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Abstract
Purpose Pediatric patients with inborn errors of immunity (IEI) undergoing umbilical cord blood transplantation (UCBT) 
are at risk of early mortality. Our aim was to develop and validate a prediction model for early mortality after UCBT in 
pediatric IEI patients based on pretransplant factors.
Methods Data from 230 pediatric IEI patients who received their first UCBT between 2014 and 2021 at a single center were 
analyzed retrospectively. Data from 2014–2019 and 2020–2021 were used as training and validation sets, respectively. The 
primary outcome of interest was early mortality. Machine learning algorithms were used to identify risk factors associated 
with early mortality and to build predictive models. The model with the best performance was visualized using a nomogram. 
Discriminative ability was measured using the area under the curve (AUC) and decision curve analysis.
Results Fifty days was determined as the cutoff for distinguishing early mortality in pediatric IEI patients undergoing UCBT. 
Of the 230 patients, 43 (18.7%) suffered early mortality. Multivariate logistic regression with pretransplant albumin, CD4 
(absolute count), elevated C-reactive protein, and medical history of sepsis showed good discriminant AUC values of 0.7385 
(95% CI, 0.5824–0.8945) and 0.827 (95% CI, 0.7409–0.9132) in predicting early mortality in the validation and training 
sets, respectively. The sensitivity and specificity were 0.5385 and 0.8154 for validation and 0.7667 and 0.7705 for training, 
respectively. The final model yielded net benefits across a reasonable range of risk thresholds.
Conclusion The developed nomogram can predict early mortality in pediatric IEI patients undergoing UCBT.
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Introduction

Human inborn errors of immunity (IEI), also known as primary 
immunodeficiencies, are a group of rare diseases caused by 
monogenic germline mutations. They can be life-threatening 
if appropriate medical treatment is not provided. Allogeneic 
hematopoietic stem cell transplantation (allo-HSCT) offers 
life-saving and curative treatment for the vast majority of IEI 
[1-5]. Although a human leukocyte antigen (HLA)-matched 
unaffected sibling is the preferred donor, it is available for only 
less than one-third of patients [6, 7]. Unrelated umbilical cord 
blood (UCB), as an important alternative stem cell source, is 
a suitable option for patients for whom a suitable donor is not 
available in due time [8]. However, transplant-related mortality 
(TRM) is a major obstacle in unrelated umbilical cord blood 
transplantation (UCBT).

Mortality after allo-HSCT can be classified into very 
early, early, intermediate, and late mortality, based on the 
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time between HSCT and death [9]. The exact definitions 
of these classifications vary by transplant indication 
(e.g., malignancy vs. non-malignancy) and transplant 
characteristics (e.g., stem cell source). Early all-cause 
mortality is of great interest in patients undergoing UCBT 
for several reasons. First, mortality in patients with IEI 
occurs mainly in the early stage after UCBT, due to delayed 
engraftment, graft failure or poor graft function, acute 
graft-versus-host-disease (GvHD), and infection [3-5, 
10]. Second, although the overall mortality after UCBT in 
children has decreased in recent years, the trend in early 
all-cause mortality has not been reported [7, 9]. Third, 
patients at high risk of early mortality must be identified for 
clinicians and patient guardians to make informed decisions.

Despite its importance, early mortality after UCBT in IEI 
patients has not been well-studied for several reasons. First, 
IEI are "very rare" and highly heterogeneous. As a result, it 
is difficult to obtain adequate sample size for IEI subgroup 
analysis. Second, analytic tools (e.g., machine learning 
algorithms) have rarely been used to reveal underlying 
patterns between risk factors and outcomes of interest (i.e., 
early all-cause mortality) in the landscape of hematology 
or transplantation. Lastly, the threshold for early mortality 
after UCBT, defined as a day post-transplant, when mortality 
transitions from a designation of "early" to “intermediate”, 
remains undetermined [9, 11-13].

Machine learning is a data-driven analytic approach 
[14] to establishing a model by recognizing the underlying 
patterns [15], including the thresholds for specific variables. 
Machine learning is likely to be increasingly integrated into 
the research and practice landscape of hematology [16]. 
However, machine learning is yet to be applied in identifying 
risk factors for early mortality after allo-HSCT and predicting 
early all-cause mortality in pediatric IEI patients.

Therefore, in this study, we first established a cutoff value 
for distinguishing different phases concerning mortality 
(e.g., early mortality) based on a data-driven approach and 
real-world evidence in pediatric IEI patients who underwent 
UCBT and developed and validated a prediction model for 
early all-cause mortality after UCBT based on pretransplant 
factors.

Materials and Methods

Patients

Patients included in this study were diagnosed with IEI 
according to the criteria proposed by the International 
Union of Immunological Societies, which include: typical 
clinical manifestations, monogenic mutations, and/or 
functional identifications [17]. All patients were between 0 

and 14 years old and had undergone UCBT at the Children’s 
Hospital of Fudan University between February 2014 and 
December 2021. They all met the HSCT guidelines for IEI 
[18, 19] and had no matched-related donor. No exclusion 
criteria were set for this study.

