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Introduction

Since December 2019, over 150 million individuals have been
infected with SARS-CoV-2 globally. While most cases
(>95%) are asymptomatic or mild, a small proportion develop
moderate, severe, or critical COVID-19 pneumonia requiring
hospitalization, at times in the intensive care unit [1]. At least
2 million patients have already died [2]. The main epidemio-
logical risk factor associated with critical pneumonia or death
is age > 65 years; however, life-threatening COVID-19 has
also affected younger people, albeit sporadically. Studies have
suggested that type I interferon (IFN) immunity contributes to
the control of SARS-CoV-2 infection [3—8]. Notably, inborn
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errors of TLR3- and IRF7-dependent type I IFN production or
amplification underlie severe disease in ~3% of a cohort of
relatively young adult patients analyzed by the COVID
Human Genetic Effort (COVIDhge.com) [3]. In at least an
additional 10% of cases, high levels of pre-existing auto-anti-
bodies (auto-Abs) neutralizing most type I IFNs, but rarely
IFN-[3, abrogate type I IFN—dependent control of SARS-
CoV-2 replication in vitro, thereby underlying critical disease
in vivo [3, 4, 9, 10]. This observation was replicated in other
cohorts [11-15]. The mean age of patients with inborn errors
was 48 years, while that of patients with auto-Abs was 65
years. These findings support a two-step model of COVID-
19 pathogenesis: defective type I IFN immunity in the first
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hours and days of infection leads to uncontrolled viral repli-
cation with spread to the lungs and other tissues, with subse-
quent excessive leukocyte recruitment, underlying uncon-
trolled inflammation [5]. This model of early deficient type I
IFN function provides a framework for novel preventive and
therapeutic approaches of COVID-19. Here, we explore two
therapeutic routes that aim to restore protective type I IFN
immunity: [1] the early administration of IFN-{3 in ambulatory
subjects, including exposed individuals prior to infection, pre-
symptomatic infected individuals and symptomatic individ-
uals, and [2] the removal of auto-Abs to type I IFN in hospi-
talized patients. We also discuss the implications of these
findings for other preventive and therapeutic interventions,
including B cell depletion, JAK inhibitors, intravenous immu-
noglobulins, the use of convalescent plasma and virus-specific
mAbs, and vaccination. This discussion is timely, as more
than one year into the pandemic, we are still in the dark about
the best prevention and treatment for severe COVID-19 pneu-
monia, while the emergence of more contagious viral variants,
causing more severe disease, raises concerns regarding the
efficacy of the nascent vaccination programs [16, 17].

Vaccines for COVID-19: Where Do We Stand?

Currently, several COVID-19 vaccines are in use, and numer-
ous others are in different phases of development. Despite
their excellent efficacy and safety profile, the finding that sera
from vaccinated individuals showed reduced in vitro neutral-
ization of 5 of 10 pseudoviruses representing circulating
SARS-CoV-2 strains is concerning [ 18]. Moreover, protection
from vaccines may wane and not all people will be able to
tolerate the vaccines or mount protective responses. For in-
stance, a word of caution is needed for the use of mRNA
vaccines in patients with interferonopathies (i.e.,
autoinflammatory conditions due to excessive type I IFN ac-
tivity), as these vaccines may potentially induce exaggerated
type I IFN responses, despite the introduction of
pseudouridine instead of uridine to reduce recognition by
nucleic acid sensors. Overall, surveillance studies
documenting both safety and efficacy are critically needed in
patients with inborn errors of immunity and their phenocopies.
Germane to the COVIDhge findings of deficient type I IFN
activity in severe COVID-19, more specific questions arise.
First, is vaccine efficiency maintained in patients with a ge-
netic or auto-immune phenocopy of type I IFN defect? Indeed,
type I IFN has been described to enhance antibody responses
and isotype switching by effects on dendritic cells [19]. Do the
current vaccines induce sufficient adaptive immunity to com-
pensate for a patient’s innate defect in type I IFN or for the
pre-existing anti-type I IFN auto-Abs? Is the clinical effective-
ness of the vaccines comparable between those with genetic
defects of type I IFN response pathway and those with auto-
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Abs versus the general population? Although reports from
patients with genetic type I IFN defects have not raised con-
cerns about impaired vaccine responses, longitudinal data will
be required to more definitively address these questions [20,
21]. The COVIDhge data also open new considerations on
safety. As some type I IFN pathway defects, especially auto-
somal recessive (AR) deficiency of STAT2, IFNARI, and
IFNAR?2, predispose to severe disease with live attenuated
vaccine (LAV), and as anti-type I IFN auto-Abs can underlie
disease caused by the yellow fever vaccine, special caution
will be needed with SARS-CoV-2 vaccine strategies that use
LAV [22]. We must also recognize that, as SARS-CoV-2
variants with potential to escape vaccine coverage emerge, it
is possible that individuals with monogenic or auto-Ab-
mediated impairment of type I IFN responses continue to re-
main at risk for severe disease, despite vaccination. The cor-
ollary would propose that individuals who develop COVID-
19 disease following vaccination, and perhaps those who are
repeatedly re-infected as well, may harbor known or novel
inborn errors of immunity.

