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Abstract
Biallelic inactivating mutations in IL21R causes a combined immunodeficiency that is often complicated by cryptosporidium
infections. While eight IL-21R-deficient patients have been reported previously, the natural course, immune characteristics of
disease, and response to hematopoietic stem cell transplantation (HSCT) remain to be comprehensively examined. In our study,
we have collected clinical histories of 13 patients with IL-21R deficiency from eight families across seven centers worldwide,
including five novel patients identified by exome or NGS panel sequencing. Eight unique mutations in IL21R were identified in
these patients, including two novel mutations. Median age at disease onset was 2.5 years (0.5–7 years). The main clinical
manifestations were recurrent bacterial (84.6%), fungal (46.2%), and viral (38.5%) infections; cryptosporidiosis-associated
cholangitis (46.2%); and asthma (23.1%). Inflammatory skin diseases (15.3%) and recurrent anaphylaxis (7.9%) constitute novel
phenotypes of this combined immunodeficiency. Most patients exhibited hypogammaglobulinemia and reduced proportions of
memory B cells, circulating T follicular helper cells, MAIT cells and terminally differentiated NK cells. However, IgE levels
were elevated in 50% of IL-21R-deficient patients. Overall survival following HSCT (6 patients, mean follow-up 1.8 year) was
33.3%, with pre-existing organ damage constituting a negative prognostic factor. Mortality of non-transplanted patients (n = 7)
was 57.1%. Our detailed analysis of the largest cohort of IL-21R-deficient patients to date provides in-depth clinical, immuno-
logical and immunophenotypic features of these patients, thereby establishing critical non-redundant functions of IL-21/IL-21R
signaling in lymphocyte differentiation, humoral immunity and host defense against infection, and mechanisms of disease
pathogenesis due to IL-21R deficiency. Outcome following HSCT depends on prior chronic infections and organ damage, which
should thus be considered as early as possible following molecular diagnosis.
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Introduction

Interleukins (ILs) produced by hematopoietic and non-
hematopoietic cells mediate the development, survival, acti-
vation, proliferation, and differentation of cells of the immune
system [1, 2]. IL-21 is a type I cytokine, produced predomi-
nantly by CD4+ T cells, including T follicular helper (Tfh)
cells, Th17 and NKT cells [3–6]. On binding its cognate re-
ceptor, IL-21 activates JAK/STAT signaling pathways, induc-
ing transcriptional networks that regulate immune cell fate and
effector functions [7].
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The receptor for IL-21 comprises IL-21R and the “common
gamma chain” subunit (γc), which is shared by receptors for
IL-2, IL-4, IL-7, IL-9, and IL-15 [8, 9]. Consistent with the
broad expression of IL-21R, IL-21 has pleiotropic effects on
many immune cell types, including promoting CD8+ T cell
activation and proliferation [10], NK cell maturation and cy-
totoxicity [11], and differentiation of CD4+ T cells, including
regulatory T cells [12, 13]. IL-21 appears to exert its most
potent effects on B cells, inducing vigorous proliferation,
memory B cell formation, isotype switching, and differentia-
tion to plasma cells [14–18]. This parallels the enriched pro-
duction of IL-21 by Tfh cells within germinal centers (GCs) of
secondary lymphoid tissues [3, 19], and strong expression of
IL-21R on GC B cells [17].

The non-redundant role of IL-21/IL-21R signaling has
been revealed by the identification and characterization of
patients with loss-of-function (LOF) biallelic variants in
IL21 [20] or IL21R [21–24] who develop an autosomal reces-
sive combined immunodeficiency (CID) with variable presen-
tations. Currently, eight patients from five families with
unique homozygous mutations in IL21R have been reported
[22–25]. The majority of patients suffered from recurrent re-
spiratory bacterial and gastrointestinal infections, especially
cryptosporidial infections associated with chronic cholangitis.
Other features of IL-21/IL-21R deficiency are chronic diar-
rhea, failure to thrive, tinea corporis, herpes labialis, candida
and mycobacterial infections, and hypogammaglobulinemia
[22–25]. Detailed analysis of immune cells from these indi-
viduals revealed impaired T cell proliferation, cytokine pro-
duction and cytotoxicity [22, 23, 25], reduced Tfh and innate
T cell generation [23, 26, 27], impaired B cell differentiation
[22–24, 28, 29], and reduced NK cell cytotoxicity [22].

Here, we have identified five novel patients with recessive
IL21Rmutations, and comprehensively define the clinical and
laboratory features of IL-21R deficiency in 13 patients.
Furthermore, we expand the clinical and laboratory spectrum
of the disease, and report treatment outcomes including those
following allogenic hematopoietic stem cell transplant
(HSCT).

Material and Methods

Patients

We performed a retrospective analysis of 13 patients with IL-
21R deficiency based on a standardized clinical questionnaire.
Six patients (P1–P6) were enrolled from three centers in
Turkey and an additional five patients came from French
(P11), Israeli (P12, P13), and American centers (P9,10).
Five patients (P2, P3, P4, P6, P13) were not reported previ-
ously. We provide longer-term and/or more detailed clinical
follow-up information for six previously reported patients (P1,

P5, P9, P10, P11, P12) using the same questionnaire. We
additionally included two deceased patients (P7, P8) previous-
ly described in the literature [21, 22].

While five of the patients (P1, P4, P5, P6, P12) were iden-
tified by a targeted panel of inborn errors of immunity (IEI)
genes or whole exome sequencing (WES), variants in P2, P3,
P9, P10, P11, and P13 were detected with targeted capillary
sequencing.

The study was approved by the respective ethics review
boards of the participating institutes, including the Ethics
commitees of the Hacettepe University (GO13-228);
Marmara University (09.2018.624); Royal Prince Alfred
Hospital, Camperdown, Australia (X16-0210/LNR/16/
RPAH/257); and Medical University of Vienna, Austria
(1796/2018). Written informed consent for genetic investiga-
tions was obtained from each family.