This study was approved by the ethics board of the 
Children’s Hospital of Fudan University. Written informed 
consent was obtained from the guardians of all the patients.

Transplantation‑related definitions

Conditioning regimens were classified as myeloablative 
conditioning with busulfan (BU) >8 mg/kg in combination 
with cyclophosphamide (100 mg/kg) and/or fludarabine 
(150–175 mg/m2) and reduced-intensity conditioning with 
BU ≤8 mg/kg in combination with cyclophosphamide and/
or fludarabine. The BU dosage for patients with severe 
combined immunodeficiency (SCID), very early onset 
inflammatory bowel disease (VEO-IBD), and chronic 
granulomatous disease (CGD) was (6.4–13.2), (8.0–14.4), 
and (12.0–19.2) mg/kg, respectively. GvHD prophylaxis 
mainly consisted of calcineurin inhibitors (cyclosporin A 
or tacrolimus) alone or in combination with mycophenolate 
mofetil. HLA compatibility was determined by high-
resolution typing for HLA-A, -B, -C, -DR, and -DQ loci.

Characteristics and outcomes

Patient (e.g., demographics, clinical manifestations, medical 
history, laboratory results, and diagnosis), donor (stem cell 
count and HLA compatibility), and follow-up information 
(e.g., complications, survival status, and cause of death) 
were collected retrospectively using a standardized, 
computerized form.

Serum biochemical indices (albumin [Alb], alanine 
aminotransferase [ALT], total bilirubin, and immunoglobulin), 
inflammatory biomarkers (procalcitonin [PCT], ferritin, and 
Interleukin 6 [IL-6]), and lymphocyte subsets were measured 
approximately one week before the start of conditioning. 
C-reactive protein (CRP) was measured just before the 
initiation of conditioning. The elements in the medical history 
category (e.g., intestinal infection, severe pneumonia) are 
defined in detail in Table S1.

With the exception of the outcomes of interest (early 
mortality and causes of death), all the aforementioned 
analysis variables were pretransplant factors. A complete 
list of the variables is shown in Table S2.

We plotted the cumulative density plot of the interval 
between UCBT and the last follow-up or death. Early 
mortality was defined based on the pattern depicted in the 
plot using the ‘elbow’ method [20].
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Modeling

When preparing the data for modeling, we first checked for 
missing patterns in the variables. Missing values were then 
handled with a multivariate imputation strategy to prepare 
the data matrix for modeling, and one of the five imputed 
data sets was randomly selected. Variables used in the anal-
yses were converted to numeric or binary values (e.g., 1 
indicates male, 0 indicates female). Using one-hot encoding 
method [21], we converted IEI disease diagnosis (categorical 
data) to multidimensional binary vectors. The primary out-
come variable was converted to 0 (negative) or 1 (positive) 
indicating early mortality.

The cohort dataset was divided based on a marker time 
point. Data from patients who underwent UCBT before 
and after January 1, 2020, were assigned to a training or 
validation set, respectively, before feature selection and model 
development. We performed ensemble feature selection to 
alleviate and compensate for specific biases associated with 
single feature selection and to increase the stability of feature 
selection based on a different training set [22].

Machine learning algorithms were used to develop a 
prediction model. Multivariate logistic regression (LR), 
Lasso [23], random forest, and extreme gradient boosting 
(XGBoost) were used for the selected variable and all-variable 
sets, as appropriate. Subsequently, the optimal parameters of 
the machine learning algorithms were obtained through cross-
validation using the training set. Finally, the performance of 
the model was compared using the validation set. Among all 
the models, the LR with the selected variables provided the 
highest area under the curve (AUC) using the validation set.

The resulting model was further validated using the 
bootstrap method (1000 times) after a performance 
assessment in the validation set [24]. Finally, a nomogram 
was developed to visualize the model.

Model evaluation

Performance of the best model (i.e., LR with the selected 
variables) was evaluated using the AUC. The accuracy of 
the optimal cutoff value was assessed using sensitivity, 
specificity, and positive and negative predictive values 
(PPV and NPV, respectively).

Patients in the temporal validation cohort were classified 
into two prognostic groups (i.e., high-risk group vs. low-risk 
group) based on their predicted probability of early mor-
tality and the selected cutoff probability, and their survival 
curves were compared using the Kaplan–Meier method. In 
addition, a decision curve analysis (DCA) was performed 
to evaluate the potential clinical benefits of using the model 
to identify patients at high risk for early mortality. DCA 
[25] evaluates the value of a predictive model when making 
clinical decisions. Three strategies were compared: selecting 

all patients for intervention (i.e., treating all), selecting no 
patients (i.e., treating none), and selecting patients based on 
the nomogram.