Convalescent Plasma and mAbs

Convalescent plasma (CP) from recovered patients is being
administered in severe and critical COVID-19, prompted by
historical experience with SARS-CoV, MERS-CoV, and
1918 Spanish flu [23, 24]. The rationale is that passive immu-
nization against SARS-CoV-2 can ameliorate disease by de-
creasing virus spread and replication. It is expected to be ben-
eficial mainly in the initial phases of disease. Risks of CP
therapy include those of standard plasma infusions; for in-
stance, volume overload and transfusion-related acute lung
injury require special care [23, 25]. A theoretical risk is
antibody-dependent enhancement, in which non-neutralizing
antibodies against SARS-CoV-2 worsen disease by engaging
Fc receptors which modulate effector functions of monocytes/
macrophages and mediate cytokine release [26]. Eight ran-
domized clinical trials (RCTs) using CP have been reported
and most failed to show a beneficial effect on clinical status or
mortality, conflicting with the observational studies [27-29].
Subsequently, an additional double-blind placebo-controlled
clinical trial showed no efficacy in improving morbidity/
mortality in patients with severe COVID-19 when adminis-
tered at a median of 8 days after symptom onset, whereas
another double-blind placebo-controlled clinical trial showed
decreased disease progression in mildly affected patients
when administered within 72 h after symptom onset [30,
31]. There are over 100 ongoing studies evaluating CP.
These studies need to teach us [1] the minimum levels of
anti-SARS-CoV-2 neutralizing antibodies needed to prevent
or abort development of severe disease; [2] the optimal timing
of plasma collection from donors after disease resolution; and
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[3] the optimal dosing and timing of infusions relative to
symptom onset in recipients [32, 33].

In the context of the findings of the COVIDhge, the main
concern is that CP, if harvested from severely ill or hospital-
ized COVID-19 patients, may contain neutralizing type I [FN
auto-Abs [15]. In that case, CP therapy could worsen disease
in the recipient. Thus, CP should only be collected from
asymptomatic or mildly ill COVID-19 patients and must be
tested for neutralizing auto-Abs against type I IFN, even
though at present, the threshold of auto-Abs that leads to crit-
ical COVID-19 has yet to be defined. Of note, the general
application of such strategy is only possible when and where
a standardized, validated assay to detect neutralizing anti-type
I IFN auto-Abs is readily available with a quick turnaround
time (<24 h). Recombinant monoclonal antibodies, targeted
against SARS-CoV-2 spike protein, obviate these concerns
and are potentially safer [34-36]. Moreover, the neutralizing
titers achieved with for instance REGN-COV?2 (a cocktail of
casirivimab plus imdevimab, two non-competing neutralizing
human IgG1 antibodies targeting the receptor binding domain
of the spike protein) were more than 1000 times the titers
achievable with CP. A combination of bamlanivimab and
etesevimab (two other non-competing anti-spike neutralizing
monoclonal antibodies derived from 2 patients who recovered
from COVID-19), but not bamlanivimab alone, administered
within 72 h of onset, reduced viral load and resulted in a
decreased hospitalization rate compared with placebo in
mild-to-moderate COVID-19 [36]. REGN-COV?2 had a pro-
found and rapid effect on viral load, with most reduction oc-
curring within 48 h and with a stronger effect in individuals
with a high viral load [35]. Studies of the impact on clinical
outcome as a primary outcome are ongoing. However, viral
strains carrying mutations in the target epitopes of SARS-
CoV-2 spike protein have already been described, clouding
the future of monoclonal antibody treatment [37].

