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Abstract
Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE) is a rare and life-threatening condition characterized 
by recurrent localized edema. We conducted a systematic screening of SERPING1 defects in a cohort of 207 Czech patients 
from 85 families with C1-INH-HAE. Our workflow involved a combined strategy of sequencing extended to UTR and deep 
intronic regions, advanced in silico prediction tools, and mRNA-based functional assays. This approach allowed us to detect 
a causal variant in all families except one and to identify a total of 56 different variants, including 5 novel variants that are 
likely to be causal. We further investigated the functional impact of two splicing variants, namely c.550 + 3A > C and c.686-
7C > G using minigene assays and RT-PCR mRNA analysis. Notably, our cohort showed a considerably higher proportion of 
detected splicing variants compared to other central European populations and the LOVD database. Moreover, our findings 
revealed a significant association between HAE type 1 missense variants and a delayed HAE onset when compared to null 
variants. We also observed a significant correlation between the presence of the SERPING1 variant c.-21 T > C in the trans 
position to causal variants and the frequency of attacks per year, disease onset, as well as Clinical severity score. Overall, our 
study provides new insights into the genetic landscape of C1-INH-HAE in the Czech population, including the identification 
of novel variants and a better understanding of genotype–phenotype correlations. Our findings also highlight the importance 
of comprehensive screening strategies and functional analyses in improving the C1-INH-HAE diagnosis and management.
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Introduction

Hereditary angioedema (HAE) is a disorder characterized 
by recurrent bouts of localized subcutaneous or submu-
cosal edema, typically affecting various organs including 
limbs, intestinal mucosa, genitals, face or airways. These 
attacks often cause functional damage, severe pain in the 
abdominal area, breathing obstructions, and overall quality 
of life is reduced. The most severe manifestation is life-
threatening edema of the larynx.

HAE can be classified into three types based on the 
immunological findings. HAE-1 is characterized by a 
reduction in both antigenic and functional C1 inhibitor 
(C1-INH) levels. Patients with HAE-2 have a normal 
C1-INH protein concentration but impaired C1-INH func-
tion. HAE with normal C1 inhibitor (nC1-INH-HAE) pri-
marily arises from defects in the F12 and PLG. Notably, 
variants in the F12 gene have been found to predominantly 
cause HAE in females. Other genes that have been linked 
to nC1-INH-HAE in few patients include ANGPT, MYOX, 
KNG1, and HS3ST6 [1–4].

Both HAE-1 and 2 are inherited in an autosomal 
dominant mode and are caused by pathogenic variants in 
SERPING1—gene encoding C1-INH and located in the 
11q12-q13.1 chromosome. It is composed of eight exons 
and seven introns. SERPING1 is a naturally alternatively 
spliced gene, but the role of alternative transcripts still 
remains unclear [5]. Whereas pathogenic variants disrupt 
the C1-INH structure and abolish protein production in 
HAE-1, variants changing the active center of C1-INH 
cause normal production levels of dysfunctional protein in 
HAE-2. C1-INH-HAE prevalence is 1/50,000–1/100,000, 
without known ethnic differences [6].

C1-INH belongs to the serpin family (serine protease 
inhibitors), and contributes especially to vascular perme-
ability and inflammation regulation. Edema in HAE-1/2 is 
the result of an incorrectly regulated contact system in the 
absence of functional C1-INH and consequent production 
of bradykinin from kininogen. Bradykinin, as a powerful 
vasodilator, increases capillary permeability and constricts 
smooth muscles.

C1-INH levels should theoretically be 50% in domi-
nantly inherited HAE; however, C1-INH serum levels 
are typically less than 35% of normal [7, 8]. Although 
the underlying mechanism is not fully understood in most 
pathogenic variants, the generally assumed cause is hap-
loinsufficiency with an additional negative effect from a 
defective allele product on the normal allele expression [9].

Interestingly, the HAE severity can range from asymp-
tomatic to very severe, irrespective of the disease-causing 
variant type, as even the members of the same family 
carrying the same SERPING1 alleles have very distinct 

disease manifestation [10, 11]. It is thus probable that 
the HAE phenotype is also influenced by some factors 
other than the causative variant in SERPING1. In very rare 
cases, disease severity was more or less convincingly asso-
ciated with particular variants or other factors, while no 
association was demonstrated at all in other cases [11–15].

In this study, we describe the clinical phenotype and gen-
otype of Czech patients with HAE, and provide an overview 
of SERPING1 variants identified in Czech HAE patients 
involving those published previously as well as some novel 
variants [16–19]. We evaluate their significance and discuss 
the impact of some previously published variants.

Material and Methods

Patients

Two hundred seven patients with HAE from 85 unrelated 
Czech families were recruited retrospectively for this study 
through extensive collaboration with clinical immunologists 
from all over the Czech Republic who treated the patients 
and collected their data. C1-INH-HAE diagnosis was estab-
lished based on clinical signs and the following complement 
measurements: serum C1-inhibitor concentration, C1-inhib-
itor activity, and C4 level.

Complement Testing

Over the last 33 years, methods to detect C4 and C1-INH 
levels have changed in our country. In the 1980s and 1990s, 
these levels were detected by radial immunodiffusion and 
later by immunoprecipitation combined with nephelometry 
or turbidimetry. Since 1996, C1-INH function has been ana-
lyzed by the Enzyme-Linked ImmunoSorbent Assay (Quidel 
MicroVue C1 InhibitorPlus). The normal C1-INH concen-
tration range was 210–390 mg/L, and the normal values for 
its functional activity were greater than 68% of the reference 
value for the standard serum.

Genotyping and Sequencing

DNA was extracted from EDTA-containing whole blood 
samples using a standard desalting procedure. The variants 
in SERPING1 coding regions (exons 2–8) and their adjacent 
sequences were analyzed using standard Sanger sequencing 
protocols (primers and conditions available on request). Sub-
sequently, multiplex ligation-dependent probe amplification 
(MLPA) was performed using the SALSA MLPA P243-A2 
SERPING1 kit (MRC-Holland, The Netherlands) to search 
for large deletions and duplications.
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When no variant was detected by either coding region 
sequencing or MLPA, non-coding regions (3′UTR, 5′UTR, 
proximal part of intron 6) were amplified and Sanger 
sequencing of these regions was performed.