Immunophenotyping and Functional Analysis of IL-
21R-Deficient Lymphocytes

PBMCs from IL-21R-deficient patients (n = 5–10) and
healthy donors (n = 11–40) were analyzed by immunofluores-
cent staining and flow cytometry [30] to determine propor-
tions of B- (CD20+), T- (CD3+), NK- (CD3−CD56+), and
d e n d r i t i c c e l l s ( D C s ) ( C D 1 9 −CD 3 −CD 5 6 −

CD235a−CD14−CD20−HLA-DR+). Subsets of T cells
(CD4+, CD8+, iNKT (TCR Vα24JαQ+), MAIT (TCR
Vα7.2+CD161+), Vγδ (TCR Vγδ+), Vαβ (TCR Vαβ+))
w e r e a l s o d e t e rm i n e d . F r e q u e n c i e s o f n a ï v e
( CD 4 5 RA + CCR 7 + ) , c e n t r a l m em o r y ( T C M ,
C CR 7 + CD 4 5 RA − ) , e f f e c t o r m em o r y ( T E M ,
CCR7−CD45RA−), and TEMRA (CD45RA+CCR7−) cells
within the CD4+ and CD8+ T cell populations, and of Treg
(CD25+, CD127−) and Tfh cells (CD45RA−CXCR5+) were
enumerated as percentages of total CD4+ or CD8+ T cells. T
follicular regulatory (Tfr) cells were defined as the proportion
of CXCR5+CD45RA− CD4+ T cells within the Treg popula-
tion [31]. Th17 and Th1-like phenotypes within memory T
cells and Tfh subsets were defined by the differential expres-
s ion of CXCR3 and CCR6 (CXCR3−CCR6+ and
CXCR3+CCR6−, respectively) [26, 31]. Frequencies of tran-
sitional (CD27−CD10+), naïve (CD27−CD10−), total memory
( C D 1 0 − C D 2 7 + ) , c l a s s - s w i t c h e d m e m o r y
(IgD−IgM−IgG+IgA+), and CD21low (CD19+CD21−) B cells
were also determined [30, 32]. Lastly, DCs were assessed by
quan t i f y i ng p ropo r t i on s o f p l a smacy to id DCs
(CD123+CD11c−), myeloid DCs (CD11c+CD123+) and
mDC subsets cDC1 (CD141+), CD16+ DC (CD16+), cDC2
(CD1c+). Data was acquired on a FACSymphony [30].

Data for B cell and CD4+ T cell function was derived from
previously published studies using well-established in vitro
assays [26, 32–34]. Specifically, naïve or memory CD4+ T
cells sort-purified from PBMCs isolated from healthy donors
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or IL-21R-deficient patients were cultured (30–40 × 103 cells/
well/200 μl) with T cell activation and expansion beads (anti-
CD2/CD3/CD28; Miltenyi Biotech) alone (Th0) or under
Th17 (2.5 ng/mL TGFβ, 20 ng/mL IL-1 β, 50 ng/mL IL-6,
50 ng/mL IL-21, 100 ng/mL IL-23) or Tfh (50 ng/mL IL-12)
polarizing conditions. After 5 days, supernatants were harvest-
ed and production of IL-4, IL-5, IL-13, IL-17A, IL-17F, or IL-
22 was determined by cytometric bead arrays (Becton
Dickinson). To quantify acquisition of expression of IL-21,
activated naive CD4+ T cells were re-stimulated with phorbol
myristate acetate (PMA, 100 ng/ml)/ionomycin (750 ng/ml)
for 6 h, with Brefeldin A (10 μg/ml) added after 2 h. Cells
were then fixed, permeabilized, and stained with anti-IL-21
monoclonal antibody. Sort-purified naive B cells were cul-
tured with CD40L alone or together with IL-21 (~5–10 ×
103/200 μl/well) for 7 days; immunoglobulin (Ig) secretion
was then determined by Ig heavy-chain specific ELISAs.

Genetic Evaluation

Target enriched sequencing was designed to cover 356 IEI
genes as previously described [35] and used to diagnose P1
and P6. WES was perfomed for P4, P5, and P12 as described
[24, 35]. For Sanger sequencing of IL21R in P2 and P3, ge-
nomic DNA was extracted from whole blood (QIamp DNA
Blood Kit, Qiagen). Targeted Sanger sequencing of IL21R in
P7–P10 has been reported [22, 24]. Primer sequences used to
identify IL21R variants in P2, P3, P11, and P13 and validate
NGS findings in P1, P4, P5, and P6 are described in
Supplementary Table I. Pathogenicity of genetic variants
was evaluated based on the allele frequency in public data-
bases including ExAC and gnomAD and prediction tools such
as Polyphen-2, SIFT and the combined annotation dependent
depletion (CADD) score.

RT-PCR for Qualitative Detection of Rubella Virus

Skin biopsies of P4 were formalin-fixed and paraffin-
embedded and RNA-isolated using Maxwell™ RSC DNA
FFPE Kit (Promega Corporation) followed by real-time PCR
kit for qualitative detection of rubella virus (SACACE
Biotechnology).

Statistical Analysis

For single comparisons of independent groups, a Mann-
Whitney test was performed. Differences in mean values were
considered significant at p < 0.05. All data analysis and figure
generation was performed using GraphPad Prism (v. 8.4.2, La
Jolla, CA, USA).