Anti-inflammatory Drugs: Intravenous
Immunoglobulin (IVIG), Corticosteroids,
and Anti-IL6R Antagonists

In the two-step model of critical COVID-19, the first phase of
insufficient type I IFN immunity results in deleterious pulmo-
nary and systemic inflammation, calling for anti-inflammatory
interventions. High-dose IVIG (0.8 g/kg to 2 g/kg) has immu-
nomodulatory capacity, presumably via inhibition of comple-
ment system activation; decreased endothelial cell activation;
anti-inflammatory effects on monocytes, macrophages, and
neutrophils; and stimulation of regulatory T cells [38]. High-
dose IVIG has been used in several studies in COVID-19 as an
immunomodulatory therapy to treat multisystem inflammato-
ry syndrome in children and adults associated with SARS-
CoV-2 infection, but also in severe COVID-19 pneumonia

[39-45]. A retrospective multicenter study conducted in
China reported reduced mortality at day 28 in critically ill
COVID-19 patients treated with high-dose IVIG [46]. Two
RCTs with high-dose IVIG were recently published. The first
study compared 1.2 g/kg IVIG plus hydroxychloroquine and
lopinavir/ritonavir to the latter treatment alone, and its results
did not support the use of IVIG [47]. A smaller study, with 30
patients in each treatment arm, showed a decreased mortality
in patients with severe COVID-19 treated with IVIG [48].
More RCTs are needed to define efficacy, dosing, and timing
of high-dose IVIG treatment. In light of COVIDhge findings,
administration of high-dose IVIG might have the additional
benefit of “washing out” the pathogenic anti-type I IFN auto-
Abs [49]. High-dose IVIG are thus beneficial in immune
thrombocytopenia [50] and Guillain-Barré syndrome [51].
Careful studies of the kinetics of anti-IFN-auto-Abs are nec-
essary, together with longitudinal assessment of serum cyto-
kines, to provide proof of principle for this approach.

Seven RCTs have examined the effect of low-dose ste-
roids, as a broad-acting anti-inflammatory agent, in critical
COVID-19, and one RCT in non-critical COVID-19. The
largest trial, in 2104 subjects, showed a reduced 28-day mor-
tality (22.9% vs. 25.7%) in dexamethasone versus usual care
[52]. A meta-analysis of all trials showed a significant de-
crease in day 28 mortality for dexamethasone compared to
supportive care in three trials, in patients with critical
COVID-19 [53]. A more specific approach to dampen the
cytokine storm in COVID-19 is by targeting IL-6, using the
anti-IL6 receptor (IL6R) blocking monoclonal antibodies,
tocilizumab, or sarilumab. Multiple observational studies
hinted towards improved outcome using tocilizumab.
Several RCTs have now been conducted in severe COVID-
19 [54-60]. The largest trial, which focused on patients with
critical COVID-19, reported reduced days on organ support
and a small reduction mortality in patients receiving anti-IL6R
antagonists versus placebo (27% in the pooled tocilizumab or
sarilumab arm vs. 36% in the placebo arm, REMAP-CAP
trial) [61]. Overall, the RCTs have been unimpressive in terms
of beneficial effect on survival [62].

Anti-inflammatory Agents that Interfere
with Type | IFNs: JAK Inhibitors

Several classes of drugs interfere with the type I IFN path-
ways, including antagonists/monoclonal antibodies targeting
IFNAR/IFN. Janus kinase (JAK) inhibitors (Jakinibs) target
many signaling pathways, depending on their selectivity [63].
Ruxolitinib inhibits JAK1 and JAK2 and thereby interferes
with, respectively, the common cytokine receptor y-chain
(used by IL-2, IL-4, IL-7, IL-9, IL-15); the gp130 pathway
(IL-6, IL-11, OSM, LIF); the class II cytokine receptor family
(IFN-o/3, IFN-y, IL-10) (JAK1); and the EPO, TPO, IFNvy,

@ Springer



1428

JClin Immunol (2021) 41:1425-1442

and 3¢ family (IL-3, IL-5, GM-CSF) (JAK?2). Tofacitinib po-
tently inhibits JAK3 next to JAK1 and thus may also impair
the yc receptor family. Ruxolitinib is an especially potent
inhibitor of type I IFN signaling. Finally, IFN-kinoid (IFN-&
coupled to the carrier protein, keyhole limpet hemocyanin)
induces the production of antibodies against all 13 IFN«
[64]. These drugs are in various phases of development and
clinical trials and some have been approved by the FDA to
treat malignancies, rheumatoid arthritis, psoriasis, inflamma-
tory bowel disease, and systemic lupus erythematosus.

