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Abstract 
Background COVID-19 is now a common disease, but its pathogenesis remains unknown. Blood circulating proteins reflect 
host defenses against COVID-19. We investigated whether evaluation of longitudinal blood proteomics for COVID-19 and 
merging with clinical information would allow elucidation of its pathogenesis and develop a useful clinical phenotype.
Methods To achieve the first goal (determining key proteins), we derived plasma proteins related to disease severity by 
using a first discovery cohort. We then assessed the association of the derived proteins with clinical outcome in a second 
discovery cohort. Finally, the candidates were validated by enzyme-linked immunosorbent assay in a validation cohort to 
determine key proteins. For the second goal (understanding the associations of the clinical phenotypes with 28-day mortality 
and clinical outcome), we assessed the associations between clinical phenotypes derived by latent cluster analysis with the 
key proteins and 28-day mortality and clinical outcome.
Results We identified four key proteins (WFDC2, GDF15, CHI3L1, and KRT19) involved in critical pathogenesis from the 
three different cohorts. These key proteins were related to the function of cell adhesion and not immune response. Considering 
the multicollinearity, three clinical phenotypes based on WFDC2, CHI3L1, and KRT19 were identified that were associated 
with mortality and clinical outcome.
Conclusion The use of these easily measured key proteins offered new insight into the pathogenesis of COVID-19 and could 
be useful in a potential clinical application.
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Background

Although the majority of individuals infected by COVID-
19 exhibit no or mild-to-moderate symptoms, approxi-
mately 5–20% of subjects hospitalized required prolong 
treatment in an intensive care unit (ICU) with invasive 
mechanical ventilation (IMV) [1–4]. In these cases, exces-
sive inflammation following a COVID-19 infection might 
lead to systemic inflammatory response syndrome and 
multiple organ failure [5].

From a clinical perspective, it is important to evaluate 
the blood circulating proteins that can reflect the systemic 
inflammation. The evaluation process is easy and rapid, 
and most of the biomarkers used in the ICU are based 
on the circulating proteins [6]. Previously, we showed 
that a key network of cytokine proteins based on a blood 
circulating cytokine profile and combined key cytokines 
score was related to prognosis and severity in critically ill 
patients including those with sepsis and burn [7–9]. There-
fore, we hypothesized that a key protein network would 
also play an important role in critical COVID-19.

Recently, researchers have investigated new therapeu-
tic targets by combining unsupervised clustering analysis 
and key biological indicators in various diseases to clarify 
potential sub-phenotypes [10–12]. Using key proteins to 
identify COVID-19 patient sub-phenotypes with poor out-
comes may enable the discovery of new therapeutic strate-
gies and target populations.

The present study approach involved several datasets 
and a statistical approach. To obtain globally versatile 
results, we used two discovery cohorts (i.e., American and 
Japanese cohorts) that had different patient characteristics 
(e.g., age, sex, and race). To achieve the primary goal, we 
derived plasma proteins related to COVID-19 pathogene-
sis from an innovative method, Olink proteomics, by using 
the two different cohorts. The candidates were validated by 
a classical method, enzyme-linked immunosorbent assay 
(ELISA), in a validation cohort to determine key proteins. 
To achieve the secondary goal, we derived the clinical 
phenotypes based on these key proteins and assessed their 
associations with mortality and clinical outcome.

Methods

Cohort Data and Measurement of Plasma Proteins

We used data from three observational cohorts. The 
first discovery cohort comprised publicly available data 
provided by the Massachusetts General Hospital Emer-
gency Department COVID-19 Cohort [13] with Olink 

Proteomics (Olink® Explore 1536; https:// www. olink. 
com/ mgh- covid- study/) (Supplemental Methods, Statis-
tical analysis, and Results), which was conducted from 
March 2020 to April 2020. In this study, we used proteom-
ics data of days 1 and 8.

The second discovery cohort was composed of COVID-
19 patients who were admitted to Osaka University Hospi-
tal from July 2020 to February 2021. Blood samples were 
obtained from the patients on days 1 (day of admission) or 
2 and days 6–8 and once from healthy volunteers who were 
enrolled via public poster advertisements. Plasma proteom-
ics were performed by using Olink® Explore 1536.

The validation cohort was composed of COVID-19 
patients admitted to Osaka University Hospital or Osaka Pre-
fectural Nakakawachi Emergency and Critical Care Center 
from December 2020 to January 2021 and April 2021, who 
were treated with IMV. Blood samples were obtained from 
the patients until hospital discharge or death on day 1 (day of 
admission) and days 6–8 and once from healthy volunteers 
who were enrolled via public poster advertisements. The 
plasma proteins were measured by ELISA. Details of the 
discovery and validation cohorts are shown in the Supple-
mental Methods, Statistical analysis, and Results.

Definition of Disease Severity: Critical 
and Non‑critical

Acuity scores were based on the World Health Organiza-
tion ordinal outcomes scale [14]: A1, dead; A2, intubated, 
survived; A3, hospitalized with oxygen; A4, hospitalized 
without oxygen; A5, discharged. Disease severity was clas-
sified according to the maximum acuity score (acuity max 1 
or 2). We defined “critical” as acuity max 1 and 2 subjects 
and “non-critical” as acuity max 3, 4, and 5 subjects.

Definition of Timing of Sample Collection: Phase 1 
and Phase 2

For easy clinical application, day 1 referred to the day of 
visiting the emergency department or of admission to the 
hospitals in this study, not to the day of disease onset or test-
ing as PCR positive. We defined two different types of meas-
urement timing: phase 1, days 1–2, and phase 2, days 6–10.

Definitions of Clinical Outcome: Early Recovery 
and Late Recovery

We defined the clinical outcome of patients who were treated 
with IMV for ≤ 12 days or not treated with IMV as early 
recovery and IMV > 12 days or 28-day non-survivors as 
late recovery as in our previous study [15]. We divided the 
COVID-19 patients of the second derivation cohort and the 
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validation cohort into two groups based on early recovery 
and late recovery and assessed them.

Statistical Analysis

In the first discovery cohort, patients were divided into the 
critical group and non-critical group, and differences in the 
expression of 1463 plasma proteins were evaluated. Instead 
of normalization to the total protein concentration, Olink 
proteomics data was normalized using three internal and 
three external controls that were used for quality control and 
data normalization. The proteins levels were expressed as 
values of normalized protein expression (NPX), which was 
an arbitrary unit on a log2 scale [16]. The difference in NPX 
was used to detect the difference of protein expressions as 
previously described [17]. Differential expression analysis 
was conducted using the Welch 2-sample t-test. The false 
discovery rate was calculated by the Benjamin-Hochberg 
method [18]. Proteins with false discovery rate < 0.01 and 
|NPX difference|> 1 were considered to be significantly 
expressed. The plasma proteins reaching significance in both 
phase 1 and phase 2 were extracted as candidates of the first 
discovery cohort. The phase 1 NPX values of the candidates 
were compared among acuity scores with the Kruskal–Wal-
lis test.