All obtained sequences were compared to GenBank refer-
ence sequences NM_000062.3 and NP_000053.2. Detected 
variants’ nomenclature follows Human Genome Variation 
Society recommendations [20].

RNA Analysis

Total RNA was extracted from the peripheral blood, PBMCs 
and HeLa cells. The extracted RNA was reverse transcribed 
to cDNA with random hexamers. The subsequent PCR was 
performed in two steps using primers with sequences situ-
ated inside exons. Specific reaction conditions and primer 
sequences were described previously [17, 19]. Amplicons 
from the second reaction were checked on 2% agarose gels 
and then characterized by capillary analysis.

Minigene Assay

Minigene constructs were used to investigate the sequence 
variant’s effect on RNA splicing. Wild-type and mutant 
genomic fragments of SERPING1 comprising appropriate 
exons and at least 150 bp flanking introns were amplified 
with primers. PCR products were cloned into multiple clon-
ing sites inside the pET01 vector (MoBiTec). Subsequently, 
HeLa and/or HepG2 cells (European Collection of Authenti-
cated Cell Cultures) were transfected with the minigene con-
struct. RNA was extracted 24 h after transfection and then 
RT-PCR was performed. The specific procedure conditions 
and primer sequences were described previously [17, 19].

Restriction Analysis

The presence of c.-21 T > C variant in a patient was estab-
lished by Sanger sequencing of exon 2 or by AvaII restriction 
analysis of exon 2 amplification products [18]. The variant’s 
trans or cis position was determined by analyzing its occur-
rence among the patient's blood relatives.

Targeted NGS

Patients’ genomic DNA samples were analyzed firstly on a 
NextSeq Illumina platform (Illumina, San Diego, CA) using 
the SureSelect QXT (Agilent Technologies, Santa Clara, 
CA). The targeted NGS panel comprised exon sequences 
from genes related to primary immunodeficiencies, includ-
ing all genes associated with HAE. Intronic sequences of 
SERPING1 were also covered by the analysis, except for 
highly repetitive deep-intronic parts. Library preparation and 

sequencing were performed according to the manufacturer’s 
instructions.

Raw data read quality control was performed using the 
FastQC program [21]. Alignment to the reference hg19 
genome was carried out using BWA-MEM [22]. SAMtools 
was used to sort and index the alignments [23]. The Picard 
MarkDuplicates tool [24] was employed to mark and remove 
duplicates. The Vardict program was used to determine 
genetic variants [25]. Identified variants were annotated with 
the Annovar tool [26]. Integrative Genomics Viewer (IGV) 
was employed to visualize read alignment and detected vari-
ants [27].

Databases and Bioinformatics

Interpreting sequence variant impact was based on the crite-
ria established by the American College of Medical Genet-
ics and Genomics (ACMG). Several population and variant 
databases and bioinformatic tools have been used to anno-
tate variants and estimate variant impact (Supplementary 
Methods).

Results

There are 4 major centers specialized in HAE patient treat-
ment in the Czech Republic, and the vast majority of genetic 
testing has been provided by the Molecular Genetic labora-
tory CKTCH Brno. Several individual cases were reported to 
the laboratory by individual specialists as well. Data of the 
patients were collected over a long time period using avail-
able technologies at the time. In 2012, a specialized patient 
database was introduced providing not only the attending 
physicians but also the patients with the opportunity to 
report HAE attacks and disease development.

Clinical Evaluation of Laboratory Results

Altogether, 207 patients from 85 families were recorded 
in the Czech Republic. One hundred seventy-five patients 
from 74 families (87.1%) were diagnosed with HAE-1, 
and 32 patients from 11 families (12.9%) with HAE-2. The 
specific data of all patients can be found in Supplemen-
tary (Table S1). The data of our cohort are summarized in 
Table 1.

Course of the Disease

The mean age at onset of clinical symptoms was 14 years 
(range 1–72 years; n = 167). Seventy-four patients (44.3%) 
suffered from their first attack before the onset of puberty 
(before 13 years of age), and the disease started during 
puberty (13–16 years of age) in 28 patients (16.8%). A 
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causal variant was detected in 37 patients before the onset 
of HAE symptoms due to testing HAE patients’ relatives 
with a known SERPING1 variant. In 1 patient (P05505 in 
Table S1), the age of HAE onset was 68 years. Through-
out the years, diagnosing HAE has become more achiev-
able with improving immunologic and genetic tests, and the 
diagnostic delay between the first symptoms and establishing 
the diagnosis decreased, as shown in Fig. 1.

Information on HAE patient treatment was collected from 
the Czech national registry of primary immunodeficien-
cies, where almost all diagnosed HAE patients in the Czech 
Republic are registered. The data collected between March 
2012 and October 2021 were analyzed. A total of 6317 HAE 
attacks were recorded in 150 patients. Attack location and 
their treatment are specified in Tables S2 and S3, respec-
tively. Long-term prophylaxis was used in 95 patients.

We calculated the clinical severity score for each patient 
in our cohort using available information on age of onset, 
attack location, and long-term prophylaxis usage, follow-
ing the method introduced by Bygum et al. [28]. It should 
be noted that, except for age of onset, the score calculation 
was based solely on the Czech national registry of primary 
immunodeficiencies data, capturing information from 2012 
till 2021. However, the score considers swelling occurrences 
at any point in a patient’s lifetime, which would potentially 
result in higher scores in some patients when calculated 
based on their complete “lifetime” records.

