Skip to main content

Advertisement

Log in

Normal IgH Repertoire Diversity in an Infant with ADA Deficiency After Gene Therapy

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

Adenosine deaminase (ADA) deficiency causes severe combined immunodeficiency (SCID) through an accumulation of toxic metabolites within lymphocytes. Recently, ADA deficiency has been successfully treated using lentiviral-transduced autologous CD34+ cells carrying the ADA gene. T and B cell function appears to be fully restored, but in many patients’ B cell numbers remain low, and assessments of the immunoglobulin heavy (IgHV) repertoire following gene therapy are lacking.

Methods

We performed deep sequencing of IgHV repertoire in peripheral blood lymphocytes from a child following lentivirus-based gene therapy for ADA deficiency and compared to the IgHV repertoire in healthy infants and adults.

Results

After gene therapy, Ig diversity increased over time as evidenced by V, D, and J gene usage, N-additions, CDR3 length, extent of somatic hypermutation, and Ig class switching. There was the emergence of predominant IgHM, IgHG, and IgHA CDR3 lengths after gene therapy indicating successful oligoclonal expansion in response to antigens. This provides proof of concept for the feasibility and utility of molecular monitoring in following B cell reconstitution following gene therapy for ADA deficiency.

Conclusion

Based on deep sequencing, gene therapy resulted in an IgHV repertoire with molecular diversity similar to healthy infants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Material

Sequencing data is available on dbGAP (Study Accession Number: phs002074.v1.p1).

Code Availability

Not applicable.

References

  1. Aldrich MB, Chen W, Blackburn MR, Martinez-Valdez H, Datta SK, Kellems RE. Impaired germinal center maturation in adenosine deaminase deficiency. J Immunol. 2003;171(10):5562–70.

    Article  CAS  PubMed  Google Scholar 

  2. Apasov SG, Blackburn MR, Kellems RE, Smith PT, Sitkovsky MV. Adenosine deaminase deficiency increases thymic apoptosis and causes defective T cell receptor signaling. J Clin Invest. 2001;108(1):131–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arredondo-Vega FX, Kurtzberg J, Chaffee S, Santisteban I, Reisner E, Povey MS, et al. Paradoxical expression of adenosine deaminase in T cells cultured from a patient with adenosine deaminase deficiency and combine immunodeficiency. J Clin Invest. 1990;86(2):444–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baffelli R, Notarangelo LD, Imberti L, Hershfield MS, Serana F, Santisteban I, et al. Diagnosis, treatment and long-term follow up of patients with ADA deficiency: a single-center experience. J Clin Immunol. 2015;35(7):624–37.

    Article  CAS  PubMed  Google Scholar 

  5. Baxendale HE, Davis Z, White HN, Spellerberg MB, Stevenson FK, Goldblatt D. Immunogenetic analysis of the immune response to pneumococcal polysaccharide. Eur J Immunol. 2000;30(4):1214–23.

    Article  CAS  PubMed  Google Scholar 

  6. Bordignon C, Notarangelo LD, Nobili N, Ferrari G, Casorati G, Panina P, et al. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA- immunodeficient patients. Science. 1995;270(5235):470–5.

    Article  CAS  PubMed  Google Scholar 

  7. Brigida I, Sauer AV, Ferrua F, Giannelli S, Scaramuzza S, Pistoia V, et al. B-cell development and functions and therapeutic options in adenosine deaminase-deficient patients. J Allergy Clin Immunol. 2014;133(3):799–806 e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brochet X, Lefranc MP, Giudicelli V. IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res. 2008;36(Web Server issue):W503–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Buckley RH, Win CM, Moser BK, Parrott RE, Sajaroff E, Sarzotti-Kelsoe M. Post-transplantation B cell function in different molecular types of SCID. J Clin Immunol. 2013;33(1):96–110.

    Article  CAS  PubMed  Google Scholar 

  10. Cagdas D, Gur Cetinkaya P, Karaatmaca B, Esenboga S, Tan C, Yilmaz T, et al. ADA deficiency: evaluation of the clinical and laboratory features and the outcome. J Clin Immunol. 2018;38(4):484–93.

