant 
in the IFN pathways, low type I IFN signaling and ISG 
expression were observed in two patients that also carried 
very rare heterozygous variants in IFNAR1 or IFNAR2, 
as well as one patient with a rare homozygous variant in 
IFNAR2. Importantly, the normal responses observed in other 
patients carrying very rare predicted damaging heterozygous 
variants illustrate how genomics studies lacking functional 
validation may lead to over-interpretation of the significance 
of certain variants. Leukocyte assays such as these can 
thereby direct biochemical testing of specific variants that 
can determine the exact functional consequences, potentially 
validating deleterious disease-causing variants.

For certain genes, e.g., TLR3 [74], impairments of 
specific rare variants may not be sensed in leukocyte 

assays but would be apparent in other cell types or upon 
assessment in more biochemical systems. Furthermore, 
another limitation of our study was the use of cryopreserved 
cells, necessitated by the scattered collection of samples 
and the effort to limit inter-experimental variability. In our 
experience, as documented in the literature, pDC numbers 
and function are reduced following cryopreservation [90, 
91]. Nonetheless, we believe our results are interesting 
as a reference for clinical pDC defect diagnostics, and 
importantly, our assays on cryopreserved material did 
detect defects in confirmed IEI patients with TLR7 and IRF7 
deficiency, albeit with lower sensitivity than assays using 
freshly isolated cells [39, 43].

The small size of our cohort increases random chance 
that the previously stated figure of 4.8% of cases are 
predisposed by type I IFN pathway-related IEI is accurate; 
none might be represented in our study. Investigating other 
mechanisms of susceptibility by applying PRS adjusted by 
ancestry PCA, we did not observe significant enrichment 
of risk variants in our cohort. We considered the use of 
a population database to be valuable as it facilitated PC 
calculations and the use of a larger control dataset than 
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used in previous studies, despite lack of COVID-19 
phenotype for the participants [92–94]. Nonetheless, PRS 
on common risk variants or combined genetic analyses of 
PRS and rare variants did not provide sufficient predictive 
power to be useful for clinical assessments of patients with 
critical COVID-19. Thus, the predictive value of genome 
analyses is relatively modest even in a selected cohort of 
previously healthy young adult critical COVID-19 patients.

Besides type I IFN pathway defects, other IEIs 
may predispose to life-threatening COVID-19. We 
functionally tested GM-CSF signaling in monocytes 

from a patient with likely biallelic missense variants 
in CSF2RA (encoding the GM-CSF receptor α-subunit) 
as CSF2RA-deficient patients are susceptible to severe 
pulmonary infections [73]. However, the monocytes 
were not functionally impaired, further highlighting the 
importance of testing putative disease-causing pathways 
in patients. Additionally, several HLH genes associated 
with defective cytotoxic responses have been investigated 
in the context of COVID-19 [95, 96], including a 
52-year-old patient carrying a GoF NLRC4 variant who 
had previously experienced recurrent HLH episodes 

Fig. 7  Functional investigation 
of GM-CSF signaling in patient 
P2 with low gas exchange rate 
in the lungs. A Perfusion index 
(arterial oxygenation (kPa)/
supplied oxygen) observed in 
patients during their time in the 
ICU against the total number of 
days spent in ICU. Patient iden-
tity is indicated by text. Patients 
positive for autoantibodies are 
in red, and the patient with 
the lowest perfusion index is 
indicated in purple. B GM-CSF 
signaling of blood-derived 
monocytes from patient P2 
and two healthy adult controls. 
Plots show intracellular stain-
ing of phosphorylated STAT5 
(pSTAT5) in unstimulated and 
GM-CSF stimulated cells, as 
indicated
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[85]. We identified a novel NLRC4 missense variant in 
one patient, potentially warranting further functional 
investigations of the role of NLRC4 in inflammatory 
responses to viral infection.

In conclusion, genetic and immunological characteri-
zation of a stringently defined, young, previously healthy 
critical COVID-19 patient group confirmed the utility of 
autoantibody screening for explaining critical patients and 
directing therapy. Our genomic analyses uncovered an 
increased incidence of very rare variants in the type I IFN 
pathway when compared to controls and adjusted for eth-
nicity. In three out of six instances, such a genetic variant 
correlated with low pSTAT and ISG protein upregulation, 
highlighting the need for tailored biochemical assays of 
variants to better determine causality. Sensitive leukocyte 
assays may aid screening of sporadic patients for further 
genetic investigation, but interpretation of causality from 
genetic findings still requires stringent biochemical assays.
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