Statistical analyses

Unpaired, two-tailed t-test and Wilcoxon test were used to 
compare the distribution of continuous variables. For vari-
ables that did not follow a normal distribution, the median 
and quantile values were compared. The chi-square test was 
used to quantify the relationship between categorical vari-
ables (e.g., label balance between the training and validation 
sets). The Multivariate Imputation by Chained Equations 
(MICE) package was used for missing value imputation. 
The roc.test() function in the ‘pROC’ package was used to 
compare the two Receiver Operator Characteristic (ROC) 
curves on the training and validation sets. Statistical sig-
nificance was set at p = 0.05. Statistical analyses were per-
formed using R version 4.0.1 (R Foundation for Statistical 
Computing, Vienna, Austria).

Results

Patient characteristics

Data from the 230 patients (181 male and 49 female) who 
underwent UCBT between February 2014 and December 
2021 were included in this study. Patient demographics and 
UCBT characteristics are shown in Table 1. The median 
age at UCBT was 14.50 months (interquartile range [IQR], 
8.71–29.18 months). Sixty-seven patients were diagnosed 
with CGD, 73 with VEO-IBD, 48 with SCID, and 42 with 
other types of IEI, including Wiskott–Aldrich syndrome 
(WAS), leukocyte adhesion deficiency (LAD), and hyper-
IgM (HIgM) syndrome. The genetics of the diagnoses 
are detailed in Table S3. The engraftment rate was 81.7% 
(188/230). The median follow-up time was 30.17 months 
(IQR, 5.44–56.78 months) after UCBT. During follow up, 
65 patients (28.3%) died after UCBT, resulting in an overall 
survival rate of 71.7% (Fig. S1). Early mortality was defined 
as death within 50 days after UCBT (Fig. 1). Of the 230 
patients, 43 (18.7%) had early mortality due to infection 
(29/43), organ dysfunction (11/43), or acute GvHD (3/43).

A comparison between the early mortality group and 
other patients group (died after day 50 or survived) is pre-
sented in Table 2. The serum albumin, CD4-positive lym-
phocytes (absolute count and ratio), CD19-positive lym-
phocytes (absolute count), and CD3-positive lymphocytes 
(absolute count) were significantly lower in the early mortal-
ity patients than in intermediate to late mortality patients and 
survivors. Patients with early mortality showed a significant 
positive correlation with elevated CRP (CRP >= 8 mg/L), 
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higher IL-6, a medical history of sepsis, and intestinal infec-
tion. Early mortality was significantly lower in patients with 
CGD. Insignificant differences were found in other variables 
between the different mortality groups. A comparison of 
clinical variables between the training and validation sets is 
provided in Table S2.

Feature selection

Two of the 49 variables had missing values (missing 
rate IL6: 11/230 4.78%; ferritin: 26/230 11.3%). After 
missing value imputation, no significant outliers or perfect 
collinearity were found in the feature set, and the correlation 
matrix by heatmap is shown in Fig. S2. Next, we calculated 
the quantitative ensemble importance for each variable in the 
training set using the ensemble feature selection algorithm 
(Fig. S3) and all candidate variables were ranked based on 
their importance. In a step-wise approach, we added features 
from the top-ranked variables until Akaike information 
criterion (AIC) of the Linear Regression model fitting 
would not decrease (Table S4). Four variables (Alb, cd4_
abs [pretransplant CD4 count], elevated CRP and sepsis) 
were selected. We did not select candidate variables based 
on univariate analysis.

Development and validation of the early 
mortality‑predicting models

There was no statistical difference in early mortality 
incidence between the training and validation sets (19.74% 
vs. 16.67%, p = 0.699). The multivariate LR analysis with 
Alb, cd4_abs, elevatedCRP, and sepsis performed better 
than the other models in the validation set, with an AUC of 
0.7385 (95% CI, 0.5824–0.8945) (Fig. 2A). The bootstrap-
corrected AUC was 0.8052 (Table S4). In the validation 
cohort, the sensitivity, specificity, PPV, and NPV for 
differentiating early mortality were 0.5385, 0.8154, 0.3684, 
and 0.8983, respectively (Table  3). A comprehensive 
comparison of the model performance is presented in Table 
S5.

A nomogram was developed based on the best model 
(Fig. 2B). The DCA results for the model in the valida-
tion set are presented in Fig. 2C. The DCA results suggest 
that the machine learning-based prediction model had a 
net benefit compared with the “treat all” and “treat none” 
strategies for thresholds above 0.1.