Results

Genetic Diagnosis and Mutation Analysis

We identified two novel genetic variants in IL21R in our pa-
tient cohort (P4, P6). P4 carries a homozygous missense var-
iant (c.473 T > C, p.L158P) in the extracellular domain, while
P6 has a single nucleotide substitution (c.1421C >G), causing
a premature termination codon at amino acid p.S474 in the
cytoplasmic domain of IL-21R (Fig. 1). Six unique IL21R
variants have been described previously: three missense mu-
tations (three families; P7, P8 [R201L]; P11 [W138S]; P12,
P13 [R201Q]), a single nucleotide frameshift deletion (1 fam-
ily: P1, P2, P3 [D179Tfs*51]), a single in-frame codon dele-
tion (1 family; P9, P10 [C81-H82del]), and a splice site mu-
tation (P5 [c.153-1G > T]) (Fig. 1). We performed in silico
analysis of the novel and previously reported IL21R variants
and found that all were rare alleles (MAF < 0.01), located in
highly conserved residues of IL-21R and predicted to be del-
eterious (SIFT, Polyphen-2, Splicefinder). We also identified
a heterozygous variant in CARD14 (Q1001*; CADD score
36) in P6 located at the extreme C-terminus of CARD14 in a
region of undefined function. Variants in CARD14 have been
identified in individuals with defective skin barrier, such as
atopic dermatitis and psoriasis. However, clinical penetrance
of several of these variants is incomplete [36]. The impact of
this variant on CARD14 remains to be determined.

Impact of IL21R Variants on Protein Structure and
Expression

Wenext assessed the effect of germline variants on the IL-21R
structure by identifying the variants’ positions on the crystal
structure of the IL-21/IL-21R complex (Fig. 2) [37, 38]:

a) p.C81-H82del (P9, P10)

This variant removes one of three disulphide linkages with-
in the N-terminal fibronectin domain (each shown in yellow).
These deleted amino acids are in close proximity to a protein
surface that interfaces with IL-21. Thus, it is likely that this

p.L158P  P4
p.D179Tfs*51  P123, P2, P3

p.R201Q  P1224, P13 p.S474*  P6

N C

c.153-1G>T  P521 

p.R201L  P7, P822

p.C81-H82del  P9,P1022 
p.W138S  P1125 

Fibronectin  III 
type 1 domain

Fibronectin  III 
type 2 domain

Box domains

Extracelllular Cytoplasmic

Fig. 1 IL-21R domain structure and patient mutations. Domain structure
and positions of mutations identified in different patients are indicated.
Newly identified patients are marked in red
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variant affects the fold or interaction surface (i.e., binding),
and/or stability of the fibronectin domain, and thus overall
expression of IL-21R. Consistent with this latter possibility,
we were unable to detect significant expression of IL-21R on
EBV-transformed B cells established from P9 and P10 [29],
while PBMCs from these patients failed to respond to IL-21,
evidenced by a lack of phosphorylation of STAT1, STAT3,
and STAT5 [22].

b) W138S (P11), L158P (P4)
The side chains of both W138 and L158 contribute to the

hydrophobic core of the C-terminal fibronectin domain fold.
In fact, these residues are likely to directly interact with each
other. Consequently, the W138S and L158P variants may
destabilize the integrity of the fibronectin fold, compromising

expression of IL-21R. Indeed, IL-21R could not be detected
on the surface of PBMCs from P11 (unpublished
observations).

c) R201L/Q (P7, P8, P12, P13)
R201 is spatially adjacent to the first tryptophan residue

(W214) in the canonical WSXWS motif present in the extra-
cellular domain of all class I cytokine receptors. W214 un-
dergoes post-translational mannosylation, while its side chain
is in close proximity to a complex carbohydrate that bridges
across from N73 in the N-terminal fibronectin domain [37,
38]. This carbohydrate bridge may stabilize the IL-21R fold.
Notably, of all the possible N-terminal carbohydrate linkages,
N73 is critical for IL-21R expression [37]. The R201L and
R201Q variants will result in a loss of a positively charged

Fig. 2 Pathogenic variants mapped onto the crystal structure of the IL-21/
IL-21R complex. IL-21R (orange cartoon) contains two external
fibronectin domains, the N-terminal of which (upper) has three internal
disulphides (yellow sticks), one involves residue C81 (exploded view).
IL-21 (blue cartoon and transparent surface) binds the hinge between the
two receptor fibronectin domains. A complex N-linked carbohydrate
(gray sticks, extending from N73) bridges the two fibronectin domains
and has been postulated to stabilize IL-21R [37, 38]. Residues W138,
L158, D179, and R201 (orange sticks) are positioned within the C-

terminal fibronectin domain proximal to the extracellular membrane.
The side chains of W138 and L158 are buried within the hydrophobic
interior of the domain. D179 sits on the exterior surface proximal to, but
not directly interfacing, IL-21 while R201 is on an exterior surface distal
to IL-21 binding. The side chain of R201 is positioned adjacent to the side
chain of W214 (within the WSXWS motif) which is also glycolysylated
(dark gray sticks) and may contribute to stability of the N73-projected
carbohydrate bridge
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arginine, destabilizing the fibronectin domains of IL-21R,
compromising expression and IL-21 binding. Consistent with
this possibility, IL-21R was not detected on activated B cells
from P12 [R201Q] [24], and IL-21 failed to induce STAT
phosphorylation in lymphocytes harboring either the R201L
[22] or R201Q [24] variants.

d) D179Tfs*51 (P1, P2, P3)
This variant causes a frameshift at D179, thereby removing

the WSXWS motif (aa 214-218) and introducing a premature
stop codon 51 amino acids downstream [23]. The carbohy-
drate bridge formed between N73 and the WSXWS motif is
critical for transport of IL-21R from the Golgi to the plasma
membrane [38]. Thus, this truncating variant would dramati-
cally reduce, if not abolish, cell surface expression of IL-21R,
consistent with a lack of phosphorylation of STAT3 in CD4+

T cells from P1 in response to stimulation with IL-21, but not
IL-10 [23].

e) S474* (P6)
This truncating variant deletes 65 amino acids from the

C-terminal region of IL-21R. Although there are six con-
served tyrosine residues in the cytoplasmic domain of IL-
21R, Y510 has been found to be indispensable for IL-21-
induced activation of STAT proteins [39]. Thus, while
this variant version of IL-21R may be expressed at the
cell surface, it is unlikely to be able to initiate IL-21-
mediated signaling in immune cells.

