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Abstract
Patients with common variable immunodeficiency (CVID) can develop immune dysregulation complications such as autoim-
munity, lymphoproliferation, enteritis, and malignancy, which cause significant morbidity and mortality. We aimed to (i) assess
the potential of serum proteomics in stratifying patients with immune dysregulation using two independent cohorts and (ii)
identify cytokine and chemokine signaling pathways that underlie immune dysregulation in CVID. A panel of 180 markers was
measured in two multicenter CVID cohorts using Olink Protein Extension Assay technology. A classification algorithm was
trained to distinguish CVID with immune dysregulation (CVIDid, n = 14) from CVID with infections only (CVIDio, n = 16) in
the training cohort, and validated on a second testing cohort (CVIDid n = 23, CVIDio n = 24). Differential expression in both
cohorts was used to determine relevant signaling pathways. An elastic net classifier using MILR1, LILRB4, IL10, IL12RB1, and
CD83 could discriminate between CVIDid and CVIDio patients with a sensitivity of 0.83, specificity of 0.75, and area under the
curve of 0.73 in an independent testing cohort. Activated pathways (fold change > 1.5, FDR-adjusted p < 0.05) in CVIDid
included Th1 and Th17-associated signaling, as well as IL10 and other immune regulatory markers (LAG3, TNFRSF9,
CD83). Targeted serum proteomics provided an accurate and reproducible tool to discriminate between patients with CVIDid
and CVIDio. Cytokine profiles provided insight into activation of Th1 and Th17 pathways and indicate a possible role for chronic
inflammation and exhaustion in immune dysregulation. These findings serve as a first step towards the development of bio-
markers for immune dysregulation in CVID.
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Introduction

Common variable immunodeficiency disorder is a primary im-
munodeficiency hallmarked by low serum immunoglobulins
and impaired production of specific antibodies in response to
vaccinations, resulting in increased risk for recurrent bacterial
infections [1, 2]. The cause of CVID is assumed to be multi-
factorial with estimated heritability around 20% [3], and while
new monogenetic causes are discovered each year, in the ma-
jority of cases a genetic cause remains undefined [4]. Under
adequate immunoglobulin replacement therapy (IgRT) severe
infections can usually be prevented, but over a third of patients
develop additional complications related to immune dysregu-
lation [4–6]. These complications include autoimmune disease,
granuloma formation, lymphoproliferative disease including
increased risk of lymphoma, and enteropathy [7], and together
they cause most morbidity and mortality in CVID [4, 5]. There
is no consensus about how to treat inflammatory complications
in CVID, with expert opinion-based guidelines varying per
country [8, 9]. The identification of predictive biomarkers for
immune dysregulation, and biomarkers that can be used to
monitor therapeutic response are needed to improve clinical
care for these patients. In addition, better understanding of the
underlying immune mechanisms that cause immune dysregu-
lation can provide new therapeutic targets and aid in better
selection of novel targeted immunotherapies such as cytokine
blockade or JAK/STAT inhibitors in the clinic.

Known risk factors for the development of immune dys-
regulation in CVID include low naïve CD4 T cells [10], in-
creased peripheral CD21low B cells [11, 12], and IgA deficien-
cy [10, 12]. These factors predict long-term risk to develop
clinical complications, but do not inform about a current in-
flammatory state, and are therefore less suitable to monitor
short-term disease progression or therapeutic response. For
those purposes, the use of serum cytokine and chemokine
biomarkers is entering clinical practice in other inflammatory
diseases, for example soluble IL2 receptor in hemophagocytic
lymphohistiocytosis [13], CXCL10 in juvenile dermatomyo-
sitis [14], and IL18 in adult-onset Still’s disease and systemic
juvenile idiopathic arthritis [15].