In the second discovery cohort, the candidates from the 
first discovery cohort were evaluated. The patients were 
divided into those with early recovery and late recovery. The 
Dunnet test was used to evaluate the levels of each candidate 
of the first discovery cohort between the healthy volunteers 
and COVID-19 patients in each phase. The Welch 2-sam-
ple t-test was used to evaluate the differences in the levels 
of candidates of the first discovery cohort between the two 
groups in each phase. The correlation analysis between the 
number of days since onset and the candidates of the first 
discovery cohort was performed by Spearman’s rank cor-
relation. The trends of the two groups (early recovery and 
late recovery) are shown by linear regressions (solid lines) 
with 95% confidence intervals (gray areas).

We also evaluated the protein co-expression network 
only for critical COVID-19 patients in the second discov-
ery cohort. Protein co-expression network analysis was 
performed with the R package “WGCNA” (weighted gene 
co-expression network analysis) as previously described [19] 
using the day 1 data of patients with acuity max scores 1 
and 2. The module network is displayed graphically using 
Cytoscape® software (www. cytos cape. org) version 3.8.0 
[20]. The biological functions of the proteins in each mod-
ule were investigated by performing GO (Gene Ontology) 
pathway analysis [21] and KEGG (Kyoto Encyclopedia of 
Gene and Genomes) pathway analysis [22]. The details of 
WGCNA are shown in the Supplemental Methods, Statisti-
cal analysis, and Results.

In the validation cohort, the candidates from the second 
discovery cohort were validated. The levels of the can-
didates were transformed to common logarithmic values 
to normalize data distributions before analysis. The Dun-
net test was used to evaluate the levels of each candidate 
between the healthy volunteers and COVID-19 patients 
in each phase. Then, the patients were divided into two 
groups, those with early recovery and late recovery. The 
candidates of the second discovery cohort were compared 
by Wilcoxon rank sum test between the two groups in 
each phase. The plasma proteins that were significantly 
increased (P values < 0.05) in the patients with late recov-
ery compared with those in the patients with early recov-
ery in both phases were extracted as key proteins. The 
association of these key proteins with 28-day and hospital 
mortality was also evaluated. The levels of key proteins 
in both phases were compared between the 28-day survi-
vors and 28-day non-survivors or between hospital survi-
vors and non-survivors by Wilcoxon rank sum test. The 
associations between phase 1 key proteins and body mass 
index (BMI), age, and comorbidities were also analyzed 
by Wilcoxon rank sum test or correlation analysis using 
Spearman’s rank correlation. We also evaluated these key 
proteins in the patients who were not treated with IMV. 
Details of the characteristics of these patients and the 
method are described in the Supplemental Methods.

Latent class analysis (LCA) was performed using a com-
bination of key proteins to identify the new clinical pheno-
types. Phase 1 key proteins were transformed to common 
logarithmic values and scaled to become candidate vari-
ables for LCA. Because the high correlation of variables in 
LCA caused lower accuracy of model fit statistics with an 
overestimation of the true number of classes, the correla-
tion matrix of the four key proteins was evaluated. One in 
any pair in which a strong correlation (Pearson correlation 
coefficient > 0.6) was observed was eliminated [23]. The 
optimal number of phenotypes was identified by evaluating 
the Bayesian information criterion (BIC), the appropriate 
size of each phenotype, and the misclassification rate of 
each phenotype [24, 25]. The optimal number of pheno-
types was selected based on the largest BIC, considering 
the misclassification rate and interpretability [11]. The 
latent class analysis calculation was performed using the 
VarSelLCM package in R, in which the largest BIC is inter-
preted as optimal. Cumulative mortality is illustrated using 
Kaplan–Meier curves, and the phenotypes were compared 
by the log rank test.

A two-sided P < 0.05 was considered statistically significant. 
For all statistical analyses, a fully scripted data management 
pathway was created within the R environment for statistical 
computing, version 4.0.2 (R Foundation for Statistical Com-
puting, Vienna, Austria). Categorical variables are reported as 
number and percentages, and significance was detected by χ2 or 
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Fisher’s exact test. The continuous variables are described using 
mean and standard error or compared using the Mann–Whitney 
U test or Kruskal–Wallis rank sum test described using median 
and interquartile range (IQR) values. There were no missing data 

on plasma proteomics in the first and second discovery cohorts 
or on plasma proteins levels in the validation cohort. However, 5 
of 113 patients (4%) in the validation cohort had missing values 
for BMI, but no imputation was made for this missing data.

Fig. 1  Flow chart of partici-
pants. COVID-19 phenotypes 
were evaluated using three 
plasma proteins including 
WFDC2, CHI3L1, and KRT19. 
P1: phase 1 (days 1–2), P2: 
phase 2 (days 6–10)
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Results

The study approach involved several datasets and the statisti-
cal approach shown in Fig. 1.

Exploration of Candidate Plasma Proteins from First 
and Second Discovery Cohorts

Patient characteristics of the two discovery cohorts are 
shown in Table 1. In the publicly available first discovery 
cohort [13], one of the 306 COVID-19 patients was flagged 

as an outlier and removed from the final dataset, thus leav-
ing 305 phase 1 samples and 139 phase 2 samples. The 
cohort comprised 109 critical patients and 197 non-critical 
patients. The distribution of patients by age group was 
statistically different between the critical and non-critical 
patients. Other details of the patients’ characteristics are 
shown in Suppl. Table S1. Plasma proteins showing statisti-
cally significant changes in expression are indicated in red 
in the volcano plots for each phase (Fig. 2A, B), and those 
that showed statistically significant changes in expression in 
both phases 1 and 2 are indicated in Fig. 2C as candidates 

Table 1  Clinical and demographic characteristics of COVID-19 patients in derivation and validation cohorts

Data are reported as number (percentage) or median (IQR, interquartile range) as appropriate P value: for the comparison between each cohort
BMI body mass index, Heart disease coronary artery disease, congestive heart failure, valvular disease, Lung disease asthma, COPD, requiring 
home  O2 and any chronic lung condition, Kidney disease chronic kidney disease, baseline creatinine > 1.5, Immunocompromised condition active 
cancer, chemotherapy, transplant and immunosuppressant agents, asplenic, SOFA Sequential Organ Failure Assessment