Clinical Characteristics

Patient Demographics and Clinical Findings Median age of
disease onset in our cohort was 2.5 years (0.5–7 years)
(Supplementary Fig. 1), while the median age at diagnosis
was 8.5 (1–19) years. All patients were born to consanguine-
ous parents. Clinical characterics of all patients are shown in
Table 1 and Fig. 3, including the family tree of P1 and P2, with
a detailed clinical history of each patient provided in the
Supplementary results.

Infectious Diseases Recurrent bacterial infections of the up-
per and lower respiratory tracts leading to hospitalization
were the most common infectious diseases, affecting 11/13
(84.6%) patients and causing bronchiectasis in 6/13
(46.2%) patients. Respiratory bacterial pathogens included
Streptococcus pneumoniae and Pseudomonas aeruginosa.
Mycobacterium tuberculosis and Mycobacterium
massilense were detected in P5 and P10, respectively, sug-
gestive of a significant T cell defect [40]. Viral infections
were observed in 5/13 (38.5%) patients. Notably, P5 expe-
rienced systemic CMV infection, involving the lung and
eyes at age 18 years. P4 suffered granulomatous skin le-
sions that histologically resemble those reported in ataxia

telangiectasia and other CIDs following MMR vaccination
(Fig. 3b–d) [41]. In-tissue PCR of biopsied lesions from P4
confirmed long-term persistence of live rubella virus vac-
cine as the trigger for skin inflammation. Fungal pathogens
were detected in 6/13 (46.2%) patients, with four suffering
from pulmonary Pneumocystis jirovecii infections and five
affected by esophageal, hepatosplenic, or systemic
candidiasis.

Inflammatory Diseases Severe intestinal inflammation was
noted for P1 and P3, carrying the same genetic variant, and
presen ted as d ia r rhea of le tha l sever i ty in P3 .
Cryptosporidiosis-associated cholangitis was reported in
6/13 (46.2%) patients and resulted in hepatic fibrosis in P7
and P8 and lethal liver failure in P9 and P10 (Table 1).
Erythematous urticarial plaques on the face and extremities
were seen in P5 (Supplementary Fig. 2). A skin punch biopsy
revealed basal vacuolar changes, mucin accumulation in the
dermis, and superficial and deep perivascular lymphocytic
infiltration reminiscent of lupus-like dermatitis. Recurrent at-
tacks of bronchial asthma were a shared feature in P4 and P5,
and particularly pronounced in P6 who also suffers from se-
vere food allergy leading to recurrent anaphylactic crises and
urticaria (Table 1).

Growth Retardation Growth retardation affected 5/13 of pa-
tients and was particularly severe in P1. Both weight (z-score
−5.59) and height (z-score −5.62) were below the third per-
centile in P1 possibly due to sustained steroid treatment.

Laboratory and Immunological Features of IL-21R
Deficiency

Results from laboratory tests for IL-21R-deficient patients
are shown in Fig. 4a, b and Supplementary Table II.
Serum IgG and IgA levels were reduced in 9/13 (70%)
and 7/12 (58%) of patients, respectively. Serum IgM was
variable, reduced in 5/12 (42%) but increased in 3/12
(25%) of patients. IgE was elevated in 5/12 (42%) of
patients, being particularly high in P6 (up to 40,000 IU/
ml) consistent with their asthma and severe allergies.
Interestingly, we observed an expansion of CD4−CD8−

double negative T cells in 3/12 of patients. B cells,
CD4+ T cells, and CD8+ T cells were dysregulated in
45, 55, and 45% of patients, respectively, while NK cell
numbers were decreased in 40% of patients.

Immunological Profiling of 10 Patients with IL-21R
Deficiency

We performed in-depth immunophenotypic analyses on five
novel IL-21R-deficient patients (P2–P6). Where possible, this
data was combined with data we previously generated from
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analyses of five other IL-21R-deficient patients (P1, P9, P10,
P11, P12) [25–27, 33]. This enabled us to assess the effect of
IL-21R deficiency on the development and differentiation of
peripheral blood lymphocytes.

Compared with age-matched controls, proportions of T
cells were decreased (p < 0.01) in IL-21R-deficient patients
(Fig. 5a). However, within the population of total T cells,
proportions of TCRαβ, TCRγδ, and iNKT cells were com-
parable in IL-21R-deficient patients and healthy donors (Fig.
5b–d). MAIT cells were significantly reduced in IL-21R-
deficient patients (Fig. 5e). Consistent with CD4+ T cell lym-
phopenia in one third of patients (Fig. 4b), proportions of
CD4+ T cells were also reduced in IL-21R-deficient patients
(Fig. 5f).Within the CD4+ T cell lineage, proportions of naïve,
TCM, and TEM subsets were comparable in patients and
healthy donors. We also quantified memory CD4+ T cell sub-
sets defined by differential expression of CXCR3 and CCR6
[26, 31]. This revealed a trend for fewer Th17-type
(CCR6+CXCR3−) cells within the memory T cell compart-
ment of IL-21R-deficient patients compared to healthy donors
(p = 0.054, Fig. 5h). This is consistent with a partial reduction
in production of Th17 cytokines by IL-21R-deficient memory
CD4+ T cells ex vivo compared to memory CD4+ T cells from
healthy donors (Fig. 7a), as well as a reduced but not abolished

ability of IL-21R-deficient naïve CD4+ T cells to differentiate
into Th17-cytokine producing cells in vitro (Fig. 7a) [26, 34].
Other memory CD4+ T cell subsets (e.g., CXCR3+CCR6−

Th1-type) were unaffected by abolished IL-21R signaling
(Fig. 5h). However, from a functional perspective, production
of Th2 cytokines IL-4, IL-5, and IL-13 was greatly enhanced
for IL-21R-deficient memory CD4+ T cells ex vivo compared
to memory CD4+ T cells from healthy donors (Fig. 7c) [26].