In the two-phase model of severe COVID-19, use of a
Jakinib after the initial phase could dampen inflammatory cas-
cades triggered by ligand-binding to the multiple cytokine
receptors as described above. However, in the early phase,
when type I IFN signaling is crucial for antiviral defense, the
biological consequences of Jakinibs and IFN-kinoid resemble
the phenotypes of patients with auto-Abs against type I I[FNs
[4] and AR IFNART1 or IFNAR2 deficiency [3]. Thus, patients
who are already receiving these agents, and become infected
with SARS-CoV-2, are potentially at risk for severe COVID-
19. Thus, it is prudent to consider halting of these drugs in the
initial phase of SARS-CoV-2 infection. However, in a retro-
spective study, of three patients with Aicardi-Goutiéres syn-
drome on Jakinibs, 2 were asymptomatically infected and 1
only experienced a rash upon infection [65], although their
excessive type I IFN signaling may be incompletely downreg-
ulated by the Jakinibs [65]. Additionally, Jakinibs have been
or are being studied to treat patients with severe COVID-19
(e.g., ARDS; “cytokine release syndrome”). The ACTT-2
study demonstrated that the Jakinib baricitinib (in association
with the antiviral remdesivir) reduced recovery time and ac-
celerated improvement in clinical status in moderate-to-severe
COVID-19 [66]. Remdesivir itself failed to show any benefi-
cial effect on initiation of ventilation, duration of hospital stay,
and mortality in the recent Interim WHO Solidarity Trial
Report [16, 67]. One additional RCT using ruxolitinib versus
placebo in hospitalized patients has recently been completed
and 20 more are recruiting [68]. The finding of beneficial
effects of Jakinibs in the second phase of moderate-to-severe
COVID-19 disease is consistent with the two-stage disease
model of COVID-19. However, as the threshold level of type
I IFN activity and the duration of type I IFN activity required
to mitigate COVID-19 are unknown, caution is required when
using IFN-kinoid or Jakinibs.

B Cell and Plasmablast Depletion and BTK
Inhibition: How About COVID?

Depletion of B cells can be achieved with an anti-CD20 anti-
body (e.g., rituximab). In mycobacterial infections due to anti-
IFN-y auto-antibodies, another phenocopy of an inborn error
of immunity, rituximab has been used with success [69—73].
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Depletion of plasmablasts can be achieved by antibodies
targeting CD38 (e.g., daratumumab); the latter has been suc-
cessfully used to treat multiple myeloma [74], autoimmune
cytopenias [75], autoimmune organ diseases [76, 77], and
infection due to auto-Abs to cytokines [78]. These depletive
therapies have not been studied as acute treatment for
COVID-19 in the context of RCT or, to our knowledge, even
published as case reports. However, results of retrospective
studies on the outcome of COVID-19 are inconclusive in pa-
tients previously on a B cell-depleting agent for underlying
immune-mediated diseases, such as rheumatoid arthritis
[79-83]. In the context of COVIDhge, B cell/plasmablast de-
pletion can potentially be used to curb the ongoing secretion
ofneutralizing anti-type [ IFN IgG. Of note, data from patients
with X-linked agammaglobulinemia (XLA), which is caused
by mutations in Bruton’s tyrosine kinase (BTK), suggest they
are not untowardly susceptible to severe COVID-19 [65, 84,
85]. This may suggest that absent development of protective
neutralizing antibodies to COVID-19, as well as vaccination
responses, may not predispose to severe COVID-19 [86]. An
alternative or additional explanation may relate to reduced
inflammatory cytokine release by BTK-deficient monocytes.
In line with this are the promising results seen with the BTK
inhibitors, acalabrutinib and ibrutinib, in patients infected with
SARS-CoV-2 while on these drugs, and in an observational
trial using acalabrutinib in hospitalized patients with severe
COVID-19 [87, 88], in which the benefit correlated with the
impairment of monocyte activation. Several clinical trials are
under way to evaluate the potential benefit of BTK inhibitors
in COVID-19. Whether such treatment is associated with per-
sistent shedding of viable SARS-CoV-2 virus is unclear
[89-92]. The question of prolonged shedding and temporary
blunting of antibody responses will need to be studied when
evaluating the use of B cell/plasmablast depletion during the
management of COVID-19 in patients with auto-Abs. These
patients may be at risk of re-infection and will not likely be
able to respond to vaccines while the B cell deficiency
persists.