Furthermore, a risk stratification based on the early 
mortality probability of each patient predicted by the nom-
ogram was performed to divide all patients in the temporal 
validation cohort into two prognostic groups: the high-risk 
group (19/78, 7 early mortality, predicted probability >= 
0.2) and the low-risk group (59/78, 6 early mortality, pre-
dicted probability < 0.2) and their survival curves were 

Table 1  Overview of 230 patients with inborn errors of immunity (IEI) 
who underwent unrelated umbilical cord blood transplantation (UCBT)

Continuous variables are presented as median (interquartile range), 
and categorical variables are presented as counts (percentages)
* Other IEI includes CARD11 deficiency(1/42), CD25 deficiency (1/42), 
chronic infantile neurologic cutaneous and articular syndrome (1/42), 
hyper IgE syndrome (4/42), hyper IgM syndrome (9/42), immune dysreg-
ulation, polyendocrinopathy, enteropathy X-linked (2/42), leukocyte adhe-
sion deficiency type I (5/42), LRBA deficiency (3/42), severe congenital 
neutropenia (1/42), STAT5B deficiency (1/42), TRNT1 deficiency (1/42), 
Wiskott-Aldrich Syndrome (9/42), X-linked lymphoproliferative disease 
(3/42), ZAP-70 deficiency (1/42)
ATG anti-thymocyte globulin, BU busulfan, CGD chronic granulomatous 
disease, CNI calcineurin inhibitors, CY cyclophosphamide, FLU fludara-
bine, GvHD graft versus host disease, HLA human leucocyte antigen, 
MMF mycophenolate mofetil, SCID severe combined immunodeficiency, 
TNC total nucleated cells, UCBT umbilical cord blood transplantation, 
VEO-IBD very early onset inflammatory bowel disease

Characteristics Total (N = 230)

Demographics

Sex

 Female 49 (21.3%)

 Male 181 (78.7%)

Weight (kg) 9 (7–11)

Height (cm) 73 (67–84)

Disease

 CGD 67 (29.1%)

 SCID 48 (20.9%)

 VEO-IBD 73 (31.7%)

 Other IEI* 42 (18.3%)

Age at onset (days) 23 (10–116)

Age at diagnosis (months) 7.67 (3.50–17.73)

Age at UCBT (months) 14.50 (8.71–29.18)

Length of follow-up (months) 30.17 (5.44–56.78)

UCBT characteristics

CD34 (×105/kg) 3.36 (2.20–5.32)

TNC (×107/kg) 12.71 (8.75–16.16)

HLA Compatibility (/10) 8 (8–9)

Conditioning regimen

Reduced-intensity conditioning (BU≤8mg)

 BU/CY/FLU 11 (4.8%)

 BU/CY/FLU/ATG 1 (0.4%)

 BU/FLU 1 (0.4%)

Myeloablative conditioning (BU>8mg)

 BU/CY/FLU 138 (60.0%)

 BU/CY/FLU/ATG 38 (16.5%)

 BU/CY 39 (17.0%)

 BU/FLU 1 (0.4%)

 BU alone 1 (0.4%)

GvHD prophylaxis

 CNI 183 (79.7%)

 CNI+MMF 45 (19.6%)

 CNI+ steroid 2 (0.9%)

Acute GvHD

 No GvHD 94 (40.9%)

 Grade I 49 (21.3%)

 Grade II 45 (19.6%)

 Grade III 15 (6.5%)

 Grade IV 27 (11.7%)

Chronic GvHD 23 (10.0%)



1383Journal of Clinical Immunology (2023) 43:1379–1392 

1 3

compared using the Kaplan-Meier method. The results 
showed that the difference was statistically significant (p 
= 0.0041) (Fig. 2D).

Discussion

Owing to the rarity of IEI and the difficulty in predict-
ing the prognosis of transplantation, few studies have 
comprehensively investigated patients with IEI and early 
mortality after HSCT. Existing models were developed 
using patients with malignancy [13, 26, 27]. However, 
IEI patients are fundamentally different from patients 

with malignancy. The comorbidity index for hemat-
opoietic cell transplantation has been validated and 
can distinguish between the risk of death after HSCT 
for patients with nonmalignant disease [28]. Neverthe-
less, it was not specific for predicting the prognosis of 
pediatric patients with IEI who underwent UCBT. Thus, 
a model that can predict early mortality after UCBT 
in children with IEI is urgently needed. To the best of 
our knowledge, this is the first study to develop such a 
model. Here, we included 230 pediatric patients with 
IEI who underwent UCBT to demonstrate the pattern of 
early mortality and proved that early mortality can be 
predicted using a machine learning approach.