Further analysis of CD4+ T cell subsets revealed normal
proportions of regulatory T cells (Treg), as a percentage of all
CD4+ T cells, in the patients (Fig. 5i). However, circulating
Tfh (cTfh) cells were significantly decreased compared to
healthy donors (Fig. 5j). This was also observed when cTfh
cells were enumerated as a proportion of memory CD4+ T
cells (Fig. 5k), indicating a bona fide cTfh deficit rather than
being secondary to a general reduction in memory CD4+ T
cells. This is consistent with our previous finding of impaired
differentiation of IL-21R-deficient naïve CD4+ T cells into
Tfh-type cells in vitro (Fig. 7d) [34]. Th17-type cTfh cells
were also reduced, albeit not significantly (p = 0.053), in IL-
21R-deficient patients relative to healthy donors (Fig. 5l).
Similar to total Tregs, Tfr cells were comparable in IL-21R-
deficient patients and healthy donors (data not shown). In
contrast to CD4+ T cells, proportions and absolute numbers

a

c

b

d

P1 P2

P3

36
wks

20
wks

Fig. 3 Clinical features of IL-21R-deficient patients. a Pedigree of the
family of P1, P2, and P3. b, c Cutaneous involvement in P4 (face and
arm). d H&E stain of a skin biopsy of P4 showing lymphohistiocytic

inflammation. Predominant infiltration of CD3+ cells of the superficial
dermis invading underlying subcutaneous tissue
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of total CD8+ T cells (Fig. 5f) as well as naïve, TCM, TEM, and
TEMRA subsets (Fig. 5m), and the activation status of CD8+

TCM, TEM, and TEMRA cells [determined by expression of
CD57 (Fig. 5n)] were unremarkable in IL-21R-deficient
patients.

IL-21 has also been reported to regulate murine NK cell
maturation [42]. Thus, we assessed NK cells and subsets.
Proportions of total as well as CD56bright and CD56lo NK cell
subsets were unaffected by impaired IL-21/IL-21R signaling
(Fig. 5o, p). However, the composition of the CD56lo NK cell
subset was significantly perturbed by IL-21R-deficiency.
Specifically, the CD56lo NK-subset in IL-21R-deficient pa-
tients was dominated by CD57− cells, while the corresponding
subset in healthy donors is predominantly comprised of
CD57+ cells (Fig. 5p). CD56loCD57+ NK cells exhibit greater
cytotoxic potential than CD56loCD57− NK cells and thus rep-
resent a more mature subset of human NK cells [43].

Proportions of total B cells and naïve B cells were signifi-
cantly increased, and memory B cells significantly reduced, in
IL-21R-deficient patients (Fig. 6a, b). Naive B cells in healthy
donors comprise two major populations: IgMloIgDhi (~75%)
and IgM−IgDhi (~20–25%) cells. Interestingly, >90% of naïve
B cells in IL-21R-deficient patients were IgMloIgDhi cells,

resulting in significant reductions in proportions of
IgM−IgDhi B cells (Fig. 6c). Within the contracted memory
B cell population in IL-21R-deficient patients, proportions of
IgG+ or IgA+ switched cells were significantly decreased (Fig.
6d). These flow cytometric data correlated with functional
data inasmuch that naïve B cells from IL-21R-deficient pa-
tients exhibited no response to the stimulatory effect of IL-21,
evidenced by undetectable levels of IgM as well as of the
class-switched Ig isotypes IgG and IgA. This contrasts re-
sponses of naïve B cells from healthy donors which produce
large amounts of IgM, and detectable amounts of IgG and IgA
(Fig. 7e, f) [33, 34]. Assessment of myeloid cells revealed
comparable proportions of total DCs and plasmacytoid DCs
in IL-21R-deficient patients and healthy donors (Fig. 7e, f).
However, proportions of myeloid DCs—particularly the
CD141+ subset—were lower in IL-21R-deficient patients
(Fig. 6f, g).

Collectively, while impaired IL-21R signaling has limited ef-
fects on lymphocyte development, further differentiation of these
cells is substantially compromised, with significant reductions in
CD4+ T cells, MAIT cells, cTfh cells, total and class-switched
memory B cells, terminally differentiated NK cells and myeloid-
derived DCs, and trends for reductions in Th17 cells.

0 5 10 15 20
0

1000

2000

3000

4000

5000

CD3+

age (y)
0 5 10 15 20

0

1000

2000

3000

4000

CD4+

age (y)

ce
lls

/m
m

³

ce
lls

/m
m

³
ce

lls
/m

m
³

ce
lls

/m
m

³
ce

lls
/m

m
³

0 5 10 15 20
0

500

1000

1500

2000

2500

CD8+

age (y)
0 5 10 15 20

0

50

100

150

200

250

CD16+CD56+

age (y)

0 5 10 15 20
0

1000

2000

3000

CD19+

age (y)

b

IL

Increased 
(no and % of 
patients)

Normal
(no and % of 
patients)

Decreased
(no and % of
patients)

Unknown
(no and % of
patients)

Immunoglobulin serum levels

IgG

IgA

IgE

IgM

Absolute lymphocyte subpopulations

WBC

ALC

B cells

T cells

CD4+ cells

CD8+ cells

1/13 (8%) 3/13 (23%) 9/13 (70%)

0 5/12 (42%) 7/12 (58%)

3/12 (25%) 4/12 (33%) 5/12 (42%)

5/12 (42%) 7/12 (58%) 0

5/8 (63%) 2/8 (25%) 1/8 (13%)

3/11 (27%) 5/11 (45%) 3/11 (27%)

2/11 (18%) 6/11 (55%) 3/11 (27%)

2/9 (22%) 4/9 (44%) 3/9 (33%)

2/11 (18%) 5/11 (45%) 4/11 (36%)

2/11 (18%) 6/11 (55%) 3/11 (27%)

0

1

1

1

5

2

2

4

2

2

CD4-CD8- cells 3/11 (27%) 8/11 (73%) 0 2

CD16+CD56+ NK cells 0 6/10 (60%) 4/10 (40%) 3

WBC, white blood cell count; ALC, all lymphocyte count.