First discovery cohort, 
MGH, USA

Second discovery cohort, 
Osaka, Japan

Validation cohort, 
Osaka, Japan

P value

(n = 306) (n = 53) (n = 113)
Male sex, n (%) 162 (52.9) 37 (69.8) 80 (70.8) 0.001
Age, years, median (IQR) 58 (45–75) 73 (62–78) 65 (55–74)
Age group, n (%) 0.001
 20–34 years 32 (10.5) 0 (0) 1 (0.8)
 35–49 years 66 (21.6) 3 (5.7) 11 (9.7)
 50–64 years 89 (29.1) 13 (26.4) 44 (38.9)
 65–79 years 65 (21.1) 28 (49.1) 47 (41.6)
 Over 80 years 54 (17.6) 10 (18.9) 10 (8.9)

Comorbidities, n (%)
 Heart disease 48 (16.5) 4 (7.7) 12 (10.6) 0.17
 Lung disease 66 (21.1) 10 (19.2) 12 (10.6) 0.03
 Kidney disease 41 (14.3) 8 (15.4) 12 (10.6) 0.64
 Immunocompromised condition 25 (7.7) 5 (9.6) 4 (3.5) 0.21
 Hypertension 146 (48.1) 24 (46.2) 47 (41.6) 0.53
 Diabetes 111 (35.4) 25 (48.1) 41 (36.3) 0.25

BMI, kg/m2, median (IQR) 29 (26–34) 23 (22–26) 25 (22–28)
BMI, n (%)  < 0.001
 0–24.9 kg/m2 46 (15.1) 35 (66) 49 (43.4)
 25.0–39.9 kg/m2 205 (66.9) 16 (30.2) 58 (51.3)

 ≥ 40 kg/m2 35 (11.4) 0 (0) 1 (0.8)
 Unknown 20 (6.5) 2 (3.8) 5 (4.4)

Acuity max score, n (%)
 1, 28-day mortality 42 (13.7) 5 (9.6) 16 (14.2)
 2, intubated/Ventilated 67 (21.9) 44 (83) 97 (85.8)
 3, hospitalized,  O2 required 133 (43.5) 4 (7.5) 0 (0)
 4, hospitalized, no  O2 required 41 (13.4) 0 (0) 0 (0)
 5, discharged/not hospitalized 23 (7.5) 0 (0) 0 (0)

Ratio of SARS-CoV-2 alpha variant, % 0 (0) 28 (52.8) 57 (50.4)
SOFA score, median (IQR) 2 (1–7) 5 (3–6) 5 (3–6)
Outcome
 28-day mortality, n (%) 42 (13.7) 1 (1.9) 12 (10.7)
 Hospital mortality, n (%) 42 (13.7) 5 (9.6) 16 (14.2) 0.69
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of the first discovery cohort and are labeled in the volcano 
plots. We derived 28 plasma protein candidates from the 
first discovery cohort. Phase 1 NPX values of the 28 pro-
teins were associated with acuity max (Suppl. Fig. S1).

These 28 candidates were then evaluated in the second 
discovery cohort that included 53 COVID-19 patients and 
20 healthy volunteers (Suppl. Table S2), among whom 
49 COVID-19 patients were critical and 4 were treated 

Fig. 2  Derivation of candidates’ proteins from the first and second 
discovery cohorts. Volcano plots show the differentially expressed 
plasma proteins between critical (acuity max score: A1 or A2) and 
non-critical (A3, A4, or A5) groups in A phase 1 and B phase 2 in the 
first discovery cohort. The X axis represents the difference in normal-
ized protein expression (NPX) between the critical group and non-
critical group, and the Y axis represents log10 significance (adjusted 
P values). Significantly differentially expressed proteins were defined 
as proteins with adjusted P values < 0.01, |difference|> 1. C The 28 
proteins labeled by gene names that were significantly increased in 
both phase 1 and phase 2 are shown as candidates of the first discov-
ery cohort. D The 28 candidates of the first discovery cohort were 

evaluated in the second discovery cohort. The levels of the 28 can-
didates of the first discovery cohort were compared between healthy 
and COVID-19 individuals in phase 1 and phase 2. The difference 
between healthy volunteers and COVID-19 patients was measured 
by Dunnet test (*P < 0.05; **P < 0.01). The COVID-19 individuals 
were further classified into two groups, “early recovery” and “late 
recovery” in phase 1 and phase 2. The NPX values are plotted on 
the Y axes. In all box plots, the boxes show median, upper, and lower 
quartiles, and the whiskers show 5th to 95th percentiles. The differ-
ence between two groups was measured by Wilcoxon rank sum test 
($P < 0.05; $$P < 0.01). E The five candidates of the second discovery 
cohort are listed
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in the ICU without intubation (Table 1). The numbers of 
blood samples obtained in phases 1 and 2 were 49 and 
34, respectively. We classified the patients into the early 
recovery group (n = 23) and late recovery group (n = 30). 
The age of the late recovery group was statistically higher 

than that of the early recovery group. The number of days 
since onset was not different between the two groups 
(Suppl. Table S3). The common plasma proteins that 
were higher in the COVID-19 patients than controls and 
that were higher in the late recovery group than the early 

Fig. 3  Protein co-expression network in phase 1 of the second dis-
covery cohort. A The hierarchical cluster tree of all proteins in the 
proteomic dataset on the basis of topological overlap. Modules cor-
respond to branches of the tree. The branches and module proteins 
are colored, and gray indicates proteins outside the appropriate mod-
ule, as can be seen from the color bands at the bottom of the tree. B 
Network depiction of protein co-expression modules of the 24 can-
didates of the first discovery cohort. Nodes represent proteins, and 
edges (lines) indicate connections between the nodes. The color of 

the nodes corresponds to the module, and the width and color of the 
edges correspond to the weight of the connected nodes. Bolded nodes 
indicate the five candidates of the second discovery cohort. C Gene 
ontology enrichment analysis of differentially expressed proteins of 
the turquoise and blue modules in A; the top 10 ontologies for each 
module are shown. Significantly enriched gene ontology terms are 
shown with Benjamin-Hochberg false discovery rate–corrected P val-
ues. D KEGG pathway analysis of differentially expressed proteins of 
the turquoise and blue modules in A 
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recovery group for phases 1 and 2 were WFDC2, CHI3L1, 
GDF15, KRT19, and TNFRSF10B (Fig. 2D). Expression 
of these five proteins was higher than that in the con-
trol soon after onset, and a correlation between protein 
expression and the number of days since onset was not 
clear (Suppl. Fig. S2A). These five proteins in late recov-
ery patients tended to remain high (Suppl. Fig. S2B). We 
derived these five proteins as candidates of the second 
discovery cohort (Fig. 2E).