Therapeutic Plasma Exchange (TPE): Past
and Present

TPE refers to the removal of a large volume of plasma, typi-
cally 3040 ml/kg, necessitating replacement of fluid by a
colloid solution (e.g., albumin and/or plasma) or a combina-
tion of crystalloid/colloid solution. In contrast, plasmapheresis
(PP) is based on removing (not replacing) only 15% of plasma
volume. TPE is currently used in over 60 medical conditions
according to the American Society for Apheresis [93]. The
rationale of TPE lies in the removal of a pathogenic substance
from plasma, such as immune complexes, cryoglobulins,
toxins, or lipids. More specifically, TPE has been used
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successfully in conditions mediated by auto-antibodies, such
as vasculitis, Guillain-Barré syndrome, Goodpasture syn-
drome, thrombotic thrombocytopenic purpura, and autoim-
mune hemolytic anemia, some of which are associated with
viral infections [93]. TPE has also been applied in patients
with shock-like presentation in the context of respiratory viral
infection in an attempt to clear inflammatory and
antifibrinolytic mediators of the cytokine storm, and to replen-
ish anticoagulant proteins and to reduce viremia [94-97]. The
latter report of TPE in three critically ill children with HIN1
influenza—related acute respiratory distress syndrome showed
that TPE is effective even in the later stages of cytokine storm.
Importantly, TPE comes at the cost of eliminating protective
antibodies and drugs, an issue to consider when managing
infection by TPE.

As the risk of developing severe and even potentially
fatal COVID-19 pneumonia is extremely high in patients
harboring auto-Abs against type I IFN, eliminating these
auto-Abs by TPE emerges as an attractive additional line
of treatment in hospitalized patients. So far, the use of
TPE for COVID-19 pneumonia has been limited to case
series. Another case reported the successful use of TPE in
a pregnant woman suffering from thrombotic thrombocy-
topenic purpura with SARS-CoV-2 [98-105]. In these re-
ports from the initial phases of the pandemic, TPE was
used empirically for management of the “cytokine storm”
during the phase of critical illness [98, 99, 101-104, 106,
107]. In some patients, intravenous immunoglobulins or
convalescent plasma from other patients was used to re-
place circulating antibodies. Although these cases provide
anecdotal evidence of potential benefits in some patients
with severe COVID-19, they have also raised concern
about its general use as a “rescue therapy” for all such
patients [108—110]. A prospective clinical trial is required
to better define its use [111]. Interestingly, in one of the
original reports where TPE was used, the authors demon-
strate a reduction in circulating antiphospholipid antibod-
ies [103]. In light of the findings from COVIDhge [4],
TPE can be considered specifically in those with demon-
strable auto-Abs to type I IFN. Proof of concept for this
mechanism-based use of TPE in severe COVID-19 has
been recently reported [112]. Interestingly, the depletion
of anti-IFN-abs by TPE was not accompanied by a deple-
tion of anti-SARS-CoV-2 IgG [112]. Given the constella-
tion of reports to date, the optimal use of TPE in COVID-
19 needs to be better defined, including number of ses-
sions needed and choice of volume replacement, but it
appears to be best aimed at hospitalized patients with
moderate-to-severe/critical disease who harbor anti-type
I IFN auto-Abs. As stated above, the feasibility of this
approach is contingent on the availability of a certified
assay to detect and quantify neutralizing auto-Abs to type
I IFN.

Type | IFN: Almost 50 Years of Therapy
with IFN-a and IFN-B in Various Diseases

Type I IFN production, amplification, and response contribute
to antiviral innate and intrinsic immunity. The first clinically
successful use of type I IFN in humans dates back to 1973 and
pertained to viral respiratory infections [113]. Type I IFNs
were thereafter proposed as treatment of several other viral
infections, especially chronic hepatitis C (HCV) and hepatitis
B (HBV) virus infections. Recombinant IFN-o2 was first used
in HCV treatment in 1986 [114]. Pegylated IFN-o2 (PEG-
IFN-«2), allowing sustained blood levels, was introduced in
the early 2000s and became standard treatment for chronic
HCYV infection until the appearance of direct-acting antivirals
[115]. At present, PEG-IFN-«2 is still a treatment option in
mild-to-moderate chronic hepatitis B patients. IFN-«2a and
IFN-a2b are also used as an adjuvant in cancer treatment,
such as certain leukemias (e.g., hairy cell; chronic myeloid)
and Kaposi’s sarcoma [116], based on its anti-proliferative,
anti-angiogenesis, and immunomodulatory actions.
Recombinant IFN-31a and IFN-{31b, which exert effects sim-
ilar to those of IFN-«2, have also been used therapeutically.
IFN-f31a is a standard treatment for relapsing-remitting mul-
tiple sclerosis (MS) since the 1990s [117-119]. Short-term
IFN-o2 treatment is associated in 20-30% with self-limiting
flu-like symptoms. Long-term IFN-«2 treatment is associated
with various side effects including (% affected; onset) fever
(20-30%; 4—6 h after injection; self-limited); asthenia (60—
90%; 3 months); psychiatric manifestations with depression
and suicidal ideation (5—60%; 3 months); and thyroid autoim-
munity (3—6%; median 17 weeks) [120—122]. Adverse reac-
tions to IFN-{3 are similar to those of IFN-« [118]. In addition,
long-term treatment with either molecule may illicit neutraliz-
ing anti-drug antibodies that can adversely affect treatment, as
first reported in a patient receiving IFN-[3 for nasopharyngeal
carcinoma [123-126]. These idiosyncratic reactions may be
polygenically driven [127]. In all, short-term IFN-« or IFN-f3
treatment appears safe with little side effects and has proven
efficient in the treatment of certain viral infections.