Genetic Analysis

Several methods were used to find causative sequence 
defects in SERPING1 in HAE patients. When the HAE 

Table 1  Czech HAE patient cohort. (A) Numbers of specific groups 
of HAE patients. (B) C1-INH and C4 concentration and C1-INH 
function were crucial to establish diagnosis. The lowest values were 
considered in case of repeated measurements. C1-INH function and 
concentration in HAE-1 patients were reduced even in asympto-
matic patients, i.e. patients diagnosed before symptom onset, typi-
cally blood-related to a proband. There were 9 patients (5%) in the 
whole cohort that showed normal C1-INH function levels even after 
repeated testing. Patients with HAE-2 had normal but more often 
increased C1-INH levels. C4 levels in HAE-1 and HAE-2 symp-

tomatic patients did not differ, with a median 0.05 g/l and 0.06 g/l, 
respectively. The normal range slightly changed over time, but gen-
erally, only 12 out of all 188 (6.4%) patients showed consistently 
normal C4 levels. Patients with inconclusive complement test results 
were typically part of families where the variant segregated with the 
disease and/or was classified unequivocally pathogenic. When the C4 
level and C1-INH level and function were considered together, all 
but one patient (P05505) with available results exhibited at least one 
abnormal value

(A) Number
Patients 207
Probands 85
HAE-1 patients 175
HAE-1 probands 74
HAE-2 patients 32
HAE-2 probands 11
Females 109
Males 98

(B) Median Range Typical normal values
Symptomatic HAE-1 patients

  C1-INH concentration (g/l; n = 146) 0.06 0.018–0.21 0.210–0.390
  C1-INH function (%; n = 136) 38 0–78  > 68
  C4 concentration (g/l; n = 146) 0.05 0.018–0.23 0.100–0.380

Asymptomatic HAE-1 patients
  C1-INH concentration (g/l; n = 14) 0.089 0.03–0.168 0.210–0.390
  C1-INH function (%; n = 13) 56 20–82  > 68
  C4 concentration (g/l; n = 14) 0.075 0.02–0.11 0.100–0.380

Symptomatic HAE-2 patients
  C1-INH concentration (g/l; n = 27) 0.383 0.212–0.765 0.210–0.390
  C1-INH function (%; n = 27) 45 15–79  > 68
  C4 concentration (g/l; n = 25) 0.06 0.019–0.21 0.100–0.380

Asymptomatic HAE-2 patients
  C1-INH concentration (g/l; n = 3) 0.383 0.35–0.414 0.210–0.390
  C1-INH function (%; n = 3) 57 33–75  > 68
  C4 concentration (g/l; n = 3) 0.06 0.05–0.066 0.100–0.380
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genetic diagnostics were introduced, denaturing gradi-
ent gel electrophoresis was used to search for a defect in 
SERPING1 coding parts, followed by Sanger sequenc-
ing of regions showing a pattern that differed from the 
reference control. Later, direct Sanger sequencing of all 
coding parts and adjacent intronic sequences of the gene 
was performed. If the causal variant was not found in a 
patient, MLPA was used to search for large defects in the 
gene. Nonetheless, causative sequence variants in the gene 
were still not found in some cases. Then, we tried to gain 
RNA from blood samples of the patients and their rela-
tives—both healthy and suffering from HAE. To uncover 
potential splicing defects, we used their cDNA to amplify 
several SERPING1 mRNA segments overlapping particu-
lar exon boundaries, and search for exon inclusion abnor-
malities using fragment analysis [17].

Generally, we tried to establish and confirm the intronic 
and splicing variants’ impact independently. Typically, 
we applied minigene assay to investigate the effect of the 
detected sequence variant on RNA splicing, as described in 
the “Material and Methods” section [19].

The workflow of methods currently used to detect and 
evaluate causal variants by our laboratory is illustrated in 
Fig. S1. Using this set of methods, we detected a sequence 
variant that we considered as causative or probably causative 
in 206 out of 207 in our cohort of Czech patients, i.e. in 84 
families out of 85. We found 56 unique pathogenic or likely 
pathogenic sequence variants.

These variants included 18 different missense, 4 non-
sense, 13 frameshift, 16 splicing variants, and 5 copy num-
ber variations (CNVs) (Tables 2, 3, 4, 5, and 6).

Missense Variants

Eighteen different missense variants were detected in 
30 probands which accounted for 35.3% of all probands 
(Table 2). The most prevalent variants, p.Arg466His (17 
patients in 6 families) and p.Arg466Cys (15 patients in 5 
families) in exon 8, were connected to HAE-2 phenotype. 
Interestingly, the most common missense variant causing 
HAE-1, p.Val454Gly (8 patients in 4 families), was also 
located in exon 8. The potential effect of this missense varia-
tion was estimated by three different prediction programs, all 
of them predicting the change to have damaging effects on 
the protein (Table 2). It has been previously described only 
once, also in a patient of Czech origin [17]. Now we report 
the variant in another three probands. In one of the families, 
the variant was detected in the affected father (P05601) and 
also in his daughter (P05602) when she was 10 years old. 
She had not had any HAE attacks but showed low C1-INH 
concentration and function. It was also found in another fam-
ily depicted in Fig. 2b.

All other detected missense variants were specific to par-
ticular families, although they had been described previously 
in HAE patients (see references in Table 2). The potential 
impacts of all these variants were estimated by in silico tools 
and the variants were evaluated based on ACMG rules. Spe-
cific concern was paid to functional studies, which, regretta-
bly, have been published for only four variants to date, and to 
the number of previously described HAE patients carrying 
the respective variant (Table 2).

Needless to add, two other substitutions at the c.550 posi-
tion were detected, but as these variants’ pathomechanism 

Fig. 1  Diagnostic delay, i.e., difference in time between establishing the diagnosis and disease onset. a Graph for all Czech patients with avail-
able data. b Graph for probands of the cohort with available data
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is de facto mRNA splicing disruption [17, 42], they were 
included in the splicing variant subset.

Nonsense Variants

Four different nonsense variants were identified in 10 
patients from 4 families and they comprised 4.7% of all 
probands. All these variants had been described before as 
causative for HAE-1 (Table 3).

Frameshift Variants

Detected frameshift variants comprised 11 deletions, 1 
duplication, and 1 indel variant. Altogether, they were 
detected in 48 patients from 16 families and accounted for 
18.8% of probands (Table 4).