a

Fig. 4 Laboratory features of IL-21R-deficient patients. a Proportions of
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Fig. 5 IL21Rmutations impact Tfh, Th17, MAIT cell formation and NK
cell differentiation. PBMC from healthy controls or IL-21R-deficient
(n = 5–10) patients were labeled with mAbs against CD3, CD4, CD8,
CD56, CD161, TCR Vβ11, TCR Vα7-2, TCR Vα24, CCR7, and
CD45RA. a–f Proportions of a total (CD3+) T cells, b αβ T cells, c γδ
T cells, d NKT cells, e MAIT cells, and f CD4+ and CD8+ T cells. g–l
Within CD4+ T cells, frequencies of g naïve, TCM, or TEM cells; h Th17
(CXCR3−CCR6+), CXCR3+CCR6+, Th1 (CXCR3+CCR6−), or
CXCR3−CCR6+; i regulatory T cells; j, k cTfh cells, as well as subsets
of l Th17, CXCR3+CCR6+, Th1, or CXCR3−CCR6+, cTfh cells. m, n

Proportions of m naïve, TCM, TEM, or TEMRA CD8+ T cells, and n
percentages of these subsets expressing CD57. o, p Proportions of o
total NK cells within lymphocytes, and of p CD56hi, CD56loCD57−,
and CD56loCD57+ NK cell subsets. For all graphs, values represent
mean ± SEM, with individual symbols corresponding to one healthy
donor or IL-21R-deficient patient. Statistics performed using t tests with
Mann-Whitney tests. *p < 0.05, **p < 0.01. FACS data for some of the
patients has been published previously [25–27, 33] but is included here to
provide an overview of all available patients
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Therapeutic Approach and Outcome

Prophylactic antibacterial therapy (TMP-SMX) and
monthly intravenous immunoglobulins (IVIG) were giv-
en to all patients. CMV pneumonitis in P5 required
ganciclovir; omalizumab treatment was given to P6 to
treat their allergies. P1 and P3 received steroids, azathi-
oprine, and 5-ASA for intestinal inflammation. Although
all patients received extensive antimicrobial and sup-
portive therapy, mortality of untransplanted patients
was 42.8% (3/7) due to infectious complications. The
liver disease in P1 necessitated a differential diagnosis
with sclerosing cholangitis and autoimmune hepatitis.
The progressive liver disease developed despite
clarithromycin being administered to treat cryptosporid-
ium infection.

Five IL-21R-deficient patients in our cohort (P1, P5, P8,
P11, P12, P13) underwent HSCT, as outlined in Table 2. All
of these patients had a molecular diagnosis of IL-21R defi-
ciency prior to HSCT. We collected HSCT data of these five
patients. P8 also underwent transplant, though prior to the
initial report of IL-21R-deficiency [22]. Thus, we retrieved

transplant information of P8 from the literature [22]. The me-
dian age at transplant was 11.5 years. Stem cell source was
bone marrow (n = 4) or peripheral blood (n = 1). Fully
matched related donors were used for five patients. All pa-
tients except for P13, who was asymptomatic, showed lung
or GI tract damage prior to HSCT (Table 2). P1, P4, P5, and
P11 presented with bronchiectasis, while P5 and P12 had
PCR-confirmed CMV viremia pre-transplant. Cholangitis
was observed in P1, P8, and P11. This necessitated a liver
transplantation in P1 1 month pre-HSCT. P5 also suffered
chronic norovirus enteritis at the time of HSCT (Table 2).
All patients received pre-HSCT conditioning regimens com-
prised of either reduced toxicity conditioning (RTC; P1, P11,
P12, P13) or reduced intensity conditioning (RIC, P5) to pre-
pare for donor engraftment. Notably P12 and P13, who had
the least complications clinically, received RTC consisting of
fludarabine (30 mg/m2 × 5 days), treosulfan (14 g/m2 ×
3 days), and thiotepa (10 mg/kg). All patients received anti-
thymocyte globulin (ATG) for a minimum of 3 days.
Cyclosporine A (CSA), methotrexate (MTX), or mycopheno-
late mofetile (MMF) were administered as GvHD prophylaxis
(Table 2).

DC
0

1

2

3

%
 o

f M
NC

CD16+ CD141+ CD1c+
0

20

40

60

80

%
 o

f m
DC

s

Transitional Naive Memory
0

25

50

75

100

%
 o

f B
 c

el
ls

pDC mDC
0

20

40

60

80

100
%

 o
f D

Cs

IgM-IgD+ IgMloIgDhi
0

25

50

75

100

%
 o

f N
ai

ve
 B

 c
el

ls

IgG+ IgA+
0

20

40

60

%
 o

f M
em

or
y 

B 
ce

lls

(b) (d)(a) (c)

B cells
0

20

40

60
%

 o
f l

ym
ph

oc
yt

es

(f) (e) (g) 

*
****

****

*

* *

****

Healthy Donors IL21R deficient patients
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CD19, CD20, CD10, CD27, IgG, IgA, CD123, CD11c, CD141, CD16,
and CD1c. a–d Proportions of a total B cells within lymphocytes; b
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Post-transplant complications occurred in 5 out of 6 pa-
tients: Four patients fully engrafted post-HSCT and 1 out of
5 patients experienced GvHD. However, four patients (P1, P5,

P8, P11) succumbed post-HSCT. HSCT was complicated in
P1 by engraftment failure and invasive pulmonary aspergillo-
sis causing death 61 days post-transplant. P5 failed to engraft
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and presented with severe systemic bacterial infections, en-
cephalopathy, CMV reactivation, and acute respiratory dis-
tress syndrome (ARDS), succumbing 55 days post-transplant.
P8 developed increased cholanigits, CMV infection, and re-
quired a second HSCT after graft rejection (Table 2). P8 died
of multiorgan failure following a second transplant [22].
HSCT was complicated by acute grade 4 GvHD in P11 with
skin, GI, and liver involvement starting from day 40 post-
transplant, and treated with glucocorticoids, CSA, MMF,
sirolimus, infliximab, and ATG. P11 developed CMV
reactivation and succumbed to CMV-associated ARDS in
the third month post-transplant. In total, four patients suffered
from CMV reactivation post-HSCT, which was controlled
only in P12 (Table 2).