Previous studies in CVID have frequently reported conflict-
ing results about serum cytokines (reviewed by Varzaneh et al.
[16]). For example, IL10 is often found to be upregulated in
CVID as compared to healthy controls [17, 18], but in a differ-
ent cohort, a decrease of serum IL10 was described [19].
Overall, markers associated with an activated myeloid com-
partment are consistently upregulated in CVID [18–20], and
the T-helper (Th) serum cytokine profile observed in immune
dysregulation in CVID is mostly found to be Th-1 driven [17,
18, 21]. Varying findings in these studies highlight the need to
consider CVID patients with immune dysregulation (CVIDid)
separately from patients with an “infection only” (CVIDio) -
phenotype.

As a first step to the identification of biomarkers for im-
mune dysregulation in CVID, we used a targeted proteomic
approach in two clinically diverse multicenter CVID cohorts
in order to (i) assess the potential of serum proteomics in
stratifying patients with immune dysregulation from patients
with infections only using two independent cohorts and (ii)
identify cytokine and chemokine signaling pathways that un-
derlie immune dysregulation in CVID.

Materials and Methods

Ethics Statement

Ethical approval for this study for all Dutch participants was
received from the Medical Ethical Committee of the Erasmus
Medical Centre in Rotterdam, the Netherlands (METC:
NL40331.078). Ethical approval for sampling of patients in-
cluded from Freiburg, Germany was received from the
University of Freiburg Ethics Committee 282/11. Written in-
formed consent was obtained from all patients and controls
according to the Declaration of Helsinki.

Study Population and Sample Collection

Patients diagnosed with common variable immunodeficiency
d i sease accord ing to the European Soc ie ty fo r
Immunodeficiencies criteria [1] aged 7 or older were included
during outpatient clinic visits of the University Medical
Center Utrecht, the Erasmus Medical Center in Rotterdam
and the University Medical Center Groningen, in the
Netherlands, and the University Medical Center Freiburg,
Germany. Healthy controls (HC) were recruited from house-
hold members of patients. Medication use up to 3 months
prior to sampling was recorded. Clinical characteristics were
collected from electronic patient files.

Targeted Proteomics

Serum samples were stored at – 80 °C within 4 h of sampling
until use. Serum levels of 180 unique inflammation and im-
mune response–related proteins (supplementary Table S1)
were measured using proximity extension immunoassay
(PEA; Olink Proteomics, Uppsala, Sweden) [22], using the
ProSeek Multiplex Inflammation and Immune Response kits.

Briefly, the proximity extension immunoassay technology
is based on dual recognition of serum proteins by pairs of
antibodies coupled to a cDNA-strand that ligates when
brought into proximity by its target. This DNA tag is PCR
amplified and detected using a Biomark HD 96 × 96 dynamic
PCR array (Fluidigm, San Francisco, USA). After corrections
fromDNA extension- and interpolation controls, a normalized
protein expression value (NPX) is generated on a log-2 scale.
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Data Analysis and Statistics

All data analysis was performed in R (version 3.5.1) [23], and
all scripts used have been made publicly available on https://
gitlab.com/rberbers/cvid_cytokines_olink.

PEA data was analyzed using NPX values (on a log2 scale)
unless stated otherwise. For proteins that were detected below
the lower limit of detection (LLOD), the measured value was
replaced by the LLOD value/2. The healthy control samples
(training cohort n = 15, testing cohort n = 27) were used to
correct for batch effects between the first and the second
cohort.

PCA was performed using the package prcomp, and 3D
plots displaying the first three principal components were gen-
erated using the packages rgl and car. Differences between
the clinical groups were assessed using pairwise
PERMANOVA with correction for false discovery rate
(FDR) using the packages vegan and pairwiseAdonis.
Volcano plots were generated using Mann–Whitney U tests
with Benjamini-Hochman correction for FDR and log2 fold
change calculated on the linear scale (2^NPX). Differential ex-
pression was defined as FDR-adjusted (adj.) p < 0.05 and log2
fold change > 0.58 (equal to linear fold change of > 1.5).