A novel 2-base deletion, c.151_152del, was identified 
in exon 3 in a mother with HAE symptoms (P03501) and 
her infant daughter (P03502). The variant potentially leads 

Table 2  Missense variants found in the Czech cohort. Variants were 
evaluated by in silico tools (CADD, Polyphen, and SIFT). The Proof of 
Pathogenicity column provides information on which the variant evalu-
ation is based. ‘MP’ indicates multiple published patients (including this 
study), while ‘FP’ signifies functional proof of variant impact with refer-
enced articles containing such evidence. The resources are indicated in 

the References column, and articles containing functional proof are [33, 
34, 57]. The numbers of patients and probands of our cohort are given 
in corresponding columns. # indicates previously published probands/
patients, and x in x# indicates the number of them. Two substitutions in 
the position c.550 were included in the splicing variants subset (Table 5) 
because their pathomechanism is primarily disruption of mRNA splicing

Variant cDNA Variant protein CADD Polyphen 
category

SIFT  
category

Proof of 
pathogenicity

ACMG 
evaluation

Number of 
probands

Number 
of patients

References

c.498C > A p.Asn166Lys 24 Probably 
damaging

Damaging MP Pathogenic 1 1 [12, 29–32]

c.503C > A p.Ala168Asp 22.9 Probably 
damaging

Damaging MP, FP [33, 34] Pathogenic 1 3 [30, 31, 33, 34]

c.506 T > C p.Phe169Ser 29 Probably 
damaging

Damaging MP Pathogenic 1 2 [35, 36]

c.548 T > C p.Leu183Pro 32 Probably 
damaging

Damaging MP Pathogenic 1# 1# [17, 37, 38]

c.614G > A p.Cys205Tyr 24.3 Benign Damaging MP Pathogenic 1 3 [37, 39, 40]
c.629 T > C p.Leu210Pro 24.8 Probably 

damaging
Damaging MP Pathogenic 1# 21# [17, 38, 41]

c.706 T > G p.Phe236Val 24.8 Probably 
damaging

Damaging Likely 
pathogenic

1# 21# [17]

c.722G > C p.Arg241Pro 14.82 Probably 
damaging

Tolerated MP, FP [33] Likely 
pathogenic

1 2 [33, 36]

c.743C > G p.Pro248Arg 23.2 Probably 
damaging

Damaging MP Likely 
pathogenic

1 3 [36, 42]

c.793 T > G p.Trp265Gly 25.4 Probably 
damaging

Damaging Likely 
pathogenic

1# 31# [17]

c.1046 T > C p.Leu349Pro 26.8 Probably 
damaging

Damaging MP Pathogenic 1# 21# [17, 43]

c.1195C > T p.Pro399Ser 23.2 Probably 
damaging

Damaging MP Pathogenic 1 2 [36, 38, 44, 45]

c.1202 T > A p.Ile401Asn 25.5 Probably 
damaging

Damaging MP Likely 
pathogenic

1# 21# [17, 46]

c.1322 T > A p.Met441Lys 25.1 Probably 
damaging

Damaging Likely 
pathogenic

1# 31# [17]

c.1346 T > C p.Leu449Pro 28.9 Probably 
damaging

Damaging MP Pathogenic 1 1 [30, 47]

c.1361 T > G p.Val454Gly 28.2 Probably 
damaging

Damaging MP Pathogenic 41# 81# [17]

c.1396C > T p.Arg466Cys 25.3 Probably 
damaging

Damaging MP, FP [57] Pathogenic 52# 155# [30, 32, 34, 36, 
38, 45, 48–60]

c.1397G > A p.Arg466His 23.4 Benign Damaging MP, FP [57] Pathogenic 62# 174# [28, 30, 32, 39, 
46, 48, 50, 52, 
54, 57, 61–64]
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to the frameshift and premature stop codon introduction 
(p.(Ser51Glnfs*6)) in the mRNA. Both the mother and her 
daughter carrying this variant did not have any other rare 
SERPING1 variation. They displayed HAE symptoms, and 
their complement measurements showed a deficient C1-INH 
level and function as well as below-normal C4 level.

A n o t h e r  n ove l  d e l e t i o n ,  c . 7 2 6 _ 7 7 7 d e l ; 
p.(Leu243Serfs*19), was identified in 7 members of one 
family with HAE-1 (P05501- P05507; Fig. 2a).

In a family with 5 patients (P05201-P05205), we 
additionally detected 7 base deletion c.1460_1466del; 
p.(Lys487Metfs*87) in exon 8 (Fig. 2c), which had not been 
described before.

Furthermore, we found a novel indel variant leading to 
frameshift c.795_796delGGinsT; p.(Trp265Cysfs*14) in a 
patient (P05301) and her daughter (P05302) both showing 
clinical and laboratory signs of HAE.

Some of the detected deletions comprise more than 20 
bases [74] and therefore should fall rather into the gross 
deletion category. However, as they do not affect the whole 
exon(s) and their pathological consequences are frameshift 
and introduction of a premature stop codon, we included 
them in the frameshift category.

To categorize the deletion c.1225_1249 + 19del, the situ-
ation is even more complicated because the variant causes 
primarily splicing defects [17] and was therefore included 
in the splicing variant subset.

Large Deletions and Duplications

A major part of gross variants has been detected by MLPA; 
however, two deletions mentioned in the previous para-
graph, which technically should be gross deletions, were 
detected by Sanger sequencing. When these are not taken 

Table 3  Nonsense variants found in the Czech cohort. The Proof of 
pathogenicity column provides information on which the variant eval-
uation is based with “null” indicating that the variant probably results 
in no gene product and “MP” indicates multiple published patients 

(including this study). The resources are indicated in the References 
column. Numbers of patients and probands of our cohort are given 
in corresponding columns. # indicates previously published probands/
patients of our cohort and x in x# indicates the number of them

Variant cDNA Variant protein Proof of patho-
genicity

ACMG evaluation Number of 
probands

Number of 
patients

References

c.209C > G p.(Ser70*) Null Pathogenic 1# 1# [18]
c.897G > A p.(Trp299*) Null, MP Pathogenic 1# 31# [17, 30, 32]
c.1036C > T p.(Gln346*) Null, MP Pathogenic 1 3 [30, 35, 36]
c.1420C > T p.(Gln474*) Null, MP Pathogenic 1 3 [12, 30, 56]

Table 4  Frameshift variants found in the Czech cohort. The Proof of 
Pathogenicity column provides information on which the variant eval-
uation is based—“null” indicating that the variant probably results in 
no gene product, “MP” indicates multiple published patients (includ-
ing this study), while “FP” signifies functional proof of variant impact 
with referenced articles containing such evidence. The resources are 
indicated in the References column, and articles containing func-
tional proof are [17]. Numbers of patients and probands of our cohort 

are given in corresponding columns. # indicates previously published 
probands/patients of our cohort, and x in x# indicates the number of 
them. The variant c.726_777del included in this table comprises more 
than 20 bases but because it does not affect the whole exon, it was not 
included in the CNV subset (Table 6). On the other hand, the deletion 
c.1225_1249 + 19del was placed in the splicing variant table (Table 5) 
as it primarily disrupts mRNA splicing