    Article  CAS  PubMed  Google Scholar 

  11. Candotti F, Shaw KL, Muul L, Carbonaro D, Sokolic R, Choi C, et al. Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans. Blood. 2012;120(18):3635–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carbonaro DA, Zhang L, Jin X, Montiel-Equihua C, Geiger S, Carmo M, et al. Preclinical demonstration of lentiviral vector-mediated correction of immunological and metabolic abnormalities in models of adenosine deaminase deficiency. Mol Ther. 2014;22(3):607–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chan B, Wara D, Bastian J, Hershfield MS, Bohnsack J, Azen CG, et al. Long-term efficacy of enzyme replacement therapy for adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID). Clin Immunol. 2005;117(2):133–43.

    Article  CAS  PubMed  Google Scholar 

  14. Cicalese MP, Ferrua F, Castagnaro L, Pajno R, Barzaghi F, Giannelli S, et al. Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency. Blood. 2016;128(1):45–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cirillo E, Giardino G, Gallo V, D'Assante R, Grasso F, Romano R, et al. Severe combined immunodeficiency--an update. Ann N Y Acad Sci. 2015;1356:90–106.

    Article  PubMed  Google Scholar 

  16. Finn JA, Crowe JE Jr. Impact of new sequencing technologies on studies of the human B cell repertoire. Curr Opin Immunol. 2013;25(5):613–8.

    Article  CAS  PubMed  Google Scholar 

  17. Flinn AM, Gennery AR. Adenosine deaminase deficiency: a review. Orphanet J Rare Dis. 2018;13(1):65.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Friedman DF, Moore JS, Erikson J, Manz J, Goldman J, Nowell PC, et al. Variable region gene analysis of an isotype-switched (IgA) variant of chronic lymphocytic leukemia. Blood. 1992;80(9):2287–97.

    Article  CAS  PubMed  Google Scholar 

  19. Gangi-Peterson L, Sorscher DH, Reynolds JW, Kepler TB, Mitchell BS. Nucleotide pool imbalance and adenosine deaminase deficiency induce alterations of N-region insertions during V(D)J recombination. J Clin Invest. 1999;103(6):833–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gaspar HB, Cooray S, Gilmour KC, Parsley KL, Zhang F, Adams S, et al. Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction. Sci Transl Med. 2011;3(97):97ra80.

    PubMed  Google Scholar 

  21. Giudicelli V, Brochet X, Lefranc MP. IMGT/V-QUEST: IMGT standardized analysis of the immunoglobulin (IG) and T cell receptor (TR) nucleotide sequences. Cold Spring Harb Protoc. 2011;2011(6):695–715.

    PubMed  Google Scholar 

  22. Giudicelli V, Lefranc MP. IMGT/junctionanalysis: IMGT standardized analysis of the V-J and V-D-J junctions of the rearranged immunoglobulins (IG) and T cell receptors (TR). Cold Spring Harb Protoc. 2011;2011(6):716–25.

    PubMed  Google Scholar 

  23. Gokmen E, Raaphorst FM, Boldt DH, Teale JM. Ig heavy chain third complementarity determining regions (H CDR3s) after stem cell transplantation do not resemble the developing human fetal H CDR3s in size distribution and Ig gene utilization. Blood. 1998;92(8):2802–14.

    Article  CAS  PubMed  Google Scholar 

  24. IJspeert H, Rozmus J, Schwarz K, Warren RL, van Zessen D, Holt RA, et al. XLF deficiency results in reduced N-nucleotide addition during V(D)J recombination. Blood. 2016;128(5):650–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heimall J, Buckley RH, Puck J, Fleisher TA, Gennery AR, Haddad E, et al. Recommendations for screening and management of late effects in patients with severe combined immunodeficiency after Allogenic hematopoietic cell transplantation: a consensus statement from the second pediatric blood and marrow transplant consortium international conference on late effects after pediatric HCT. Biol Blood Marrow Transplant. 2017;23(8):1229–40.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Heimall J, Puck J, Buckley R, Fleisher TA, Gennery AR, Neven B, et al. Current knowledge and priorities for future research in late effects after hematopoietic stem cell transplantation (HCT) for severe combined immunodeficiency patients: a consensus statement from the second pediatric blood and marrow transplant consortium international conference on late effects after pediatric HCT. Biol Blood Marrow Transplant. 2017;23(3):379–87.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hershfield M. Adenosine deaminase deficiency. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews((R)). Seattle (WA)2013–2017.