Network Analysis of 1463 Plasma Proteins in Critical 
COVID‑19 Patients in the Second Discovery Cohort

In total, six modules were identified (Fig. 3A). Twenty-
five of the 28 candidates of the first discovery cohort were 
included in the turquoise module, as were all five candi-
dates of the second discovery cohort. The 28 candidates of 
the first discovery cohort were reconstructed and visualized 
using cytoscape [18] (Fig. 3B). The top 10 GO results for 
the turquoise and blue modules are shown in Fig. 3C, and 
the top 5 KEGG results for the turquoise and blue modules 
are shown in Fig. 3D. The turquoise module is highly related 
to cell adhesion and biological adhesion. In this analysis, 
the five candidates of the second discovery cohort were 
associated with each other, and all had a function involving 
cell adhesion. The details are shown in the Supplemental 
Methods, Statistical analysis, and Results (Suppl. Fig. S3). 
The KEGG pathway of cell adhesion molecules is shown in 
Suppl. Fig. S4.

Validation of Five Candidate Plasma Proteins 
by ELISA

We assessed the candidate proteins in the validation 
cohort by ELISA. The validation cohort comprised 113 
critical COVID-19 patients including 12 28-day non-sur-
vivors, and 16 healthy volunteers. The difference in age 
between the COVID-19 patients and healthy volunteers 
was not statistically significant. (Suppl. Table S4). The 

late recovery group was characterized by older patients, 
higher D-dimer, creatinine and LDH levels, and lower 
P/F ratio than those of the early recovery group. The 
number of days since onset was not different between 
the two groups (Suppl. Table S5). The numbers of blood 
samples collected in phases 1 and 2 were 113 and 110, 
respectively. The levels of WFDC2, GDF15, CHI3L1, 
and KRT19 were statistically significantly higher in 
both the COVID-19 patients compared to the controls 
(Suppl. Fig. S5) and in the late recovery group compared 
to the early recovery group (Fig. 4A) in both phases. 
The higher levels of WFDC2, GDF15, CHI3L1, and 
KRT19 were more frequently observed in the 28-day 
or hospital non-survivors than in the 28-day or hospi-
tal survivors, respectively, in both phases (Fig. 4B, C). 
There were no relationships between WFDC2, GDF15, 
CHI3L1, and KRT19, and sex and comorbidities for 
the control (Suppl. Fig. S6A, B). Only KRT19 of the 
control was associated with BMI (Suppl. Fig.  S6C). 
GDF15, WFDC2, and CHI3L1 were associated with age 
in the control and COVID-19 patients (Suppl. Fig. S7). 
WFDC2, GDF15, CHI3L1, and KRT19 were elevated 
in the patients who were treated without IMV (Suppl. 
Table  S6, Suppl. Fig.  S8). We thus concluded that 
WFDC2, GDF15, CHI3L1, and KRT19 were four key 
proteins related to COVID-19 severity.

Identification of New Clinical Phenotypes Using 
Latent Cluster Analysis

There were no missing data for the levels of key pro-
teins. A high correlation coefficient (> 0.6) was observed 
between GDF-15 and WFDC2 (Fig. 5A). WFDC2 can be 
measured as a tumor marker in Japan, and thus, GDF15 
was excluded and WFDC2, CHI3L1, and KRT19 were 
used as the variables of classification. The BIC was high-
est for a three-class model and afterwards decreased in 
proportion to the number of added classes, suggesting 
that additional classes do not add substantial information 
to the model (Fig. 5B). The clinical phenotypes were 
named the α, β, and γ phenotypes. These phenotypes are 
visualized with principal component analysis in Fig. 5C. 
The relationships between the clinical phenotypes and 
the levels of WFDC2, CHI3L1, and KRT19 are visual-
ized in Fig. 5D. The γ phenotype showed high levels of 
all three proteins. The log rank test indicated significant 
differences between the survival curves among the phe-
notypes (Fig. 5E). The associations of the clinical phe-
notypes with clinical data are shown in Suppl. Table S7. 
The γ phenotype was characterized by high creatinine 
and D-dimer levels and was associated with 28-day and 
hospital mortality (Suppl. Table S7).

Fig. 4  Discovery of four key proteins related to mortality and clini-
cal outcome from the validation cohort. A The levels of WFDC2, 
GDF15, CHI3L1, KRT19, and TNFRSF10B associated with early 
recovery and late recovery or death in each phase in the COVID-
19 groups. B The WFDC2, GDF15, CHI3L1, and KRT19 levels 
for 28-day survivors and non-survivors on each day in the COVID-
19 groups. C The WFDC2, GDF15, CHI3L1, and KRT19 levels for 
hospital survivors and non-survivors on each day in the COVID-19 
groups. The protein levels were transformed to common logarithmic 
values to normalize the data distribution. In all box plots, the boxes 
show median, upper, and lower quartiles, and the whiskers show 5th 
to 95th percentiles. Asterisks indicate a statistically significant differ-
ence (*P < 0.05, **P < 0.01) between two groups on each day by Wil-
coxon rank sum test

◂

294

1 3



Journal of Clinical Immunology  (2023) 43:286–298

Discussion

Our study showed that four key proteins, WFDC2 (WAP 
four-disulfide core domain protein 2, also known as human 
epididymis protein 4 [HE4]) [26, 27], GDF-15 (growth differ-
entiation factor 15) [28], CHI3L1 (chitinase-3 like-protein-1, 
also known as YKL-40) [29], and KRT19 (keratin, type I 
cytoskeletal 19) [30], were associated with the prognosis of 
COVID-19, and this is supported by the previous reports.

WFDC2 is highly expressed in ovarian cancer [31], sys-
temic sclerosis–related interstitial lung disease [32] and lung 
adenocarcinoma [33]. It is also expressed in some epithelial 
cells of the upper airways, mucous cells, and ducts of the 
submucosal glands and is thought to be involved in innate 

immunity of the mucosal oral cavity and nasopharynx [26]. 
Previous reports have shown an association between the 
severity and prognosis of COVID-19 and WFDC2 [26, 27].

GDF-15 is a member of the transforming growth factor-β 
molecule superfamily [34] and is highly expressed in mac-
rophages, airway epithelial cells, and vascular endothelial 
cells [35]. It has been reported to be an independent prog-
nostic factor in cardiovascular disease, lung disease, and sep-
sis [36–38]. Several reports show the association between 
the levels of GDF-15 and disease severity in COVID-19 [28, 
39]. As mentioned above, GDF-15 is well observed to be 
upregulated under stress conditions, but the mechanism for 
this is unclear. Further research is needed, including that into 
which tissues express GDF-15 in COVID-19.