Variant cDNA Variant protein Proof of pathogenicity ACMG evaluation Number of 
probands

Number 
of patients

References

c.120_121del p.(Gly41Argfs*16) Null, MP, FP [17] Pathogenic 1# 3# [17, 18, 33, 36, 42, 47, 56]
c.151_152del p.(Ser51Glnfs*6) Null Pathogenic 1 2 novel
c.160del p.(Leu54Tyrfs*25) Null Pathogenic 1# 31# [18]
c.305_317del p.(Pro102Leufs*42) Null, FP [17] Pathogenic 21# 141# [17]
c.600dup p.(Lys201Glnfs*56) Null, MP Pathogenic 1# 21# [12, 30, 36, 47, 64]
c.650del p.(Gly217fs*15) Null, MP Pathogenic 1# 1# [17, 53]
c.726_777del p.(Leu243Serfs*19) Null Pathogenic 1 7 novel
c.795_796delGGinsT p.(Trp265Cysfs*14) Null Pathogenic 1 2 novel
c.855_856del p.(Arg286Profs*18) Null Pathogenic 1# 2# [18]
c.1115del p.(Gln372Argfs*25) Null Pathogenic 1# 21# [17]
c.1283del p.(Cys428Leufs*3) Null, MP Pathogenic 1# 1# [17, 33]
c.1284_1285del p.(Cys428Trpfs*44) Null, MP Pathogenic 31# 41# [18]
c.1460_1466del p.(Lys487Metfs*87) Null Pathogenic 1 5 novel
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into account, the other gross deletions of one or several 
exons were detected in 26 patients from 14 families, which 
comprise 16.5% of the cohort. A duplication of exons 5–6 
was detected in 1 patient (1.2% of the probands).

Splicing Variants

As mentioned before, 2 missense and 1 frameshift variant 
found in our cohort disrupt mRNA splicing. In addition, we 

found 13 other splicing variants. Thus, in total, we detected 
splicing variants in 49 patients from 19 families which 
account for 22.4% of probands.

Out of the 16 detected variants, 7 disrupted canonical 
splice site positions, which is a well-established pathogenic 
mechanism, and additionally, functional studies have been 
described for 4 of these variants [17]. In our cohort, we iden-
tified 9 variants located in non-canonical splice site posi-
tions, with 8 of them being previously published. Functional 
studies have been conducted for 6 of these variants (Table 5). 
In this study, we performed functional studies on a previ-
ously published variant as well as a novel variant that we 
detected.

The impact of the substitutions in exon 3’s last nucleo-
tide (position c.550) on splicing was previously function-
ally evaluated using RNA analysis and was established 
as pathogenic [75]. In the same splice site, we detected a 
novel variant, c.550 + 3A > C, in a patient P02201 and as 
the variant had not been previously reported, we tried to 
functionally evaluate it. Unfortunately, none of the patient’s 
family members were available for testing. The variant 
potentially affecting the donor splice site (5'ss) of exon 3 
was analyzed in silico by MaxEnt Score [76], and the ratio 

Table 5  Splicing variants found in the Czech cohort. The Proof of 
Pathogenicity column provides information on which the variant eval-
uation is based. ‘MP’ indicates multiple published patients (including 
this study), while ‘FP’ signifies functional proof of variant impact with 
referenced articles containing suchevidence. The resources are indi-
cated in the References column, articles containing functional proof 

are [17, 19, 35, 66, 73]. Numbers of patients and probands of our 
cohort are given in corresponding columns. # indicates previously pub-
lished probands/patients of our cohort, and x in x# indicates the num-
ber of them. Two substitutions in the position c.550 and the deletion 
c.1225_1249 + 19del were included in this table because their patho-
mechanism is primarily disruption of mRNA splicing

Variant cDNA Intron Proof of patho-
genicity

ACMG evaluation Number of 
probands

Number of 
patients

References

c.-22-19_-22-4del 1 MP Likely pathogenic 1 2 [36, 65]
c.51 + 5G > A 2 MP, FP [35, 66] Pathogenic 1 1 [30, 31, 35, 66]
c.550G > A exon 3 MP, FP [17] Pathogenic 1# 1# [17, 28, 31, 32, 35, 36, 38–40, 42, 

45, 50, 51, 56, 58, 62, 67–70]
c.550G > T exon 3 MP, FP [17] Pathogenic 1# 1# [17, 36, 56]
c.550 + 3A > C 3 FP [this study] Likely pathogenic 1 1 novel
c.551-2A > G 3 MP, FP [17] Pathogenic 21# 111# [17, 36, 49, 62]
c.685 + 1del 4 FP [17] Pathogenic 1# 41# [17]
c.685 + 2_685 + 13del 4 FP [17] Pathogenic 1# 41# [17]
c.686-12A > G 4 MP, FP [17] Pathogenic 1# 1# [17, 44, 47, 55]
c.686-7C > G 4 MP, FP [this study] Pathogenic 1 2 [36]
c.686-1G > T 4 MP Pathogenic 1 1 [38]
c.1029 + 384A > G 6 MP, FP [19] Pathogenic 31# 1512# [19, 34, 71, 72]
c.1225_1249 + 19del 7 FP [17] Pathogenic 1# 21# [17]
c.1249 + 1G > A 7 MP Pathogenic 1 1 [37, 43, 49, 61]
c.1249 + 2 T > C 7 MP Pathogenic 1 1 [56]
c.1249 + 5G > A 7 MP, FP [17, 73] Pathogenic 1# 1# [17, 36, 65, 73]

Table 6  Large deletions and duplication found in the Czech cohort. 
Numbers of patients and probands of our cohort are given in corre-
sponding columns. The variant c.726_777del was included in the 
frameshift set (Table 4) even though it comprises more than 20 bases 
because the deletion does not affect a whole exon

Variant cDNA Number of probands Number of 
patients

EX1-6del 1 3
EX1-8del 2 2
EX4del 9 15
EX7del 2 6
EX5-6dup 1 1
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between mutated and wild-type 5'ss sequence was 0.41—a 
number suggesting a substantial effect on splicing. Accord-
ing to Le Guédard-Méreuze et al. [77], substitution + 3A > C 
is prone to cause a splicing defect even if the donor splice 
site does not contain any further nucleotide changes. We 
performed minigene analysis (detailed procedure described 

in Supplement Methods) to confirm the deleterious effect on 
splicing and it showed aberrant splicing in nearly 100% of 
mutated minigene construct transcripts (Fig. 3).