  28. Kohn DB, Hershfield MS, Puck JM, Aiuti A, Blincoe A, Gaspar HB, et al. Consensus approach for the management of severe combined immune deficiency caused by adenosine deaminase deficiency. J Allergy Clin Immunol. 2019;143(3):852–63.

    Article  PubMed  Google Scholar 

  29. Kohn DB, Weinberg KI, Nolta JA, Heiss LN, Lenarsky C, Crooks GM, et al. Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nat Med. 1995;1(10):1017–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee YN, Frugoni F, Dobbs K, Tirosh I, Du L, Ververs FA, et al. Characterization of T and B cell repertoire diversity in patients with RAG deficiency. Sci Immunol. 2016;1(6).

  31. Malacarne F, Benicchi T, Notarangelo LD, Mori L, Parolini S, Caimi L, et al. Reduced thymic output, increased spontaneous apoptosis and oligoclonal B cells in polyethylene glycol-adenosine deaminase-treated patients. Eur J Immunol. 2005;35(11):3376–86.

    Article  CAS  PubMed  Google Scholar 

  32. Rechavi E, Lev A, Lee YN, Simon AJ, Yinon Y, Lipitz S, et al. Timely and spatially regulated maturation of B and T cell repertoire during human fetal development. Sci Transl Med. 2015;7(276):276ra25.

    Article  CAS  PubMed  Google Scholar 

  33. Rechavi E, Somech R. Survival of the fetus: fetal B and T cell receptor repertoire development. Semin Immunopathol. 2017;39(6):577–83.

    Article  CAS  PubMed  Google Scholar 

  34. Roskin KM, Simchoni N, Liu Y, Lee JY, Seo K, Hoh RA, et al. IgH sequences in common variable immune deficiency reveal altered B cell development and selection. Sci Transl Med. 2015;7(302):302ra135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Santisteban I, Arredondo-Vega FX, Kelly S, Mary A, Fischer A, Hummell DS, et al. Novel splicing, missense, and deletion mutations in seven adenosine deaminase-deficient patients with late/delayed onset of combined immunodeficiency disease. Contribution of genotype to phenotype. J Clin Invest. 1993;92(5):2291–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schroeder HW Jr, Mortari F, Shiokawa S, Kirkham PM, Elgavish RA, Bertrand FE 3rd. Developmental regulation of the human antibody repertoire. Ann N Y Acad Sci. 1995;764:242–60.

    Article  CAS  PubMed  Google Scholar 

  37. Schroeder HW Jr, Zhang L, Philips JB 3rd. Slow, programmed maturation of the immunoglobulin HCDR3 repertoire during the third trimester of fetal life. Blood. 2001;98(9):2745–51.

    Article  CAS  PubMed  Google Scholar 

  38. Scott O, Kim VH, Reid B, Pham-Huy A, Atkinson AR, Aiuti A, et al. Long-term outcome of adenosine deaminase-deficient patients-a single-center experience. J Clin Immunol. 2017;37(6):582–91.

    Article  CAS  PubMed  Google Scholar 

  39. Shaw KL, Garabedian E, Mishra S, Barman P, Davila A, Carbonaro D, et al. Clinical efficacy of gene-modified stem cells in adenosine deaminase-deficient immunodeficiency. J Clin Invest. 2017;127(5):1689–99.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shugar AL, Shapiro JM, Cytrynbaum C, Hedges S, Weksberg R, Fishman L. An increased prevalence of thyroid disease in children with 22q11.2 deletion syndrome. Am J Med Genet A. 2015;167(7):1560–4.

    Article  CAS  PubMed  Google Scholar 

  41. Souto-Carneiro MM, Sims GP, Girschik H, Lee J, Lipsky PE. Developmental changes in the human heavy chain CDR3. J Immunol. 2005;175(11):7425–36.