Fig. 1  Cumulative density plot of interval between transplantation and the last follow up. A. All patients enrolled in this study (N = 230). B. 
Patients with mortality in this study (N = 65)
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Table 2  Demographic, clinical, 
and biological characteristics 
of early mortality and other 
patients cohorts

Characteristics Early Mortality (N=43) Other Patients* (N=187) p-value

Demographics
Sex 0.785
 Female 8 (18.6%) 41 (21.9%)
 Male 35 (81.4%) 146 (78.1%)
Weight (kg) 8.0 (6.5–9.9) 9.0 (7.0–11.5) 0.052
Height (cm) 73 (65–78) 73 (67–85) 0.225
BMI 15.38 (2.08) 15.80 (2.35) 0.285
Disease 0.012
 CGD 5 (11.6%) 62 (33.2%) 0.009
 SCID 13 (30.2%) 35 (18.7%) 0.142
 VEO-IBD 19 (44.2%) 54 (28.9%) 0.078
 Other IEI 6 (14.0%) 36 (19.3%) 0.554
Age at onset (days) 31 (11–107) 22 (10–113) 0.657
Age at diagnosis (months) 5.17 (3.32–17.02) 7.80 (3.70–17.70) 0.286
Age at UCBT (months) 15.20 (8.70–27.75) 14.43 (8.80–30.40) 0.587
Onset to diagnosis (months) 3.13 (1.85–7.50) 5.00 (2.15–12.58) 0.170
Diagnosis to UCBT (months) 6.50 (3.05–10.93) 6.10 (3.18–10.70) 0.908
Medical  history#

Sepsis 21 (48.8%) 40 (21.4%) <0.001
Pneumonia 41 (95.3%) 158 (84.5%) 0.103
Pulmonary fungal infection 10 (23.3%) 49 (26.2%) 0.837
Severe pneumonia 5 (11.6%) 10 (5.3%) 0.245
Intestinal infection 38 (88.4%) 125 (66.8%) 0.009
Urinary tract infection 5 (11.6%) 45 (24.1%) 0.115
CNS infection 3 (7.0%) 7 (3.7%) 0.601
SSTI 24 (55.8%) 98 (52.4%) 0.815
CMV infection 4 (9.3%) 28 (15.0%) 0.469
EBV infection 1 (2.3%) 11 (5.9%) 0.572
BCG disease 7 (16.3%) 43 (23.0%) 0.449
Liver dysfunction 21 (48.8%) 66 (35.3%) 0.140
Laboratory tests
Albumin (g/L) 35.20 (32.17–40.25) 41.07 (37.50–43.10) <0.001
ALT (U/L) 21.7 (11.5–33.8) 21.8 (13.0–39.5) 0.467
Total bilirubin (μmol/L) 3.9 (3.3–5.9) 4.4 (3.4–5.9) 0.832
IgA (g/L) 0.42 (0.13–0.84) 0.34 (0.15–1.12) 0.977
IgG (g/L) 9.96 (7.05–12.10) 8.85 (6.00–12.30) 0.442
IgM (g/L) 0.81 (0.38–1.59) 0.71 (0.37–1.27) 0.555
IgE (KU/L) 25.47 (9.54–40.36) 25.32 (10.59–103.35) 0.243
CD19 count (/μL) 360.3 (205.1–699.9) 632.2 (310.2–1153.6) 0.005
CD19 ratio (%) 15.52 (8.87–26.89) 21.08 (12.38–31.36) 0.064
CD3 count (/μL) 1676.6 (358.1–2313.9) 1932.1 (1173.9–2890.7) 0.017
CD3 ratio (%) 62.22 (35.50–73.20) 62.46 (51.89–71.37) 0.882
CD4 count (/μL) 871.4 (179.8–1149.1) 1086.2 (652.2–1689.7) 0.005
CD4 ratio (%) 30.93 (12.79–38.73) 34.96 (25.14–42.89) 0.048
CD8 count (/μL) 513.0 (177.0–1021.7) 643.4 (359.3–1052.5) 0.180
CD8 ratio (%) 24.38 (14.07–31.78) 20.31 (13.97–28.79) 0.467
CD56 count (/μL) 268.2 (112.7–443.2) 314.4 (186.2–578.1) 0.212
CD56 ratio (%) 10.44 (6.76–29.48) 10.88 (6.03–17.28) 0.135
elevated CRP (>= 8 mg/L) 20 (46.5%) 33 (17.6%) <0.001
elevated PCT (>= 0.5 ng/ml) 1 (2.33%) 1 (0.53%) 0.818
IL-6 (imputed) (pg/ml) 31.22 (13.05–105.50) 15.49 (6.33–76.52) 0.008



1385Journal of Clinical Immunology (2023) 43:1379–1392 

1 3

Compared with bone marrow and peripheral blood stem 
cells, UCB has the advantages of rapid availability, less 
stringent HLA matching, lower risk of viral infection trans-
mission, more versatile transplant planning, and no risk of 
donor refusal [29]. UCBT is a suitable option for patients 
without an available matching (related or unrelated) donor, 
especially for patients who need an urgent transplant (e.g., 
patients with SCID) and pediatric patients with low body 
weight. However, the disadvantages of UCBT, such as 
slower engraftment, graft failure, delay in immune recon-
stitution due to limited stem cell dose, and the associated 
significantly increased risk of infection, should not be under-
estimated [29]. Specifically, patients with IEI usually face 
the heavy burden of infection and inflammation. Given the 
limited cell dose of UCB and the underlying IEI disease, the 
risk of infection and organ dysfunction (the major cause of 
early mortality) after transplantation is of particular concern. 
Thus, there is a need to create and validate a model that can 
predict early mortality after UCBT in patients with IEI that 
can help clinicians make better-informed decisions consider-
ing the risk-benefit ratio.