Fig. 5  Latent class analysis 
based on key proteins in the 
validation cohort. A The cor-
relations of WFDC2, CHI3L1, 
and KRT19 are visualized by 
heat map. The numbers indicate 
the Pearson correlation. B BIC 
analysis with the number of 
clusters on the X axis. The BIC 
was highest for the three-class 
model. The latent class analysis 
calculation was performed 
using the VarSeILCM package 
in R, where the largest BIC 
is interpreted as optimal. C 
Visualization of phenotypes 
using principal component 
analysis in the validation data. 
D Heat map indicating the 
impact of the levels of the three 
proteins (WFDC2, CHI3L1, and 
KRT19) on the three pheno-
types. White signifies the lowest 
and red the highest Z-score. 
The actual cytokine levels are 
transformed to Z-scores. E 
Kaplan–Meier curve of 28-day 
survival stratified by latent class 
analysis-derived phenotype. The 
log rank test showed significant 
differences between the three 
phenotypes (P < 0.01)
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CHI3L1 is a member of glycoside hydrolase family 18 
and is synthesized and secreted by many cells, including 
macrophages, neutrophils, synoviocytes, smooth muscle 
cells, and tumor cells [40]. CHI3L1 has been reported to 
promote cancer growth, production of proinflammatory 
cytokines, and microglial activation [41]. It is strongly 
associated with diseases such as asthma, arthritis, sepsis, 
diabetes, liver fibrosis, and coronary artery disease [29]. 
In COVID-19, CHI3L1 is reported to be associated with 
severe disease, although it is not correlated with mortality. 
It is suggested that CHI3L1 is a major stimulator of ACE2, 
promotes binding and activation of SC2 S-protein-receptor, 
and enhances infection and the spread of COVID-19 [29, 
42]. In the present study, GDF15, WFDC2, and CHI3LI 
were correlated with age in the COVID-19 patients. It has 
been reported that the levels of circulating CHI3L1 increase 
with aging in healthy controls, whereas levels of circulating 
CHI3L1 increase in patients with severe COVID19 com-
pared to healthy controls regardless of age [29].

KRT19 is one of the most important cytokeratins 
expressed in epithelial and mesothelial tissues, and its over-
expression has been reported in more than 30 malignant neo-
plasms, including lung and breast cancer [43]. Cyfra21-1 
proteins, a fragment of KRT19, have been reported to be 
useful among lung cancers as a marker for non-small cell 
lung cancer (squamous cell carcinoma) [44]. In COVID-
19, although Gisby et al. [45] reported the association of 
severity with upregulation of KRT19 using a proteomics 
approach, there are still few COVID-19-related reports on 
this cytokeratin.

Our previous studies showed that the key cytokine pro-
teins formed a cytokine network in the patients including 
those with sepsis and burn [7–9]. In the present study, 
WGCNA revealed six protein network clusters. The GO 
enrichment and KEGG pathway analyses for each cluster 
indicated that the four key proteins are mainly involved in 
clusters related to cell adhesion pathways in addition to 
previously reported immune responses [46, 47]. This sug-
gests that the four key proteins interact with each other in 
the cell adhesion pathways, which may play a key role in 
the pathogenesis of critical COVID-19.

The immune response associates with a complex inter-
action of factors involving comorbidities, age, weight, 
sex, ethnic background, pathogen types, and environ-
ment in the patients, thus resulting in a heterogeneous 
disease phenotype. The phenotype also varies between 
individuals over the time course of the disease. Mathew 
et al. showed that based on high-dimensional cytometry 
information, three immunotypes were associated with 
poor clinical trajectories in COVID-19 patients [47]. 
Also, Shu et al. distinguished different severity using 
LC–MS/MS on the basis of machine-learning models 
[48]. In our study, the critical COVID-19 patients were 

divided into three phenotypes (α, β, γ) using WFDC2, 
CHI3L1, and KRT19 on day 1 by latent class analysis. 
Patients with the β and γ phenotypes had lower survival 
rates and more prolonged ventilation times than those 
with the α phenotype, indicating that the β and γ pheno-
types could be potential therapeutic targets for interven-
tion in critical COVID-19.

This study has several limitations. First, age could have 
affected the plasma proteins levels. The difference in ages 
between the critical and non-critical patients in the first 
discovery cohort, between the control and COVID-19 
patients, and between patients with early and late recov-
ery in the second discovery cohort could have affected 
the process to derive the five candidate proteins. Sec-
ond, the phase was defined as the time from visiting the 
emergency department or admission to the hospital, and 
thus, the time from onset was not considered. It was not 
clear what triggers the protein elevation, when the pro-
tein elevation occurs and how long the proteins elevation 
continued; therefore, the possibility of missing important 
proteins due to focusing on specific periods, phase 1 and 
phase 2, remains. However, in clinical practice, the time of 
infection varies as the time of admission to the emergency 
department or ICU, and this study may be more relevant 
to actual clinical practice. Third, we used three cohorts 
that included different variables. Therefore, information on 
unmeasured confounders and treatment details is lacking 
that may have biased the results. Fourth, basic treatment 
strategies of the participating facilities may have differed 
in their details. Such variation between the treatment cent-
ers could slightly influence the levels of proteins and the 
findings in this analysis. Finally, we did not perform a 
validation of the clinical phenotypes and the prediction 
model in another cohort.

Conclusion

The use of a new plasma proteomics approach revealed 
four key proteins in the blood validated by ELISA that were 
associated with COVID-19 pathogenesis. The clinical phe-
notypes based on WFDC2, CHI3L1, and KRT19 were sig-
nificantly associated with patient prognosis.
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protein 2; WGCNA: Weighted gene co-expression network analysis

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10875- 022- 01386-3.

296

1 3

https://doi.org/10.1007/s10875-022-01386-3


Journal of Clinical Immunology  (2023) 43:286–298

Acknowledgements We greatly appreciate the patients, families, and 
healthy volunteers involved in this study. We also thank all of the medi-
cal staff who cooperated with this study.

Author Contribution TE, TM, and YT equally conceived and designed 
this study, acquired, and analyzed the data and wrote the manuscript. 
Hisatake M. helped with study design and data interpretation and con-
ducted the literature review. JT analyzed the data. Hiroshi M., TK, and 
HH contributed to data acquisition. FS, SS, and DO helped analyze the 
data. HO conducted the literature review.

Funding This study was supported by the Japan Agency for Medical 
Research and Development Grant Number [20fk0108404h0001] and 
JSPS KAKENHI Grant Number [JP19H03760].

Data Availability Original Olink proteomics data have been deposited 
to Mendeley Data: https:// doi. org/ 10. 17632/ 2cbxg sn7vx.1.

Declarations 

Ethics Approval and Consent to Participate This study was performed 
according to the principles of the Declaration of Helsinki and received 
approval from the institutional review board of Osaka University Hos-
pital (Permit Numbers: 885 [Osaka University Critical Care Consor-
tium Novel Omix Project; Occonomix Project]). Informed consent was 
obtained from all patients or their relatives, and the healthy volunteers 
gave their informed consent for the collection of their blood samples.