    Article  CAS  PubMed  Google Scholar 

  42. Tirosh I, Yamazaki Y, Frugoni F, Ververs FA, Allenspach EJ, Zhang Y, et al. Recombination activity of human recombination-activating gene 2 (RAG2) mutations and correlation with clinical phenotype. J Allergy Clin Immunol. 2019;143(2):726–35.

    Article  CAS  PubMed  Google Scholar 

  43. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 concerted action BMH4-CT98-3936. Leukemia. 2003;17(12):2257–317.

    Article  PubMed  Google Scholar 

  44. van Zelm MC, Szczepanski T, van der Burg M, van Dongen JJ. Replication history of B lymphocytes reveals homeostatic proliferation and extensive antigen-induced B cell expansion. J Exp Med. 2007;204(3):645–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Whitmore KV, Gaspar HB. Adenosine Deaminase deficiency - more than just an immunodeficiency. Front Immunol. 2016;7:314.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Wiekmeijer AS, Pike-Overzet K, IJspeert H, Brugman MH, Wolvers-Tettero IL, Lankester AC, et al. Identification of checkpoints in human T-cell development using severe combined immunodeficiency stem cells. J Allergy Clin Immunol. 2016;137(2):517–26 e3.

    Article  CAS  PubMed  Google Scholar 

  47. Yin L, Hou W, Liu L, Cai Y, Wallet MA, Gardner BP, et al. IgM repertoire biodiversity is reduced in HIV-1 infection and systemic lupus erythematosus. Front Immunol. 2013;4:373.

    PubMed  PubMed Central  Google Scholar 

  48. Yousfi Monod M, Giudicelli V, Chaume D, Lefranc MP. IMGT/JunctionAnalysis: the first tool for the analysis of the immunoglobulin and T cell receptor complex V-J and V-D-J junctions. Bioinformatics. 2004;20(Suppl 1):i379–85.

    Article  PubMed  CAS  Google Scholar 

  49. Zemlin M, Hoersch G, Zemlin C, Pohl-Schickinger A, Hummel M, Berek C, et al. The postnatal maturation of the immunoglobulin heavy chain IgG repertoire in human preterm neonates is slower than in term neonates. J Immunol. 2007;178(2):1180–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the participants who volunteered to be included in this study.

Funding

This study was supported by R01 AI1001471 (JWS) and UO1 AI100801 (DK).

Funding for this study was in part provided by the Jeffrey Modell Foundation,

Leadiant Biosciences, and Orchard Therapeutics (MH).

NIH (NIAID) T32 training grant award number AI007062-38 (CB).

NIH (NHGRI) T32 training grant award number HG008955-01A1 (CB).

Author information

Authors and Affiliations

Authors

Contributions

JS, LY, and MG contributed to the conception and design of the study. MH and DK contributed to the gene therapy protocol and monitoring of ADA. CB, MH, SP, DK, and JS contributed to patient care and obtaining clinical data. CB, SB, KC, JY, MG, JS, and LY contributed to the analysis and interpretation of sequencing data. CB wrote the first draft of the manuscript. All authors contributed to manuscript editing, read, and approved the final version.

Corresponding author

Correspondence to John W. Sleasman.

Ethics declarations

Ethics Approval

All study participants were enrolled with approvals by the Institutional Review Boards of the University of South Florida and Duke University.

Consent to Participate

Written informed consents were obtained from all participants or parents including the parents of the ADA-deficient child. Additional consent for publication of case report was obtained from the parents of the ADA-deficient child.

Consent for Publication

All authors provided consent for publication.

Conflict of Interest

MH receives funding support from Leadiant Biosciences and Orchard Therapeutics.

DK is an inventor on lentiviral gene therapy for ADA SCID licensed by the UC Regents to Orchard Therapeutics and serves as a member of the Orchard Scientific Advisory Board.

The other authors (CHB, SB, KC, JY, SP, MG, JS, LY) declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baloh, C.H., Borkar, S.A., Chang, KF. et al. Normal IgH Repertoire Diversity in an Infant with ADA Deficiency After Gene Therapy. J Clin Immunol 41, 1597–1606 (2021). https://doi.org/10.1007/s10875-021-01034-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-021-01034-2

Keywords

Navigation