We report a 33% overall survival rate in our cohort at a
mean follow-up of 1.8 years with three patients dying due to
infectious complications and one patient succumbing to
multiorgan failure of unreported etiology. Both P12 and P13
were successfully transplanted and remain free of IVIG sub-
stitution post-HSCT.

Discussion

CIDs are a heterogeneous group of primary immune disorders
and exhibit defects in T cell development and function, along
with compromised B cell responses [44, 45]. Germline
biallelic LOF variants in IL21 or IL21R cause a CID [40].
Recessive IL21R LOF variants were first identified in four
patients from two unrelated families from distinct geographi-
cal locations (P7–P10) [22]. IL-21R deficiency predisposes to
infections associated with CID and primary antibody deficien-
cy (Pneumococci respiratory infections, recurrent otitis media,
Cryptosporidium cholangitis), and infections common in pa-
tients with T or NK cell deficiencies (invasive/mucocutaneous
fungal infections, P. jirovecii lung infections, CMV pneumo-
nia). The newly described infections of giardiasis and system-
ic candidiasis in our cohort are reminiscent of the infectious
phenotype of other CIDs such as CD40L deficiency [46].

Our in-depth dissection of circulating immune cell subsets
illustrates obligate roles of IL-21R in differentiation and ef-
fector function of human lymphocyte subsets. IL-21/IL-21R
signaling unequivocally has a non-redundant role in generat-
ing or maintaining Tfh-, memory B-, MAIT-, and
CD56dimCD57+ terminally differentiated NK cells, and a like-
ly role in Th17 cells. Our findings confirm, extend, and refine
previous studies that delineated specific and unique functions
of IL-21 in human and murine lymphocyte development [47].
Our findings also provide insight into mechanisms underlying
some clinical features of IL-21R deficiency. Thus, the paucity
of memory B cells and Tfh cells, together with an impaired
ability of IL-21R-deficient naïve CD4+ T cells to differentiate
into IL-21-expressing Tfh cells in vitro and of IL-21R-

deficient naïve B cells to differentiate into plasmablasts in
r e s p o n s e t o I L - 2 1 [ 2 6 , 3 3 , 3 4 ] , e x p l a i n s
hypogammaglobulinemia and impaired humoral immunity.
While the in vitro analyses indicated these cellular deficien-
cies were intrinsic to B cells and T cells, they are also likely to
be interdependent, as IL-21 is produced predominantly by Tfh
cells, and Tfh-derived IL-21 potently induces human B cell
proliferation, class switching, and plasmablast formation, and
promotes plasma cell survival [47]. Thus, the B cell intrinsic
defect in class switching due to the fundamental inability of
IL-21R-deficient naïve B cells to respond to IL-21 could be
exacerbated by dysfunctional and/or reduced Tfh cells due to
B cell extrinsic defects affecting IL-21R-deficient CD4+ T
cells. The partial Th17 deficit in IL-21R-deficient patients
likely contributes to frequent fungal infections in some, but
not all, of these patients indicating the impact of IL-21R sig-
naling on human Th17 cells.

IL-21 activates STAT1, STAT3, and STAT5 [48]. Prior
analysis of individuals with inactivating or dominant negative
(DN) variants in STAT1 or STAT3 revealed that the effects of
IL-21 on human B and T cell subsets are predominantly, if not
exclusively, mediated by STAT3 [25, 26, 29, 32–34].
Consequently, our findings define the contribution of defec-
tive IL-21R signaling to disease pathogenesis in autosomal-
dominant hyper-IgE syndrome (AD-HIES) due to DN STAT3
mutations, namely recurrent infections, impaired humoral im-
munity, and candidiasis [2, 9, 22]. Interestingly, recessive mu-
tations in the transcription factor ZNF341 phenocopies the
clinical features of STAT3 DN mutations, consistent with
ZNF341 regulating IL-21-induced STAT3 activation [49,
50]. The current findings for this larger cohort of IL-21R-
deficient patients, together with our observations for STAT3
DN [25, 26, 29, 32–34] and ZNF341 [28] deficiency, establish
that IL-21 is a major STAT3-activating cytokine that regulates
differentiation of T cells and B cells into key effector subsets
(Tfh, Th17, MAIT cells; total and class-switched memory B
cells), thereby explaining the overlap in some of the clinical
features of individuals with pathogenic variants in IL21R,
STAT3, or ZNF341. Interestingly, several clinical, laboratory,
and cellular features of STAT3 DN and IL-21R- or ZNF341-
deficient individuals also overlap with individuals with DN
heterozygous variants in IL6ST [12]. These include reduced
Th17, Tfh and memory B cells, Th2-skewed memory CD4+ T
cells, hyper-IgE and recurrent fungal infections [26, 28,
32–34, 40, 51]. This highlights the interplay between
STAT3/ZNF341-mediated signaling downstream of receptors
for IL-6 and IL-21. Importantly, our observation that fungal
infections occur in fewer IL-21R-deficient patients (~50%)
than STAT3- or ZNF341-deficient patients (>90%) also dem-
onstrates partial redundancy for IL-21R signaling in generat-
ing human Th17 cells during host defense against fungi,
whereas Th17 deficiency is highly penetrant in these other
IEIs [28, 51]. Indeed, our functional analyses demonstrated a
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partial defect in generating Th17 cells in IL-21R-deficient
individuals, but complete abolition of Th17 cell differentiation
by STAT3 DNmutations [26, 34, 51, 52]. Our data also estab-
lish the Th17 defect is T cell intrinsic, evidenced by impaired
differentiation of naïve IL-21R-deficient CD4+ T cells into IL-
17A/IL-17F-producing cells [34] (Fig. 6). This highlights im-
portant combinatorial contributions of additional STAT3-
activating cytokines to Th17-cell generation, such as IL-6
and IL-23, evidenced by partial deficiencies in Th17 cells in
individuals with biallelic variants in IL23R [53] or DN hetero-
zygous IL6ST variants [12], and variability in the incidence of
fungal infections in these individuals.