Variant c.686-7C > G was detected in a mother and her 
daughter (P03001-P03002), both affected with HAE symp-
toms. This variant had been described before [7], but its 

Fig. 2  Family trees of HAE patients. HAE-affected family members 
carrying the causal variant are shown in black, Asymptomatic/pre-
symptomatic carriers of causal variants are depicted by a partitioned 
symbol, and healthy individuals are depicted by a blank symbol. 
Individuals who were not tested are signified by NT. a The variant 
c.726_777del was identified in 7 members of one family with HAE-
1. The variant was first revealed in a 10-year-old boy (P05501) and 
his father, who both showed relatively severe HAE symptoms, and 
their condition started at a young age, at 9 and 7 years, respectively. 
Further genetic analysis revealed the same variant in another 4 mem-
bers of the family. Interestingly, the oldest member of the family—an 
81-year-old grandfather (P05505) of this 10-year-old boy—suffered 
from only 2 attacks in his life, both appearing before establishing 
his diagnosis perioperatively at 68 and 73 years of age. His C1-INH 
and C4 levels, and C1-INH function were normal. All other mem-

bers with the detected variant had low C4 and C1-INH levels as well 
as C1-INH function, and all of them also showed HAE symptoms. 
4 asymptomatic members with normal C4 and C1-INH levels were 
tested, and the variant was not detected in their DNA samples. b The 
variant p.Val454Gly was among other patients also found in 4 mem-
bers of the depicted family. Three family members (P05101, P05103 
and P05104) suffered from HAE attacks and also showed laboratory 
HAE symptoms, whereas 29-year-old P05102 showed only C1-INH 
concentration and function deficit with no clinical symptoms of HAE. 
c Seven base pair deletion c.1460_1466del was detected in a family 
with 5 patients. The HAE phenotype in this family segregates with 
the presence of the variant and the disease course is quite severe in 
all affected members—in P05205, the attacks appeared as early as 
2  years of age. The variant was not found in 4 other asymptomatic 
family members tested
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impact had not been yet fully evaluated. Therefore, we 
extracted RNA from both patients’ blood and analyzed 
samples by RT-PCR and fragment analysis (Supplementary 
Methods), which showed complete impairment caused by 
the variant (Fig. 4).

Variant Type and Course of Disease

We classified patients based on their genetic variants. 
Those with variants that prevented the production of a 
functional transcript were grouped as null variants, while 
those with a missense defect in Arg466 were classified as 
HAE-2. Patients with other missense variants were cat-
egorized as missense. We then studied the patient groups 
to determine potential connections between the type of 
causal variant with the age of onset, the number of dis-
ease attacks per year, and the clinical severity score. 

Although there was no apparent association between the 
type of causal variant and the frequency of HAE attacks 
among the groups or clinical severity score, patients 
with missense variants showed a significantly higher 
age of HAE onset compared to those with null variants 
(Kruskal–Wallis; p = 0.023; Fig. 5).

Potential Impact of c.‑21 T > C on HAE Course

We examined the patients for the presence of the exonic variant 
c.-21 T > C in trans conformation with the disease-causing vari-
ant. It was possible to unambiguously determine c.-21 T > C in 
trans form in 12 patients in our cohort. Its presence was signifi-
cantly associated with a lower age of HAE onset (Mann–Whit-
ney; p = 0.024; Fig. 6a), a higher number of attacks per year 
(Mann–Whitney; p = 0.018; Fig. 6b), and a higher clinical sever-
ity score (Mann–Whitney; p = 0.048; Fig. 6c).

Fig. 3  Minigene splicing analysis of a novel variant c.550 + 3A > C. 
The wild-type and mutant genomic fragments of SERPING1 com-
prising exon 3 and flanking upstream (229  bp) and downstream 
(255 bp) intron sequences, were cloned into pET01 vector and HepG2 
cells were transfected with these minigenes. Capillary electropho-
resis of RT-PCR products showed aberrant splicing in nearly 100% 
of mutated minigene construct transcripts. Several different aberrant 
transcripts were detected. The most abundant was intron 3 reten-
tion followed by exon 3 skipping. Transcripts using cryptic donor 
splice sites − 10 and + 27 were found in the mutant minigene analy-

sis, whereas they were not detected in the wild type at all. a Mini-
gene analysis results: column A shows transcript proportions result-
ing from control minigene construct representing c.550 + 3A; column 
C shows transcript proportions resulting from minigene construct 
representing c.550 + 3C. b Scheme of the transcripts detected in the 
minigene analysis. c Scheme of the pET minigene construct. Cryptic 
splice sites found in the analysis and their exact sequences are dis-
played. MaxEnt Score values (MES) are specified beneath each splice 
site
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Discussion

Here, we present a report of clinical and genetic data from 
Czech C1-INH-HAE patients (Table S1), which is an update 
on the whole historical cohort diagnosed in the past years, 
including previously published cases [16–19].

Fast and Precise

As we have shown, it took decades to come to conclu-
sive genetic diagnosis in some families [19], but with the 
advancement of molecular biological techniques, the diag-
nosis can be reached much faster, with a notable increase 

Fig. 4  mRNA analysis of patients carrying variant c.686-7C > G. 
Capillary electrophoresis was performed on PCR products amplified 
by primers annealing to exons 4 and 7. a Healthy control shows only 
one wild type peak. b Both patient sample results show 2 peaks—
reference transcript peak and a peak corresponding to a 6 bp longer 

transcript using a de novo created acceptor splice site. Aberrant and 
normal transcript proportion was roughly equal, which corresponds 
to complete impairment caused by the variant. The variant preserves 
a reading frame and leads to incorporation of additional two amino 
acids (proline-alanine) into the polypeptide chain