For the classification model, the following machine learn-
ing algorithms were tuned on the training cohort using the
package caret: random forest (package randomForest), elastic
net regression (package glmnet) and extreme gradient
boosting (package xgboost), with fivefold repeated
crossvalidation. All measured biomarkers with the addition
of age and sex were included in the training of the algorithms.
Prediction performance of the final model on the testing co-
hort was assessed with area under the curve (AUC) of
receiver-operator curves (ROC) using the R-package pROC.
The sensitivity and specificity for each model was calculated
for the threshold with maximumYouden’s Index (sensitivity+
specificity − 1). Regression coefficients of selected variables
were standardized by their standard deviation.

Pathway analysis was performed using Ingenuity Pathway
Analysis (IPA) software (QIAGEN Inc., https://www.
qiagenbioinformatics.com/products/ingenuity-pathway-
analysis) [24], using differentially expressed proteins detected
in the volcano plots and the 180 measured proteins as the
reference dataset.

Results

Exploratory Analysis of the Serum Protein Profile of
CVID with Immune Dysregulation, CVID with Infection
Only, and Healthy Controls

In order to evaluate whether serum cytokine profiles could be
used to distinguish CVIDio from CVIDid, 180 serum markers

(supplementary Table S1) were measured in two independent
cohorts using a proximity extension assay. Patients were cat-
egorized as CVIDid when they had clinical (history of) auto-
immune disease, GLILD, granulomatous disease other
(nonGLILD), lymphoproliferation, enteritis, and/or malignan-
cy. Splenomegaly was also recorded but splenomegaly alone
was not sufficient to be categorized as CVIDid. Patients with-
out any of these complications were classified as CVIDio. All
CVID patients were on IgRT at the time of sampling.

First, an age- and gender-balanced training cohort (Table 1)
was selected using 45 participants (15 healthy controls (HC),
16 CVIDio, and 14 CVIDid) from two academic hospitals in
the Netherlands. The most common clinical complication in
the CVIDid group was autoimmune disease, (64%), followed
by and enteritis (35%). Splenomegaly was also highly preva-
lent at 50% of CVIDid patients in this cohort. Genetic screen-
ing had been performed for clinical care in a minority of pa-
tients (6% of CVIDio and 35% CVIDid), yielding one patient
with CTLA4 haploinsufficiency, one patient with STAT1
gain-of-function, and two patients with variants of unknown
significance (VUS) in the CVIDid group (supplementary
Table S2); one patient with a VUS in UNC13D and one pa-
tient with VUS in PLCG2 and heterozygosity for JAK3. In the
CVIDio group, one TNFRSF13B (TACI) mutation was
found.

Next, 74 participants (27 HC, 24 CVIDio and 23 CVIDid)
from four academic hospitals in the Netherlands and Germany
were included in a second independent testing cohort
(Table 2). In this cohort, there were more males in the
CVIDid group (70% in CVIDid vs 33% in HC and 46% in
CVIDio), and the CVIDid group was younger (mean age 36.7
in CVIDid, 40.1 in CVIDio, 44.3 in HC). The most common
clinical complications in the CVIDid group were autoimmune
disease (57%) and enteritis (43%), similar to prevalence in the
training cohort. Four patients received immunosuppressive
therapy around time of sampling; two patients used TNF-α
blockade, and two prednisone (5 mg and 40 mg/day, respec-
tively). In this cohort, 30% of CVIDid and 29% of CVIDio
patients had been genetically screened (supplementary
Table 2), resulting in three TNFRSF13B mutations and one
PIK3R1 mutation found in the CVIDid group. No relevant
mutations were found in CVIDio.

A total of 180 unique inflammation- and immune
response–related proteins were quantified in serum of the
training and testing cohort. Principal component analysis
(PCA) shows distinct clustering of HC, CVIDio and CVIDid
patients in the training cohort (Fig. 1a, CVIDid vs CVIDio
adj. p = 0.003, CVIDid vs HC adj. p = 0.002, CVIDio vs HC
adj. p = 0.002). One outlier in the CVIDid group was the pa-
tient with a heterozygote mutation in JAK3 and a VUS in
PLCG2. In the testing cohort (Fig. 1b), PCA showed signifi-
cant clustering of CVIDid and CVIDio from HC (CVIDid vs
HC adj. p = 0.003, CVIDio vs HC adj. p = 0.005), but there
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was more overlap between CVIDid and CVIDio in this cohort
(CVIDid vs CVIDio adj. p = 0.144), with larger spread of the
CVIDid group.