IL-21- and IL-21R-deficient patients [20–24], similar to
corresponding gene-targeted mice [54], exhibit elevated levels
of serum IgE. Increased IgE in some cases of IL-21R-
deficiency may contribute to atopic disorders. Consistent with
this observation, memory CD4+ T cells from IL-21R-deficient
individuals, as well as those with STAT3 DN, IL6ST DN, or
homozygous ZNF341 variants, exhibit exaggerated produc-
tion of Th2 cytokines IL-4, IL-5, and IL-13 (Fig. 6) [12, 26,
28], while IL-21 signaling negatively regulates class
switching to IgE and abrogates anaphylaxis in mice [55, 56].
Thus, IL-21 potentially regulates IgE production directly by
repressing Ig ε class switching and survival of IgE+ B cells,
and indirectly by restraining the generation of Th2 effector
cells producing IgE-promoting cytokines such as IL-13. IL-
21R-deficiency has not previously been associated with
lymphohistiocytic infiltration of the skin. Prolonged persis-
tence of live rubella virus vaccine in granulomatous skin le-
sions in P4 adds IL-21R deficiency to the growing list of
immunodeficiencies associated with rubella-mediated skin in-
flammation [57]. Furthermore, it highlights that immunity to
some viruses is impaired in patients with IL-21R deficiency
[58] and suggests cautious considerat ion of l ive
vaccinations—in particular against rubella—in IL-21R-
deficient individuals.

P6 suffered recurrent anaphylaxis and severe atopy in ad-
dition to higher IgE levels than other IL-21R-deficient patients
(Table 1, Supplementary Table 2). Two scenarios may con-
tribute to these clinical findings. First, the IL21R variant in P6
is predicted to truncate the IL-21R protein at amino acid res-
idue S474 in the cytoplasmic domain. This removes 65 C-
terminal amino acids, including Y510 which acts as a
phospho-tyrosine docking site for STAT proteins, enabling
their activation following receptor engagement by IL-21
(Fig. 1) [39]. Thus, this variant may uniquely impact the
structure/function of IL-21R and its interactions with STAT1
and/or STAT3. Second, the heterozygous CARD14 variant
identified in P6 may contribute to severe atopy, as has been
reported for other individuals with CARD14 variants [36].
These possibilities will be pursued in future studies.

Cryptosporidium-associated liver disease remains the most
prominent cause of morbidity in IL-21R deficiency.

Correspondingly, P1, P9, and P10 succumbed to
cryptosporidiosis-associated sclerosing cholangitis, and P3
suffered severe and subsequently fatal diarrhea triggered by
intestinal cryptosporidiosis. P1 and P7 underwent liver trans-
plant after extensive cryptosporidiosis-mediated liver damage.
Furthermore, increased cholangitis was observed in P8 as a
post-HSCT complication. The cases of P4, P5, and P12 illus-
trate that even in the absence of cryptosporidiosis, IL-21R-
deficient patients may develop severe organ damage necessi-
tating HSCT. Even with antibacterial and supportive treat-
ment, IL-21R deficiency is a potentially lethal disease. Thus,
HSCT should ideally be considered prior to occurrence of
cryptosporidiosis [59].

HSCT for IL-21R deficiency is difficult and should be
considered carefully. Indeed, while some patients have a
relatively high quality of life, IL-21R deficiency was as-
sociated with high mortality (57%) in non-transplanted
patients. Primary and secondary graft failure were ob-
served in 2/6 and 1/6 patients, respectively, ultimately
resulting in death. Myeloablative conditioning (MAC) pri-
or to HSCT is generally associated with improved engraft-
ment and reduced risk for graft rejection [60]. Thus, MAC
or MAC with RTC may be favorable to RIC protocols in
establishing sustained engraftment in IL-21R deficiency.
Notably, the two patients who survived HSCT—P12,
P13—were the youngest in our cohort and also had the
least organ damage. This suggests that early transplant
prior to chronic infections is a positive prognostic factor
for HSCT of IL-21R-deficient patients. Indeed, P13 was
diagnosed prior to disease onset due to previous family
history. These observations also suggest that organ dam-
age secondary to opportunistic infections, rather than IL-
21R deficiency itself, is responsible for the high mortality
of HSCT in these individuals. Even larger patient cohorts
of IL-21R-deficient patients need to be studied to provide
clear treatment recommendations in the future.

Our comprehensive analysis of IL-21R-deficient patients
has enabled us to characterize the critical function of IL-21/
IL-21R signaling in human health and disease, and provide
mechanisms underlying disease pathogenesis. In conclusion,
our report provides additional awareness to IL-21R deficiency
as a recently defined IEI, expands the spectrum of disease of
affected individuals, and indicates the importance of early
diagnosis of IL-21R deficiency to improve survival of the
patients by providing early therapeutic options prior to cryp-
tosporidium infection.

Abbreviations AD-HIES, Autosomal-dominant hyper-IgE syndrome;
ARDS, Acute respiratory distress syndrome; ATG, Anti-thymocyte
globuline; CID, Combined immunodeficiency disorder; CSA,
Cyclosporine A; cTfh, Circulating T follicular helper; DCs, Dendritic
cells; DN, Dominant negatve; GC, Germinal centers; HSCT,
Hematopoietic stem cell transplant; IEI, Inborn error of immunity; IL-
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21R, Interleukin-21 receptor; Ils, Interleukins; IVIG, Intravenous immu-
noglobulins; LOF, Loss-of-function; MAC, Myeloablative conditioning;
MMF, Mycophenolate mofetile; MTX, Methotrexate; RIC, Reduced in-
tensity conditioning; RTC, Reduced toxicity conditioning; Tfh , T follic-
ular helper; Tfr, T follicular regulatory; WES,Whole exome sequencing;
γc, Common gamma chain
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