Consent for Publication Not applicable.

Competing Interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemio-
logical and clinical characteristics of 99 cases of 2019 novel coro-
navirus pneumonia in Wuhan, China: a descriptive study. Lancet. 
2020;395:507–13. https:// doi. org/ 10. 1016/ S0140- 6736(20) 30211-7.

 2. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical 
characteristics of coronavirus disease 2019 in China. N Engl J Med. 
2020;382:1708–20. https:// doi. org/ 10. 1056/ NEJMo a2002 032.

 3. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn 
T, Davidson KW, et al. Presenting characteristics, comorbidities, 
and outcomes among 5700 patients hospitalized with COVID-19 
in the New York City area. JAMA. 2020;323:2052–9. https:// doi. 
org/ 10. 1001/ jama. 2020. 6775.

 4. Hur K, Price CPE, Gray EL, Gulati RK, Maksimoski M, Racette 
SD, et al. Factors associated with intubation and prolonged intuba-
tion in hospitalized patients with COVID-19. Otolaryngol Head 

Neck Surg. 2020;163(1):170–8. https:// doi. org/ 10. 1177/ 01945 
99820 929640.

 5. Bonaventura A, Vecchié A, Dagna L, Martinod K, Dixon DL, Van 
Tassell BW, et al. Endothelial dysfunction and immunothrombosis 
as key pathogenic mechanisms in COVID-19. Nat Rev Immunol. 
2021;21:319–29. https:// doi. org/ 10. 1038/ s41577- 021- 00536-9.

 6. Kermali M, Khalsa RK, Pillai K, Ismail Z, Harky A. The role of 
biomarkers in diagnosis of COVID-19 - a systematic review. Life 
Sci. 2020;254:117788. https:// doi. org/ 10. 1016/j. lfs. 2020. 117788.

 7. Matsumoto H, Ogura H, Shimizu K, Ikeda M, Hirose T, Matsuura 
H, et al. The clinical importance of a cytokine network in the acute 
phase of sepsis. Sci Rep. 2018;8:13995. https:// doi. org/ 10. 1038/ 
s41598- 018- 32275-8.

 8. Matsuura H, Matsumoto H, Osuka A, Ogura H, Shimizu K, Kang 
S, et al. Clinical importance of a cytokine network in major burns. 
Shock. 2019;51:185–93. https:// doi. org/ 10. 1097/ SHK. 00000 
00000 001152.

 9. Ebihara T, Matsumoto H, Matsubara T, Matsuura H, Hirose T, 
Shimizu K, et al. Adipocytokine profile reveals resistin forming 
a prognostic-related cytokine network in the acute phase of sep-
sis. Shock. 2021;56:718–26. https:// doi. org/ 10. 1097/ SHK. 00000 
00000 001756.

 10. Sinha P, Delucchi KL, McAuley DF, O’Kane CM, Matthay MA, 
Calfee CS. Development and validation of parsimonious algo-
rithms to classify ARDS phenotypes: secondary analyses of ran-
domised controlled trials. Lancet Respir Med. 2020;8:247–57. 
https:// doi. org/ 10. 1016/ S2213- 2600(19) 30369-8.

 11. Seymour CW, Kennedy JN, Wang S, Chang CH, Elliott CF, Xu Z, 
et al. Derivation, validation, and potential treatment implications 
of novel clinical phenotypes for sepsis. JAMA. 2019;321:2003–
17. https:// doi. org/ 10. 1001/ jama. 2019. 5791.

 12. Scicluna BP, van Vught LA, Zwinderman AH, Wiewel MA, Dav-
enport EE, Burnham KL, et al. Classification of patients with 
sepsis according to blood genomic endotype: a prospective cohort 
study. Lancet Respir Med. 2017;5:816–26. https:// doi. org/ 10. 
1016/ S2213- 2600(17) 30294-1.

 13. Filbin MR, Mehta A, Schneider AM, Kays KR, Guess JR, Gentili 
M, et al. Longitudinal proteomic analysis of severe COVID-19 
reveals survival-associated signatures, tissue-specific cell death, 
and cell-cell interactions. Cell Rep Med. 2021;2:100287. https:// 
doi. org/ 10. 1016/j. xcrm. 2021. 100287.

 14. COVID-19 therapeutic trial synopsis. https:// www. who. int/ 
publi catio ns- detail- redir ect/ covid- 19- thera peutic- trial- synop sis. 
Accessed 11 June 2021.

 15. Ebihara T, Matsumoto H, Matsubara T, Togami Y, Nakao S, Matsu-
ura H, et al. Cytokine elevation in severe COVID-19 from longitu-
dinal proteomics analysis: comparison with sepsis. Front Immunol. 
2022;12:798338. https:// doi. org/ 10. 3389/ fimmu. 2021. 798338.

 16. Wik L, Nordberg N, Broberg J, Björkesten J, Assarsson E, Hen-
riksson S, et al. Proximity extension assay in combination with 
next-generation sequencing for high-throughput proteome-wide 
analysis. Mol Cell Proteomics. 2021;20:100168. https:// doi. org/ 
10. 1016/j. mcpro. 2021. 100168.

 17. Li Y, Schneider AM, Mehta A, Sade-Feldman M, Kays KR, Gen-
tili M, et al. SARS-CoV-2 viremia is associated with distinct pro-
teomic pathways and predicts COVID-19 outcomes. J Clin Invest. 
2021;131:e148635. https:// doi. org/ 10. 1172/ JCI14 8635.

 18. Benjamini Y, Hochberg Y. Controlling the false discovery rate: 
a practical and powerful approach to multiple testing. J R Stat 
Soc Ser B Methodol. 1995;57:289–300. https:// doi. org/ 10. 1111/j. 
2517- 6161. 1995. tb020 31.x.

 19. Langfelder P, Horvath S. WGCNA: an R package for weighted 
correlation network analysis. BMC Bioinformatics. 2008;9:559. 
https:// doi. org/ 10. 1186/ 1471- 2105-9- 559.