Machine Learning Approaches Reveal a Serum Protein
Signature Consisting of MILR1, LILRB4, IL10, IL12RB1,
and CD83 to Classify Immune Dysregulation in CVID

In order to assess whether the serum protein profiles could be
used to classify immune dysregulation in CVID, three ma-
chine learning algorithms (random forest, elastic net, and ex-
treme gradient boosting) were trained on the training cohort,
and their performance was assessed by using the resulting
models to predict which patients had immune dysregulation
in the second independent testing cohort. Given the clinical
context in which detection of patients at risk for immune dys-
regulation is desirable, a high sensitivity was deemed more
important than a high specificity.

Elastic net (enet) and extreme gradient boosting (xgb) were
the best performing algorithms (supplementary Table S3). In
order to reduce overfitting on the training cohort, only the
markers that were selected as the most important variables by
both models were selected for the final algorithm: mast cell
immunoglobulin-like receptor 1 (MILR1), leukocyte
immunoglobulin-like receptor subfamily B member 4

(LILRB4), IL10, IL12 receptor subunit beta 1 (IL12RB1),
and CD83 (an immunoglobulin superfamily receptor expressed
by mature antigen presenting cells [25]). The elastic net model
using these five proteins yielded the best combination of high
AUC and sensitivity: AUC of 0.73, sensitivity of 0.83 and
specificity of 0.75 with threshold selected for maximum
Youden’s Index (Fig. 2a and Table 3). Despite being trained
only on samples collected in the Netherlands, this model per-
formed equally well on the samples from the testing cohort
collected in Freiburg (Germany), correctly identifying 12/13
samples. The two patients receiving TNF-α blockade were
grouped correctly as CVIDid, but the patient who was sampled
under 40-mg prednisone was misclassified as CVIDio.

While IL10 (training set p < 0.001, testing set p = 0.004),
IL12RB1 (training set p < 0.001, testing set p = 0.006) and
CD83 (training set p = 0.002, testing set p = 0.007), were con-
sistently significantly upregulated in CVIDid compared to
CVIDio in both the training and the testing cohort (Fig. 2b),
this was not the case for MILR1 and LILRB4. These two were
significantly upregulated in the training cohort (p < 0.001 for
both) but not in the testing cohort (p = 0.59 and p = 0.63, re-
spectively), so the performance of the model without these
markers was assessed in a post hoc analysis (supplementary
Table S4). A logistic regression model using only IL10,
IL12RB1 and CD83 yielded a higher AUC (0.76) than the

Table 1 Characteristics training
cohort. *types of autoimmune
disease: monoarthritis,
rheumatoid arthritis, coeliac
disease, Sjögren’s disease,
autoimmune (thrombo-
)cytopenias, alopecia, vitiligo,
myositis

HC CVIDio CVIDid

Total N 15 16 14

Age (years), median (IQR) 38
(35–57)

38.5
(28.25–50.5)

41.5
(34–51.75)

Male N (%) 7 (47%) 8 (50%) 7 (50%)

Inclusion site N (%)

Utrecht, the Netherlands 9 (60%) 11 (69%) 10 (71%)

Rotterdam, the Netherlands 6 (40%) 5 (31%) 4 (29%)

Clinical phenotype N (%)

AI disease 0 0 9 (64%) *

GLILD 0 0 2 (14%)

Granulomatous disease other 0 0 2 (14%)

Enteritis 0 0 5 (35%)

Lymphoproliferation 0 0 1 (7%)

Malignancy 0 0 2 (14%)

Splenomegaly 0 0 7 (50%)

Medication use during 3 months prior to samplingN (%)

Antibiotics 0 0 4 (29%)

Immune suppressive therapy 0 0 0

Genetics N (%)

Genetics done 0 1 (6%) 5 (35%)

Nothing found 0 0 1 (7%)

VUS found 0 0 2 (14%)