Fig. 5  Impact of causal variant types on HAE phenotype. HAE 
Patients were classified into different groups based on their specific 
causal variant types: HAE-2 variants causing damage to the active 
center of SERPING1, other missense variants, and null variants pre-
venting C1 inhibitor formation. The primary objective was to inves-
tigate the impact of these variant types on various phenotypic char-
acteristics. a The impact of causal variant type on age of HAE onset 
was analyzed in 26, 32, and 109 patients from HAE-2, missense and 
null groups, respectively. Analysis showed no significant association 

in relation to the HAE-2 group. However, null variants in patients 
were significantly associated with lower age of HAE onset compared 
to those with the missense variant (Kruskal–Wallis; p = 0.023). b 
The impact of causal variant type on HAE attack frequency was ana-
lyzed in 27, 34, and 108 patients from HAE-2, missense, and null 
groups, respectively. Analysis revealed no significant associations. c 
The impact of causal variant type on clinical severity score [28] was 
analyzed in 20, 31, and 79 patients from HAE-2, missense, and null 
groups, respectively. No significant association was found
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in sensitivity. Earlier single-center observations [16] were 
confirmed in a larger number of individuals from all over 
the country, as shown on Fig. 1. The time between the first 
attack of the disease and establishing the diagnosis dimin-
ished during the years. Reaching a conclusive diagnosis 
in the first occurrence in a family of course presents a 
much more demanding task than when investigating fam-
ily members, but as seen in Fig. 1b, the diagnostic delay 
substantially decreased, even in probands. Based on cur-
rent guidelines, genetic testing is not necessary to establish 
HAE diagnosis [78]. However, as C1-INH levels and activ-
ity, and C4 levels tend to vary between attacks and remis-
sions, it might be essential to identify the disease-causing 
variant in a patient when C1-INH-HAE is suspected, but 
the complement test results are inconclusive. It is therefore 
favorable to confirm the disease genetically in young chil-
dren where interpreting the complement test results might 
be especially tricky, and first HAE symptoms could easily 
be misinterpreted. Also, thanks to genetic counseling and 
testing for a familial variant the diagnosis can be estab-
lished in relatives before symptoms emerge, which might 
prevent them from life-threatening manifestations. Inter-
estingly, one patient in our cohort had a very mild course 
of disease – the first attack appeared perioperatively at 

68 years of age (P05505) and the patient also exhibited 
normal C4 level, as well as C1-INH level and function. 
This attack might have not been recognized as an HAE 
incident, were he not a member of a large family of HAE 
patients with a formerly established diagnosis.

Only one patient (P01701) from our cohort remained 
undiagnosed after performing all advanced molecular test-
ing. However, we were able to detect variants classified as 
pathogenic or potentially pathogenic based on ACMG cri-
teria in all other Czech patients.

Incorporating NGS into the detection method spec-
trum might be quite useful, specifically, when targeted to 
intronic and UTR SERPING1 regions and to other previ-
ously described genes related to HAE phenotypes. Recently, 
we also validated targeted NGS to detect large deletions and 
duplications, and we are able to search for gross rearrange-
ments and intronic/UTR variants in one step.

Variant Spectrum

The diversity of the identified pathogenic or probably path-
ogenic variants in Czech patients (Fig. S2) confirmed the 

Fig. 6  Influence of the variant c.-21 T > C in trans conformation with 
the disease-causing variant on disease phenotype. In the analysis, 
two groups were compared: patients carrying the c.-21 T > C variant 
in trans conformation with causal variant, depicted in the graph as 
c.-21 T > C/mt, and patients who did not carry the c.-21 T > C vari-
ant or had this variant in cis form, depicted as other a The impact 
on the age of HAE onset was evaluated by comparing 12 patients 
carrying c.-21  T > C in trans conformation with causal variant, 148 
patients that did not carry c.-21 T > C or have this variant in cis form. 
The presence of the variant c.-21  T > C in trans conformation was 
significantly associated with a lower age of HAE onset (Mann–Whit-
ney; p = 0.024). To determine how much this result is affected by the 
type of causal mutation, we determined the ratio of causal mutation 
types in the both groups: in the group carrying the c.-21C > T variant 

the ratio was 1:1:4 and in the other 1:1.1:4.1 (HAE-2:missense:null). 
b The impact on the HAE attack frequency was evaluated by com-
paring 12 patients carrying c.-21  T > C in trans conformation with 
150 patients that did not carry c.-21 T > C or have this variant in cis 
form. The presence of the variant c.-21 T > C in trans conformation 
was significantly associated with a higher number of attacks per year 
(Mann–Whitney; p = 0.018). c The association of c.-21 T > C in trans 
conformation with Clinical severity score was evaluated by compar-
ing 11 patients carrying c.-21 T > C in trans conformation with 134 
patients that did not carry c.-21 T > C or have this variant in cis form. 
The presence of the variant c.-21  T > C in trans conformation was 
significantly associated with a higher Clinical severity score (Mann–
Whitney; p = 0.045)
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heterogeneity of causal variants observed in other countries 
[44, 47–49].

When comparing the proportion of various detected vari-
ant types in our cohort with the worldwide dataset (LOVD 
database [9, 76]), most variant types are of similar amounts. 
Only in our dataset, the proportion of causal splicing vari-
ants is remarkably higher (Fig. 7). This may be due to the 
higher prevalence of splicing defects in Czech patients, but 
also because our group focuses specifically on splicing anal-
ysis. It might seem to be a result of our specific approach 
to variant classification; however, the same approach was 
applied also by Drouet et al. [9] who reviewed data on patho-
genic/likely pathogenic SERPING1 variants from the LOVD 
database, which we compared our data with (Fig. 7).

The Importance of Being Causal

In case of SERPING1 nonsense and frameshift variants, pre-
maturely introducing a stop codon and/or nonsense mediated 
decay is generally the assumed pathomechanism. Similarly, 
there are no pathomechanism doubts in case of whole exon 
deletions. However, assessing the impact of missense vari-
ants and splicing variants located outside canonical splicing 
positions (± 1,2) is a more demanding process, as only a 
few functional studies are available (for variants assessed 
by functional test(s) see Tables 2, 3, 4, and 5). Therefore, 

clinically based databases like HGMD [74] or LOVD [76] 
play crucial roles in providing information on reported cases 
carrying the same variant which is very important when 
applying ACMG based variant classification. Further, it is 
noteworthy that the ClinGen Variant Curation Expert Panel 
has begun to investigate HAE [79].