In our study, the cumulative density plot of time from 
transplant to the last follow-up or death in all patients and 
in the subgroup of patients who died during the follow-up 
period showed that the majority (43/65, 66.2%) of mortality 
in pediatric patients with IEI after UCBT occurred within 
50 days of transplantation. All-cause mortality is more het-
erogeneous (in terms of causes of death) than early mortal-
ity, which may explain the difficulty in predicting mortality 
after HSCT. Our results showed that the main causes of early 
mortality were infections, organ dysfunction, or acute GvHD. 
We further compared the interval between transplantation 

and the last follow-up among patients with different causes 
of death and found insignificant differences (Fig. S4). Given 
the dominance and relative homogeneity of early mortality, 
we chose “early mortality” as the outcome of interest.

To date, a consensus on the cutoff point for early mortal-
ity has not been reached. Some studies reported the cutoff 
point as 30–100 days in adult patients [9, 11, 12], and early 
mortality was defined as death during hospitalization for 
HSCT [13]. However, in our data, the cumulative density 
plot of the interval between UCBT and the last follow-up 
demonstrated a sudden change in the slope at the 50-day 
cutoff point. Thus, we defined 50 days as a cutoff point to 
distinguish patients with early mortality from patients who 
died after 50 days or survivors.

To account for the heterogeneity of this IEI cohort with 
multiple disease subtypes, we adopted a one-hot encoding 
approach, i.e., the presence or absence of a particular IEI sub-
type considered during modeling. After the modeling process 
was completed, we attempted to add the disease information 
(one-hot encoded disease variable) back to the best-perform-
ing model and observed that the model performance did not 
improve in either the training or validation set (Table S6). 
This indicated that the selected variables were informative and 
that disease heterogeneity was represented by these selected 
variables (cd4_abs, Alb, elevatedCRP, and sepsis). To further 
verify the disease heterogeneity represented by the selected 
variables, we used the selected variables to depict different 
disease subtypes; the risk profile in the radar plot indicated 
that the selected variables constitute a good representation of 
disease heterogeneity (Fig. 3). Overall, these findings high-
light that the prediction model could estimate the risk of early 
mortality independently of the underlying disease.

Continuous variables are presented as median (interquartile range), and categorical variables are presented 
as counts (percentages)
*Other patients: died after day 50 or survived
BMI is the only variable that follows a normal distribution; thus, it is presented as mean (SD)
# Since thorough eradication of residual infection in patients with IEI is particularly difficult and there is a 
lack of uniformity in the definition of ‘active infection’, ‘Medical history’ represents ever had infection or 
active infection
ALT alanine aminotransferase, BCG Bacillus Calmette-Guérin, BMI body mass index, CGD chronic gran-
ulomatous disease, CMV Cytomegalovirus, CNS central nervous system, EBV Epstein–Barr virus, HLA 
human leucocyte antigen, VEO-IBD very early onset inflammatory bowel disease, SCID severe combined 
immunodeficiency, SSTI skin/soft tissue infection, TNC total nucleated cells, UCB umbilical cord blood

Table 2  (continued) Characteristics Early Mortality (N=43) Other Patients* (N=187) p-value

IL-6 (pg/ml) 31.22 (13.05–105.50) 17.88 (6.33–44.71) 0.016
ferritin (imputed) (ng/ml) 82.54 (29.66–165.85) 67.10 (36.47–133.60) 0.567
ferritin (ng/ml) 82.54 (29.93–160.00) 65.33 (34.88–123.65) 0.426
UCB parameters
CD34 (×105/kg) 2.84 (2.09–4.25) 3.51 (2.22–5.89) 0.114
TNC (×107/kg) 10.80 (8.09–14.82) 13.01 (9.00–16.71) 0.193
HLA Compatibility (/10) 8 (8–9) 8 (8–9) 0.183



1386 Journal of Clinical Immunology (2023) 43:1379–1392

1 3

In the risk estimation nomogram, pretransplant serum 
albumin was negatively correlated with the risk of early 
mortality after UCBT. Serum albumin is a biomarker of 
nutrition, inflammation, and hepatic synthetic function [30]. 
Several studies have shown that pretransplant serum albumin 
is an important prognostic marker of autologous stem cell 
transplantation and allo-HSCT [31-33]. Patients with IEI 
are at risk of recurrent infections, inflammatory diseases, 

growth retardation and failure to thrive resulting in hypoal-
buminemia. Furthermore, hypoalbuminemia is associated 
with poor nutritional status, severe disease burden, repeated 
exposure to therapeutic drugs, and decreased tolerance to 
conditioning regimens, which could contribute to early mor-
tality after UCBT. Our study highlights the predictive value 
of pretransplant serum albumin level in patients with IEI 
who underwent UCBT. Moreover, serum albumin detection 