IFN-a2 in Past and Current COVID Trials

In the context of COVID-19, a NIH-issued guideline advises
to restrict the use of IFN to clinical trials. Understandably,
based on type I IFN’s direct inhibitory effects on viral repli-
cation and indirect immunomodulatory effects, and based on
its antiviral experience, IFN- was one of the first drugs to be
repurposed during the ongoing pandemic [128]. Only a few
studies, and no randomized double-blind placebo-controlled
trials (DBRCT), using IFN-o2 as a treatment have been pub-
lished (Table 1). In a retrospective study, 242 of 446 hospital-
ized patients with severe COVID-19 received aerosolized
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IFN-a2b. In 89%, nebulized IFN-«2b was initiated within 5
days of admission, which was associated with reduced mor-
tality. Late initiation of nebulized IFN-o2b therapy was asso-
ciated with increased mortality [129]. A prospective explor-
atory trial in hospitalized patients compared inhaled IFN-o2b
with or without umifenovir, a broadly acting anti-viral, to
umifenovir alone [130]. IFN-o2b was only included as a treat-
ment arm when administered within 8 days of admission. The
time to negative PCR was significantly shorter in patients
receiving inhaled IFN-a2b [130]. Other trials included
IFN-«2 in treatment arms with multiple drugs, including
Chinese traditional medicine (Table 1). Overall, there has
been a trend towards shorter duration of hospitalization and
shorter time to negative SARS-CoV-2 PCR in patients admit-
ted with COVID-19 pneumonia and treated with IFN-«2;
however, interpretation of the data is hampered by the lack
of a rigorously conducted DBRCT. Several protocols are cur-
rently recruiting hospitalized COVID-19 patients to study the
efficacy and safety of administration within 7 days of symp-
tom onset of s.c., 1i.v., or nebulized IFN-x2 (Table 1). Also,
several trials will assess the efficacy of intranasal or nebulized
IFN-o2 to prevent COVID-19 pneumonia. For instance, an
Australian study will investigate the efficacy of IFN-&2 nose
drops as a pre- or post-exposure prophylaxis in cancer pa-
tients. This trial in particular will be of interest as it can impact
on the type I IFN deficiency in the first phase of COVID-19
infection, the time at which rapid induction of antiviral state is
crucial.

IFN-B in COVID-19

In the context of highly pathogenic coronaviruses, IFN-[3 was
reportedly more active than IFN-«, at least in vitro, in its
antiviral activity [141-143]. Moreover, most patients with
auto-Abs to type I IFNs had auto-Abs to the 13 individual
IFN-¢, including o2, and/or IFN-w, but only 2% of them also
had auto-Abs to IFN-f3, IFN-k, or IFN-¢ [4]. Thus, therapeutic
use of IFN-f3 should be a better choice than IFN-x from this
viewpoint. Previous experience with another coronavirus,
Middle East respiratory syndrome (MERS) virus, also sup-
ports this approach, with a clinical trial showing that
IFN-{31b reduced mortality compared with placebo in hospi-
talized patients [144]. More trials with IFN-3 than with
IFN-2 have been reported in the context of COVID-19
(Table 1). Several trials failed to show a beneficial effect.
Oral favipiravir plus inhaled IFN-3 failed to demonstrate
any benefit when compared with hydroxychloroquine in terms
of mortality, ICU admission, and inflammatory markers in
hospitalized patients with moderate-to-severe COVID-19
pneumonia in an open-label randomized trial [145].
Similarly, the WHO Solidarity Trial failed to show a reduction
in mortality in the s.c. and i.v. IFN-f31a treatment arms.