Even though mRNA analysis might sometimes be strenu-
ous due to the small extracted quantity of SERPING1 mRNA 
from the whole blood [19], PCR of cDNA designed to detect 
a specific splicing defect followed by capillary electrophore-
sis still presents the first-choice methodology in our hands. 
Using this procedure, we were able to detect aberrant tran-
scripts in two related patients carrying the c.686-7C > G var-
iant. In this case, the aberrant transcript was not degraded by 
NMD; however, even in NMD-driven degradation, capillary 
electrophoresis appears to be sensitive enough to detect the 
aberrant transcript [19].

Specific splicing in silico prediction tools may help specify 
the defect and draw attention in the right direction. However, 
splicing variants’ impact outside canonical GT or AG dinu-
cleotides is sometimes difficult to assess by these tools as, for 
instance, the MaxEnt Score often does not decrease substan-
tially. Therefore, using a minigene system can provide invalu-
able information especially if the patient’s RNA is unavailable.

For example, minigene analysis of c.550 + 3A > C con-
firmed exon 3 splicing disruption. However, it is important 

Fig. 7  Comparison of HAE causal variant types distribution in Czech 
cohort, other central European populations, and LOVD worldwide 
dataset. The data for the Polish population were taken from Obtulow-
icz et al. [65], and LOVD, while the data for the Hungarian population 
were taken from Szabó et  al. [34]. The data for the German popula-
tion were taken from LOVD. Regrettably, data for Slovak and Austrian 

populations, which should be closest to the Czech population from a 
historical point of view, are not available. The analysis shows that 
most types of variants were present in similar amounts in all popula-
tions studied. However, the proportion of causal splicing variants was 
remarkably higher in Czech patients than in the other populations and 
the LOVD dataset
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to carefully interpret the test results. In this variant, the tran-
script created by retaining part of intron 3 makes a substan-
tial part of the detected mutant minigene transcripts but a 
similar transcript would not occur in vivo at all [5]. This 
difference emerges from simplifying the genomic context 
in a minigene, where the intron downstream of studied exon 
is shortened from 1657 to 530 bp only, which makes intron 
retention more probable compared to real SERPING1. Thus, 
we would primarily expect exon skipping and cryptic 5'ss 
use in a patient carrying this variant.

With as many as 20% of causal de novo variants, SERP-
ING1 is regarded as a mutagenic liability, possibly due to its 
location near the centromeric region and presence of CpG 
islands in the coding region. Nevertheless, it still might be 
useful to monitor a particular population even with such a 
high sequence variation rate. We found few variants that 
occur specifically in the Czech cohort. The most common 
variant in our HAE-1 cohort—p.Val454Gly—previously 
described only in one patient in our other study, was addi-
tionally found in three other pedigrees. Similarly, the vari-
ant c.1284_1285del, which was previously reported only 
in one Czech pedigree [18], was discovered in two addi-
tional families. Furthermore, another deep intronic variant, 
c.1029 + 384A > G, was detected in three families, however, 
this variant’s incidence in other populations might still be 
underestimated because the variant location is usually not 
routinely analyzed by Sanger sequencing and targeted or 
exome NGS [71, 72]. Beside these variants, others were spe-
cific to one or two families except for the HAE-2 variants in 
active center and large deletions.

Severity of HAE

The HAE phenotype severity ranges from asymptomatic to 
very severe and even members of the same family carrying 
the same SERPING1 alleles have a very distinct disease. 
Numerous studies have investigated the correlation between 
causal variant types and phenotype, adopting diverse 
approaches for variant classification and phenotype charac-
terization. In several studies, variants were categorized into 
two groups—first comprising nonsense, frameshift, large 
deletion/insertions, splicing defects and HAE-2 variants, and 
second missense variants excluding HAE-2 variants [44, 50, 
80], and whereas Andrejevic et al. and Grivčeva-Panovska 
et al. [44, 80] found that the first group of variants correlated 
with worse clinical severity score, Maia et al. [50] found 
no correlation with the phenotype. Similar to our approach, 
Speletas et al. [12] considered HAE-2 variants a specific 
entity and compared HAE-1 missense variants to null vari-
ants, and similarly to our results, they found association 
between missense variant and later onset of the HAE.

Duponchel et al. [66] showed that the c.-21 T > C variant 
causes partial exon 2 skipping. It has been suggested that 
even though it is not causal in heterozygous carriers, it may 
still potentially cause mild HAE in a homozygous state [48] 
and, in trans position to another causal SERPING1 variant, 
may be linked to a more severe clinical manifestation [35, 
51, 81]. We detected no homozygous c.-21 T > C carrier in 
our cohort. However, we did examine its potential influence 
on HAE severity and, indeed, found a significant association 
between c.-21 T > C in trans position with another causal 
variant and a higher number of attacks per year, a lower age 
at disease onset, as well as a higher Clinical severity score 
[28].

Although our study comprises the largest reported num-
ber of patients with c.-21 T > C in trans with another causal 
variant to the best of our knowledge, it would still be useful 
to collect and analyze data from several databases, prefer-
ably in the form of a multicenter international study, to get 
a clearer picture of the association between this variant and 
HAE phenotype.

Conclusion
Most of the HAE genetic causes are determined by routinely 
used approaches, such as direct SERPING1 sequencing of 
exons, exon/intron boundaries, as well as determining CNVs. 
When no causal variant is identified by these conventional 
methods, further molecular genetic techniques should be 
applied in order to discover the pathogenic alteration in the 
background of the disease. Primarily, we suggest sequencing 
intronic and UTR parts of the gene, where pathologic vari-
ants have been previously reported, then, analyzing mRNA 
ideally in several affected and unaffected family members, 
and/or performing functional minigene tests, if a variant 
of unknown significance is found. Using targeted panel 
sequencing, which is becoming standard, we can analyze 
all the SERPING1 regions, as well as other genes associated 
with HAE in one step.

As demanding as the procedure of uncovering the pos-
sible underlying defect might appear, functional analysis 
and correct interpretation of the variant pathogenicity often 
presents an even more substantial challenge. Even though 
we have provided an experimental insight into the patho-
mechanism of some splicing variants in previously published 
studies as well as in this paper, several variants possibly 
affecting SERPING1 expression and splicing still await func-
tional evidence.
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