Fig. 2  Nomogram for predicting early mortality and model evalua-
tion. A. Receiver operating characteristic (ROC) curves for evaluating 
the model’s discrimination ability in validation. Panel A shows the 
ROC curve for the Four-Var LR model, the area under curve (AUC) 
is 0.7385 (95% confidence interval [CI], 0.5824–0.8945). B. Nomo-
gram. The nomogram was developed in the derivation cohort with 
pretransplant albumin (Alb), pretransplant absolute CD4 (cd4_abs), 
elevated CRP, and medical history of sepsis (sepsis). Instructions on 

using nomogram: first, find the position of each variable on the cor-
responding axis; then, draw a line to the points axis for the number of 
points and add the points from all variables; and finally, draw a line 
from the total points axis to the lower line of the nomogram for deter-
mining the early mortality probabilities. C. Decision curve analysis 
(DCA) in the validation set. D. Comparison of survival curves (event: 
early mortality) in different risk groups by the risk estimation nomo-
gram (p = 0.0041)
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is inexpensive and practical, making it an ideal biomarker 
for clinical decision-making, such as aggressive nutritional 
intervention and effective infection control before UCBT.

Infection and inflammation at transplant are critical 
risk factors that affect HSCT outcomes [34]. Despite opti-
mal intervention (e.g., protective isolation, antibiotics, 

Fig. 2  (continued)
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immunoglobulin replacement, and targeted agents) before 
transplantation, infection and inflammation cannot be com-
pletely relieved at transplantation due to the nature of IEI. 
In this study, acute phase reactant proteins (e.g., CRP, fer-
ritin) and cytokine (e.g., IL-6), as objective inflammatory 
biomarkers, were used to reflect the status of infection and 
inflammation and we found that elevated CRP was a signifi-
cant risk factor for post-UCBT early mortality in patients 
with IEI. Since elevated CRP is associated with active 
inflammation and previous studies showed that control of 
inflammation activity is the key to successful outcome [34], 
patients with elevated CRP prior to transplant should pro-
ceed with caution or be under intensive monitoring after 
UCBT.

In our study, a low absolute count of CD4-positive lym-
phocytes was associated with a high risk of early mortality. 
CD4-positive lymphocytes play an important role in adaptive 
immunity. The deficiency of immune defense and surveillance 
caused by CD4-positive lymphocytopenia can provoke fatal 
opportunistic infections and lead to malignancy [35, 36]. In 
patients with IEI, a decrease in CD4-positive lymphocytes is 
often closely associated with combined immunodeficiency dis-
eases, especially SCID [37-40]. Even when we excluded SCID 
patients (N = 48) characterized by low CD4 levels from our 
cohort, the absolute count of CD4-positive lymphocytes in the 
early mortality group remained significantly lower than that in 
the other patients group (p = 0.03). Thus, our study highlights 
the association between lower CD4 levels and early mortality, 

Table 3  Prediction score 
accuracy of the nomogram 
estimating the risk of early 
mortality after UCBT in 
pediatric patients with inborn 
errors of immunity (IEI)

*roc.test() for two Receiver Operator Characteristic (ROC) curves p > 0.3
AUC Area under the curve, CI confidence interval, NPV Negative predictive value, PPV Positive predic-
tive value

Variable Value (95%CI)

Training Cohort (N = 152) Validation Cohort (N = 78)

Number of positive labels 30 (19.74%) 13 (16.67%)
AUC 0.827 (0.7409–0.9132) 0.7385 (0.5824–0.8945)*
Cutoff probability 0.2 0.2
Sensitivity (%) 76.67 (57.72–90.07) 53.85 (25.13–80.78)
Specificity (%) 77.05 (68.57–84.18) 81.54 (69.97–90.08)
PPV (%) 45.10 (31.13–59.66) 36.84 (16.29–61.64)
NPV (%) 93.07 (86.24–97.17) 89.83 (79.17–96.18)
Positive likelihood ratio 3.3405 (2.2836–4.8865) 2.9167 (1.4237–5.9750)
Negative likelihood ratio 0.3028 (0.1572–0.5835) 0.5660 (0.3111–1.0298)

Fig. 3  Risk profile for different 
IEI subtypes represented by 
the four selected variables. The 
mean value of each variable was 
first calculated across patients 
in each IEI subtype (for binary 
variables [i.e., sepsis, elevated 
CRP], mean values equal to its 
positive rate); each variable has 
three disease-specific mean val-
ues, these summaries are then 
rescaled to the [0, 1] interval



1389Journal of Clinical Immunology (2023) 43:1379–1392 

1 3

and clinicians should be alert to patients whose CD4-positive 
lymphocyte count decrease before UCBT.