 20. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, 
et al. Cytoscape: a software environment for integrated models of 

297

1 3

https://doi.org/10.17632/2cbxgsn7vx.1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S0140-6736(20)30211-7
https://doi.org/10.1056/NEJMoa2002032
https://doi.org/10.1001/jama.2020.6775
https://doi.org/10.1001/jama.2020.6775
https://doi.org/10.1177/0194599820929640
https://doi.org/10.1177/0194599820929640
https://doi.org/10.1038/s41577-021-00536-9
https://doi.org/10.1016/j.lfs.2020.117788
https://doi.org/10.1038/s41598-018-32275-8
https://doi.org/10.1038/s41598-018-32275-8
https://doi.org/10.1097/SHK.0000000000001152
https://doi.org/10.1097/SHK.0000000000001152
https://doi.org/10.1097/SHK.0000000000001756
https://doi.org/10.1097/SHK.0000000000001756
https://doi.org/10.1016/S2213-2600(19)30369-8
https://doi.org/10.1001/jama.2019.5791
https://doi.org/10.1016/S2213-2600(17)30294-1
https://doi.org/10.1016/S2213-2600(17)30294-1
https://doi.org/10.1016/j.xcrm.2021.100287
https://doi.org/10.1016/j.xcrm.2021.100287
https://www.who.int/publications-detail-redirect/covid-19-therapeutic-trial-synopsis
https://www.who.int/publications-detail-redirect/covid-19-therapeutic-trial-synopsis
https://doi.org/10.3389/fimmu.2021.798338
https://doi.org/10.1016/j.mcpro.2021.100168
https://doi.org/10.1016/j.mcpro.2021.100168
https://doi.org/10.1172/JCI148635
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1186/1471-2105-9-559


Journal of Clinical Immunology  (2023) 43:286–298

biomolecular interaction networks. Genome Res. 2003;13:2498–
504. https:// doi. org/ 10. 1101/ gr. 12393 03.

 21. Fröhlich H, Speer N, Poustka A, Beißbarth T. GOSim – an 
R-package for computation of information theoretic GO simi-
larities between terms and gene products. BMC Bioinformatics. 
2007;8:166. https:// doi. org/ 10. 1186/ 1471- 2105-8- 166.

 22. KEGG: Kyoto encyclopedia of genes and genomes [Internet]. 
https:// www. kegg. jp/. Accessed 18 Sep 2022.

 23. Sinha P, Calfee CS, Delucchi KL. Practitioner’s guide to latent 
class analysis: methodological considerations and common pit-
falls. Crit Care Med. 2021;49:e63-79. https:// doi. org/ 10. 1097/ 
CCM. 00000 00000 004710.

 24. Nylund KL, Asparouhov T, Muthén BO. Deciding on the number 
of classes in latent class analysis and growth mixture modeling: 
a Monte Carlo simulation study. Struct Equ Model Multidiscip J. 
2007;14:535–69. https:// doi. org/ 10. 1080/ 10705 51070 15753 96.

 25. Nagin DS. Group-based modeling of development. Cambridge, 
MA: Harvard University Press; 2005.

 26. Schirinzi A, Cazzolla AP, Lovero R, Lo Muzio L, Testa NF, 
Ciavarella D, et al. New insights in laboratory testing for COVID-
19 patients: looking for the role and predictive value of Human 
epididymis secretory protein 4 (HE4) and the innate immu-
nity of the oral cavity and respiratory tract. Microorganisms. 
2020;8:1718. https:// doi. org/ 10. 3390/ micro organ isms8 111718.

 27. Wei X, Su J, Yang K, Wei J, Wan H, Cao X, et al. Elevations of 
serum cancer biomarkers correlate with severity of COVID-19. J 
Med Virol. 2020;92:2036–41. https:// doi. org/ 10. 1002/ jmv. 25957.

 28. Myhre PL, Prebensen C, Strand H, Røysland R, Jonassen CM, 
Rangberg A, et al. Growth Differentiation Factor 15 provides 
prognostic information superior to established cardiovascular 
and inflammatory biomarkers in unselected patients hospitalized 
with COVID-19. Circulation. 2020;142:2128–37. https:// doi. org/ 
10. 1161/ CIRCU LATIO NAHA. 120. 050360.

 29. Kamle S, Ma B, He CH, Akosman B, Zhou Y, Lee CM, et al. 
Chitinase 3-like-1 is a therapeutic target that mediates the effects 
of aging in COVID-19. JCI Insight. 2021;6:e148749. https:// doi. 
org/ 10. 1172/ jci. insig ht. 148749.

 30. Gisby J, Clarke CL, Medjeral-Thomas N, Malik TH, Papadaki A, 
Mortimer PM, et al. Longitudinal proteomic profiling of dialysis 
patients with COVID-19 reveals markers of severity and predic-
tors of death. eLife. 2021;10:e64827. https:// doi. org/ 10. 7554/ 
eLife. 64827.

 31. Dochez V, Caillon H, Vaucel E, Dimet J, Winer N, Ducarme 
G. Biomarkers and algorithms for diagnosis of ovarian can-
cer: CA125, HE4, RMI and ROMA, a review. J Ovarian Res. 
2019;12:28. https:// doi. org/ 10. 1186/ s13048- 019- 0503-7.

 32 Zhang M, Zhang L, Linning E, Xu K, Wang XF, Zhang B, et al. 
Increased levels of HE4 (WFDC2) in systemic sclerosis: a novel 
biomarker reflecting interstitial lung disease severity? Ther Adv 
Chronic Dis. 2020;11:2040622320956420. https:// doi. org/ 10. 
1177/ 20406 22320 956420.

 33. Bingle L, Cross SS, High AS, Wallace WA, Rassl D, Yuan G, 
et al. WFDC2 (HE4): a potential role in the innate immunity of 
the oral cavity and respiratory tract and the development of adeno-
carcinomas of the lung. Respir Res. 2006;7:61. https:// doi. org/ 10. 
1186/ 1465- 9921-7- 61.

 34. Bootcov MR, Bauskin AR, Valenzuela SM, Moore AG, Bansal M, 
He XY, et al. MIC-1, a novel macrophage inhibitory cytokine, is 
a divergent member of the TGF-beta superfamily. Proc Natl Acad 
Sci U S A. 1997;94:11514–9. https:// doi. org/ 10. 1073/ pnas. 94. 21. 
11514.

 35. Verhamme FM, Freeman CM, Brusselle GG, Bracke KR, Cur-
tis JL. GDF-15 in pulmonary and critical care medicine. Am J 

Respir Cell Mol Biol. 2019;60:621–8. https:// doi. org/ 10. 1165/ 
rcmb. 2018- 0379TR.

 36. Buendgens L, Yagmur E, Bruensing J, Herbers U, Baeck C, 
Trautwein C, et al. Growth differentiation factor-15 is a predictor 
of mortality in critically ill patients with sepsis. Dis Markers. 
2017;2017:5271203. https:// doi. org/ 10. 1155/ 2017/ 52712 03.

 37. Husebø GR, Grønseth R, Lerner L, Gyuris J, Hardie JA, Bakke 
PS, et al. Growth differentiation factor-15 is a predictor of impor-
tant disease outcomes in patients with COPD. Eur Respir J. 
2017;49:1601298. https:// doi. org/ 10. 1183/ 13993 003. 01298- 2016.