However, about 50% of these patients received corticoste-
roids, which may have blunted the IFN effect [134].
Importantly, the adaptive COVID-19 treatment trial 3
(ACTT3) compared remdesivir plus placebo to remdesivir
plus s.c. IFN-f31a and was halted prematurely in hospitalized
patients receiving high-flow oxygen when interim data
showed potential harm from subcutaneous IFN-1a. In con-
trast, no harm was observed in patients receiving low-flow or
no oxygen, in whom the efficacy of IFN-f31a is still being
evaluated. On the other hand, some trials seem to show a
benefit. A prospective, open-label, randomized single-center
trial reported no significant difference in time to clinical re-
sponse, but lower mortality at day 28 when s.c. IFN-31a was
added to treatment arms at median 10 days after onset of
symptoms in hospitalized patients (Table 1) [133]. IFN-1b
s.c. plus lopinavit/ritonavir and ribavirin started at median 5
days in patients hospitalized with COVID-19 pneumonia re-
sulted in shorter time to negative PCR in the triple treatment
arm versus the lopinavir/ritonavir alone [132]. In an open-
label RCT including severe COVID-19 patients, time to clin-
ical improvement was shorter in the IFN-31b s.c. group
(p=0.002) and ICU admission rate higher in the control group
(p=0.04) [134]. Finally, in a double-blind RCT, daily inhaled
IFNf3-1a for 14 days in admitted patients led to a faster and
stronger clinical improvement on the WHO Ordinal Scale for
Clinical Improvement compared with placebo [131]. The pa-
tients had a median duration of symptoms of 10 days at re-
cruitment and IFN-f3 was given for 14 days and was well
tolerated. More trials are on the way, focusing on either ven-
tilated COVID-19 patients or ambulatory patients to study the
impact of late and early (at home) intervention with IFN-f3
(Table 1). Overall, the trials are inconclusive, potentially due
to the relatively late administration of IFNGs.

A Proposal: Early IFN-B in the Outpatient
Setting

The two-step pathophysiology model of severe COVID-19
pneumonia suggests that early administration of IFN-f3 at
the onset of SARS-CoV-2 infection, or even prior to infection
in exposed individuals, may halt disease progression [5].
Especially at risk are individuals above age 65 years and in-
dividuals of any age with genetic defects of the type I IFN
response pathway or with neutralizing anti-type I IFN auto-
Abs. Several lines of evidence point to advantages in using
IFN-f3. First, in vitro data indicate higher efficacy of IFN-f3
against highly pathogenic coronaviruses. Second, the trials
with IFN-3 in MERS support its use, without neglecting the
need for caution raised by the ACTT-3 trial. Third and most
importantly, the auto-Abs to type I IFN neutralized the 13
IFN-o and IFN-w but very rarely IFN-f3. Among individuals
atrisk, either (A) a close contact of an index case (i.e., exposed
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but negative for SARS-CoV-2), (B) an asymptomatic infected
subject, or (C) an ambulatory (mildly symptomatic) patient
may benefit from early IFN-3 administration, i.c., as soon as
possible post-exposure or post-infection. Indeed, the peak vi-
ral load on nasopharyngeal swab occurs at or even prior to
onset of symptoms [146]. These three groups need distinct
clinical trials to assess the efficacy of early IFN-f3 therapy in
mitigating disease and viral shedding, as well as safety.
Individuals vaccinated adequately against the viral variant di-
agnosed in the contact or themselves may or may not be con-
sidered. Of course, this presumes that viral strain testing can
be performed with a short turnaround time. As outlined above,
IFN-{3 can be administered via several routes, including i.m.,
s.c. (Pegylated form), nebulized, or a combination thereof.
Nebulized IFN-{3 is likely to be of benefit early pre- or post-
infection, owing to its local effect, whereas s.c./i.m. acts sys-
temically and is likely to be effective beyond the first days
post-infection. Thus, one could envisage having trials of post-
exposure prophylaxis by nebulized IFN-f3 acting locally for
the duration of the incubation time (14 days) in group (A),
combined with s.c./i.m. IFN-f3 for systemic action in groups
(B) and (C). Alternatively, all three groups could receive a
single s.c. injection of peg-IFN-[3. The advantage of pegylated
IFN-{3 is that a single subcutaneous injection is sufficient and
can easily be given in the outpatient setting. This early inter-
vention with IFN-{3 in individuals at risk may theoretically
alleviate the lack of type I IFN signaling early post-exposure
or post-infection, the first phase of COVID-19 disease, by
rapid induction of an anti-viral state, and may mitigate the
natural evolution of SARS-CoV-2 infection to potentially fa-
tal disease.