Relevant pathogenic mutation found 0 1 (6%) 2 (14%)
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Table 2 Characteristics testing
cohort. *types of autoimmune
disease: systemic lupus
erythematosus-like disease,
Sjögren’s disease, autoimmune
(thrombo-)cytopenias, type 1 dia-
betes, membranous glomerulone-
phritis, alopecia, hepatitis, vitiligo

HC CVIDio CVIDid

Total N 27 24 23

Age (years), median (IQR) 43 (37–49) 37 (25–57.25) 37 (23–49)

Male N (%) 9 (33%) 11 (46%) 16 (70%)

Inclusion site N (%)

UMCU 19 (70%) 11 (46%) 13 (57%)

EMC 4 (15%) 7 (29%) 3 (13%)

UMCG 4 (15%) 0 0

Freiburg 0 6 (24%) 7 (30%)

Clinical phenotype N (%)

AI disease 0 0 13 (57%)

GLILD 0 0 8 (35%)

Granulomatous disease other 0 0 1 (4%)

Enteritis 0 0 10 (43%)

Lymphoproliferation 0 0 6 (26%)

Malignancy 0 0 1 (4%)

Splenomegaly 0 0 10 (43%)

Medication use during 3 months prior to sampling N (%)

Antibiotics 0 8 (33%) 5 (22%)

Immune suppressive therapy 0 0 4 (17%)

Genetics N (%)

Genetics done 0 7 (29%) 7 (30%)

Nothing found 0 7 (29%) 2 (9%)

VUS found 0 0 1 (4%)

Relevant pathogenic mutation found 0 0 4 (17%)

Fig. 1 Principal component analysis of first 3 principal components (PC).
Ellipses indicate 95% confidence intervals. a Training cohort. CVIDid:
CVID with immune dysregulation (n = 14), CVIDio: CVID with
infection only (n = 16), HC: healthy controls (n = 15). FDR-corrected
pairwise PERMANOVA using Euclidean distance: CVIDid vs CVIDio

adj. p = 0.003; CVIDid vs HC adj. p = 0.002; CVIDio vs HC adj. p =
0.002. b Testing cohort: CVIDid (n = 23), CVIDio (n = 24), HC (n = 27).
FDR-corrected pairwise PERMANOVA using Euclidean distance:
CVIDid vs CVIDio adj. p = 0.144; CVIDid vs HC adj. p = 0.003;
CVIDio vs HC adj. p = 0.005
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original model, but with lower sensitivity (0.79) specificity
(0.71) at maximum Youden’s Index on the testing cohort.

Immune Dysregulation in CVID Is Characterized by
Upregulation of T Helper 1, T Helper 17, and Immune
Regulatory Proteins

In order to infer which inflammatory pathways were differen-
tially expressed in immune dysregulation in CVID, the train-
ing and testing cohorts were merged. In CVIDid (n = 37),
thirteen proteins were differentially upregulated compared to
CVIDio (n = 40) with FDR-corrected p value < 0.05 and fold
change (FC) > 1.5 (Fig. 3a, supplementary fig. S1A). These
markers included cytokine IL10 (adj. p = 0.001, FC = 1.82)
and receptors LAG3 (adj. p = 0.001, FC = 1.85) and
TNFRSF9 (also known as 4-1BB, adj. p = 0.024, FC =
1.73), all associated with negative regulation of the immune
response. Th1 activation was observed in the upregulation of
CXCL9 (adj. p = 0.046, FC = 2.05) and CXCL11 (adj. p =
0.047, FC = 2.10). In addition, cytokines and chemokines as-
sociated with Th17 activation were upregulated, including
IL17A (adj. p = 0.011, FC = 2.44), IL12B (also known as
IL12p40, a subunit of IL12 and IL23; adj. p = 0.044, FC =
1.64) and mucosal tissue homing chemokine CCL20 (adj. p =
0.043, FC = 2.39). IL-6 production, which would be consis-
tent with activated Th17 cells, was upregulated in both
CVIDid (adj. p < 0.001, FC = 2.34) and CVIDio (adj. p =
0.001, FC = 2.14) compared to HC, but not between CVIDid
and CVIDio (adj.p = 0.58, FC = 1.09) (data not shown).