 38. Baek SJ, Eling T. Growth differentiation factor 15 (GDF15): a 
survival protein with therapeutic potential in metabolic diseases. 
Pharmacol Ther. 2019;198:46–58. https:// doi. org/ 10. 1016/j. pharm 
thera. 2019. 02. 008.

 39. Teng X, Zhang J, Shi Y, Liu Y, Yang Y, He J, et al. Comprehensive 
profiling of inflammatory factors revealed that growth differen-
tiation factor-15 is an indicator of disease severity in COVID-
19 patients. Front Immunol. 2021;12:662465. https:// doi. org/ 10. 
3389/ fimmu. 2021. 662465.

 40. Zhao T, Su Z, Li Y, Zhang X, You Q. Chitinase-3 like-protein-1 
function and its role in diseases. Sig Transduct Target Ther. 
2020;5:1–20. https:// doi. org/ 10. 1038/ s41392- 020- 00303-7.

 41. Yeo IJ, Lee C-K, Han S-B, Yun J, Hong JT. Roles of chitinase 
3-like 1 in the development of cancer, neurodegenerative diseases, 
and inflammatory diseases. Pharmacol Ther. 2019;203:107394. 
https:// doi. org/ 10. 1016/j. pharm thera. 2019. 107394.

 42. Schoneveld L, Ladang A, Henket M, Frix AN, Cavalier E, Guiot 
J. YKL-40 as a new promising prognostic marker of severity in 
COVID infection. Crit Care. 2021;25:66. https:// doi. org/ 10. 1186/ 
s13054- 020- 03383-7.

 43. Hamesch K, Guldiken N, Aly M, Hüser N, Hartmann D, Rufat 
P, et al. Serum keratin 19 (CYFRA21-1) links ductular reac-
tion with portal hypertension and outcome of various advanced 
liver diseases. BMC Med. 2020;18:336. https:// doi. org/ 10. 1186/ 
s12916- 020- 01784-7.

 44. Reinmuth N, Brandt B, Semik M, Kunze WP, Achatzy R, Scheld 
HH, et al. Prognostic impact of Cyfra21-1 and other serum markers 
in completely resected non-small cell lung cancer. Lung Cancer. 
2002;36:265–70. https:// doi. org/ 10. 1016/ s0169- 5002(02) 00009-0.

 45. Gisby J, Clarke CL, Medjeral-Thomas N, Malik TH, Papadaki A, 
Mortimer PM, et al. Longitudinal proteomic profiling of dialysis 
patients with COVID-19 reveals markers of severity and predic-
tors of death. Elife. 2021;10:e64827. https:// doi. org/ 10. 7554/ 
eLife. 64827.

 46. Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M, 
et al. Longitudinal analyses reveal immunological misfiring in 
severe COVID-19. Nature. 2020;584:463–9. https:// doi. org/ 10. 
1038/ s41586- 020- 2588-y.

 47 Mathew D, Giles JR, Baxter AE, Oldridge DA, Greenplate AR, 
Wu JE, et al. Deep immune profiling of COVID-19 patients reveals 
distinct immunotypes with therapeutic implications. Science. 
2020;369(6508):eabc8511. https:// doi. org/ 10. 1126/ scien ce. abc85 11.

 48. Shu T, Ning W, Wu D, Xu J, Han Q, Huang M, et al. Plasma 
proteomics identify biomarkers and pathogenesis of COVID-19. 
Immunity. 2020;53:1108-22.e5. https:// doi. org/ 10. 1016/j. immuni. 
2020. 10. 008.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

298

1 3

https://doi.org/10.1101/gr.1239303
https://doi.org/10.1186/1471-2105-8-166
https://www.kegg.jp/
https://doi.org/10.1097/CCM.0000000000004710
https://doi.org/10.1097/CCM.0000000000004710
https://doi.org/10.1080/10705510701575396
https://doi.org/10.3390/microorganisms8111718
https://doi.org/10.1002/jmv.25957
https://doi.org/10.1161/CIRCULATIONAHA.120.050360
https://doi.org/10.1161/CIRCULATIONAHA.120.050360
https://doi.org/10.1172/jci.insight.148749
https://doi.org/10.1172/jci.insight.148749
https://doi.org/10.7554/eLife.64827
https://doi.org/10.7554/eLife.64827
https://doi.org/10.1186/s13048-019-0503-7
https://doi.org/10.1177/2040622320956420
https://doi.org/10.1177/2040622320956420
https://doi.org/10.1186/1465-9921-7-61
https://doi.org/10.1186/1465-9921-7-61
https://doi.org/10.1073/pnas.94.21.11514
https://doi.org/10.1073/pnas.94.21.11514
https://doi.org/10.1165/rcmb.2018-0379TR
https://doi.org/10.1165/rcmb.2018-0379TR
https://doi.org/10.1155/2017/5271203
https://doi.org/10.1183/13993003.01298-2016
https://doi.org/10.1016/j.pharmthera.2019.02.008
https://doi.org/10.1016/j.pharmthera.2019.02.008
https://doi.org/10.3389/fimmu.2021.662465
https://doi.org/10.3389/fimmu.2021.662465
https://doi.org/10.1038/s41392-020-00303-7
https://doi.org/10.1016/j.pharmthera.2019.107394
https://doi.org/10.1186/s13054-020-03383-7
https://doi.org/10.1186/s13054-020-03383-7
https://doi.org/10.1186/s12916-020-01784-7
https://doi.org/10.1186/s12916-020-01784-7
https://doi.org/10.1016/s0169-5002(02)00009-0
https://doi.org/10.7554/eLife.64827
https://doi.org/10.7554/eLife.64827
https://doi.org/10.1038/s41586-020-2588-y
https://doi.org/10.1038/s41586-020-2588-y
https://doi.org/10.1126/science.abc8511
https://doi.org/10.1016/j.immuni.2020.10.008
https://doi.org/10.1016/j.immuni.2020.10.008

	Combination of WFDC2, CHI3L1, and KRT19 in Plasma Defines a Clinically Useful Molecular Phenotype Associated with Prognosis in Critically Ill COVID-19 Patients
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Background
	Methods
	Cohort Data and Measurement of Plasma Proteins
	Definition of Disease Severity: Critical and Non-critical
	Definition of Timing of Sample Collection: Phase 1 and Phase 2
	Definitions of Clinical Outcome: Early Recovery and Late Recovery
	Statistical Analysis

	Results
	Exploration of Candidate Plasma Proteins from First and Second Discovery Cohorts
	Network Analysis of 1463 Plasma Proteins in Critical COVID-19 Patients in the Second Discovery Cohort
	Validation of Five Candidate Plasma Proteins by ELISA
	Identification of New Clinical Phenotypes Using Latent Cluster Analysis

	Discussion
	Conclusion
	Acknowledgements 
	References