Type Il IFN: IFN-A

The IFN-A family of cytokines can be produced by a number
of cell types, including macrophages and plasmacytoid den-
dritic cells, in response to viral stimulation [147]. Like the type
ITFN, they can establish an antiviral state; however, they do so
through a distinct receptor complex primarily expressed on
epithelial cells, including those in the respiratory tract.
Signalling by type I or type III IFN shares overlapping antivi-
ral IFN-stimulated gene (ISG) expression [148], suggesting
that IFN-A may potentially substitute or complement type I
IFN therapy. In support of the latter, in vitro (using primary
human airway epithelial cells) and mouse model data demon-
strate that IFN-A (specifically, IFN-Ala) reduces SARS-CoV-
2 replication when used either prophylactically or therapeuti-
cally [149, 150]. Similar to what we propose with IFN-f3,
early outpatient treatment of persons infected with SARS-
CoV-2 using peg-IFN-A has been studied. Patients who were
either within 7 days of symptom onset or at first positive test if
asymptomatic were treated with a single s.c. dose of peg-
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IFN-A or placebo (N=30 per group) [151]. Those receiving
peg-IFN-A demonstrated faster viral clearance by day 7.
Treatment tolerance was similar to placebo. Although the
study was not powered to look at clinical evolution, 5
(16.7%) in the placebo group and 1 (3.3%) in the peg-IFN-A
group required visit to the emergency room by day 14. On the
other hand, another study with a similar design showed that
peg-IFN-A did not shorten the duration of viral shedding
[152]. Differences in results between these two studies may
be due to differences in baseline viral loads (58% of subjects
with >6.0 log copies/ml in the former vs. 75% with <5.5 log
copies/ml in the latter) as well as differences in SARS-CoV-2
antibody positivity at baseline (0% in the treatment group and
10% in the placebo group in the former vs. 25% in the treat-
ment group and 46.7% in the placebo group in the latter).

Although additional studies are needed, these studies pro-
vide proof of principle that a single dose of adjunctive peg-
IFN-A can be administered early following infection, is well
tolerated, and may provide enhanced virological clearance
especially in those with high viral load or delayed seroconver-
sion. Whether this treatment impacts hospitalization or trans-
mission requires further investigation. However, several ca-
veats are in place. First, there is currently no genetic or immu-
nological evidence that insufficient IFN-A immunity can un-
derlie severe COVID-19 pneumonia. Second, prolonged
IFN-A signaling has been described to disrupt lung epithelial
repair following viral infection more potently than IFN-oc and
-f3 [153]. Third, sustained type III IFN signaling in inflamed
lungs led to increased susceptibility to bacterial infection, at
least in a mouse model [154]. Thus, the epithelial distribution
of IFN-A receptors may be disadvantageous rather than help-
ful in limiting the effects of this IFN to the epithelia. Fourth,
we are still in the learning curve on IFN-A as a treatment, both
in terms of safety and side effect profile, but also in terms of
pharmacokinetics and pharmacodynamics, favoring the pref-
erential use of IFN-{3 in future trials aimed at preventing evo-
lution to severe COVID-19 in individuals at risk.

Conclusion

Insight that type I IFN defects underlie severe COVID-19 in at
least 10% of patients challenges past, ongoing, and future
trials and clinical treatment strategies. Here, we discussed
how findings from the COVIDhge provide a rationale for
targeted interventions during specific phases of COVID-19
pathogenesis. Early testing can identify individuals with de-
fects in the type I IFN circuit, whether genetically or serolog-
ically mediated, who stand to most benefit from IFN-f3 thera-
py prior to or during the early viral replication phase. In addi-
tion, the efficacy of IFN-{3 therapy would not be anticipated to
be affected by the infecting SARS-CoV-2 variant. Those hos-
pitalized and found to harbor neutralizing auto-Abs to type |
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IFN might benefit from TPE. Ideally, trials should be designed
to specifically address these different treatment groups. Our
findings also raise important questions about some of the cur-
rent approaches being evaluated, e.g., the use of convalescent
plasma and the use of Jakinibs. Finally, despite the advent of
efficacious vaccines in the general population, patients with
defects of type I IFN immunity may continue to remain at risk,
for example, due to impaired innate responses in the face of
emerging variants or to sub-optimal adaptive immunity. The
ongoing work of our consortium, in conjunction with the re-
cent promising results of IFN-f3 in treatment of SARS-CoV-2
infection, opens bold new avenues in the global fight against
this pandemic.
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