Our result also showed that a history of sepsis was posi-
tively associated with early mortality after UCBT in patients 
with IEI. Few studies have shown the association between a 
history of sepsis and HSCT prognosis [41]. Sepsis is a life-
threatening condition caused by a dysregulated host response 
to infection, and it remains a leading cause of morbidity and 
mortality in pediatric patients worldwide [42, 43]. Virtually all 
tissues and organs can undergo dysfunction following sepsis 
[44]. Although sepsis was under control in our cohort before 
transplantation, patients with a history of sepsis were more 
likely to experience early mortality. We speculate that the long-
term consequences of sepsis had a negative impact on UCBT 
prognosis. Our results highlight the need to identify the history 
of sepsis as a risk factor for an unfavorable prognosis after 
UCBT in patients with IEI since patients who undergo UCBT 
before the onset of sepsis may have better outcomes.

CD34-positive cell dose and HLA compatibility are impor-
tant markers for HSCT outcomes. A sufficient number of CD34-
positive stem cells is the key to rapid and durable engraftment 
of donor cells [45-49]. HLA-locus mismatch increases the risk 
of graft failure, GvHD, and mortality [50]. However, in the pre-
sent study, none of these factors was selected by feature selec-
tion, and therefore, were omitted from the final model. Further-
more, no significant difference in CD34-positive stem cell dose 
and HLA compatibility was observed between patients with 
early mortality and other patients (Table 2). Since all patients 
included in this study were pediatric, the CD34 counts of this 
cohort were rather high in nearly all the patients (225/230), 
thus its impact may not be obvious. Similarly, due to the avail-
ability of high-resolution typing and stringent donor selection, 
HLA typing was a relatively good match (8–9/10) for UCBT, 
and its impact will also be less important in this setting. Fur-
thermore, the reduced impact can also be attributed to the bio-
logical characteristics of UCB - high proliferative capacity and 
high immune plasticity, which allowed engraftment despite a 
1-log lower cell number and a wider HLA disparity between 
donor and recipient [51, 52]. Moreover, with the improvement 
of HSCT technology, such as the intensity of the conditioning 
regimen and GvHD prophylaxis, a limited stem cell count or 
an HLA-related barrier no longer has an independent impact 
on the outcomes of patients with IEI.

The findings of the present study have several clinical 
implications. First, our model yielded a good AUC, indicat-
ing a good discriminatory ability. The DCA of the validation 
set revealed that the model provided the highest overall net 
benefit when the probability threshold was approximately 0.2. 
At this threshold probability, sensitivity and specificity were 
0.5385 and 0.8154, respectively. Second, the risk estimate pro-
vided a net benefit across reasonable probability thresholds 
(0.1–0.5) using DCA. Clinicians have the flexibility to adjust 
the threshold for better sensitivity (i.e., a lower risk threshold) 

or better specificity (i.e., a higher risk threshold) in a case-by-
case manner. Third, the nomogram developed in this study can 
be used to facilitate clinical decision-making and determine 
the predicted risk to optimize patient treatment or determine 
the optimal time frame for transplantation. Clinicians can use 
this model to modify treatment options (e.g., gene therapy and 
clinical trials). Furthermore, patients and their families can 
make informed decisions regarding predicted risk, in cases 
where the risk level of early mortality cannot be altered.

Limitations

This study had several limitations. First, the analysis was based 
on patient data from a single center, which may be influenced 
by selection bias. The selection bias may also induce lack of 
heterogeneity in some variables, including BU-based condi-
tioning, degree of HLA match, and CD34 count, which are 
important for transplant outcomes. The lack of heterogeneity 
limits the utility of these variables in the early mortality risk 
model. A multicenter study and external validation are needed 
to confirm our results. Second, due to the long-term nature of 
the study, we could not find or access the information needed 
to determine ‘performance status’, so we had to exclude it 
from the list of potential predictors when designing the study. 
However, by including variables that can be objectively meas-
ured, we ensured the reliability and accuracy of the variables 
included. Third, the present study was retrospective in nature. 
A prospective study is required to confirm the usefulness of 
the nomogram developed in this study. Nonetheless, the large 
dataset in the analysis, the temporal validation approach, the 
ensemble feature selection, and the bootstrap validation greatly 
improved the validity and robustness of the final model.

Conclusions

Using real-world data from pediatric IEI patients and data-
driven analysis, we developed a nomogram that can pre-
dict early mortality after UCBT based on four pretransplant 
risk factors. The nomogram performed well in training and 
validation sets. The personalized prediction model based 
on machine learning can improve decision-making and out-
comes for patients with IEI who have undergone UCBT.
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