Natural killer (NK) cell activationmarker KLRD1 (adj. p =
0.013, FC = 1.84) was upregulated in CVIDid and CVIDio, as
well as SH2D1A (adj. p = 0.024, FC = 1.52), which is in-
volved in NK- T- and B cell stimulation. Also upregulated
in CVIDid were TRANCE (also known as RANK-L, adj.
p = 0.023, FC = 1.52) which induces monocyte chemotaxis,
and CCL19 (adj. p = 0.006, FC 1.93) which induces lympho-
cyte homing to secondary lymphoid organs.

One outlier in this analysis was TNF-α, which was not
significantly upregulated (adj. p = 0.316) but had a high fold
change (FC = 9.41) (supplementary fig. S2). This was driven
by the two patients who used TNF-α blockade therapy and

had high serum levels of TNF-α, an effect that has previously
been observed [26]. These two patients did not have aberrant
expression of other proteins and therefore were not excluded
from the study (data not shown). TNF-α levels excluding
these two patients were not different between CVIDid and
CVIDio (adj. p = 0.46, FC = 1.18), but were upregulated in
CVIDid (adj. p = 0.0005, FC = 1.45) and CVIDio (adj.p =
0.003, FC = 1.23) compared to HC.

Autoimmune Disease, GLILD, and Splenomegaly in
CVID Are Associated with a Distinct Serum Protein
Profile

CVID with autoimmune disease (n = 22) was characterized by
upregulation of fifteen proteins as compared to CVID without
autoimmune disease (n = 55) (Fig. 3b, supplementary fig. S1B),
with much overlap with the upregulated proteins observed in
CVIDid. In this subgroup analysis, cytokines and chemokines
associated with Th1 signaling were upregulated: CXCL9 (adj.
p = 0.043, FC = 2.41), CXCL10 (adj. p = 0.014, FC = 2.95),
CXCL11 (adj. p = 0.014, FC = 2.67), IL18 (adj. p = 0.014,
FC = 1.81), and CD28 (adj. p = 0.029, FC = 1.54). Markers of
negative immune regulation were also increased in autoimmu-
nity: LAG3 (adj. p = 0.014, FC = 1.82) and TNFRSF9 (adj. p =
0.006, FC = 1.98), and CD83 (adj. p = 0.003, FC = 1.51) which
in soluble form is thought to be immunosuppressive [27].

In CVID with GLILD (n = 10) (Fig. 3c, supplementary
fig. S1C), negative regulators CD83 (adj. p = 0.026, FC =
1.53) and IL10 (adj. p = 0.035, FC = 2.30) were again upreg-
ulated as compared to CVID without GLILD (n = 67). In ad-
dition, LAMP3 (adj. p = 0.026, FC = 1.86) was upregulated,
which is associated with DC maturation and is especially
highly expressed in type-2 pneumocytes in the lung [28]. T
cell receptor coreceptors CD6 (adj. p = 0.034, FC = 1.84) and
CD28 (adj. p = 0.034, FC = 1.75) were also upregulated in
GLILD.

In CVID patients with splenomegaly (n = 17) (Fig. 3d,
supplementary fig. S1D), nineteen markers were upregulated
compared to CVID without splenomegaly (n = 60). These in-
cluded markers of immune suppression, such as TNFRSF9
(adj. p = 0.001, FC = 2.36), CD83 (adj. p = 0.002, FC =
1.50), LAG3 (adj. p = 0.010, FC = 1.99), IL10 (adj. p =

Table 3 performance of the enet model using MILR1, LILRB4, IL10,
IL12RB1 and CD83 as classifiers. Classification predicted at threshold
with maximum Youden’s Index

True

CVIDid CVIDio Total predicted

Predicted CVIDid 19 6 25

CVIDio 4 18 22

Total true 23 24

�Fig. 2 a Receiver-operator curve (ROC) for the classification of CVIDid
vs CVIDio on the testing cohort (CVIDid n = 23, CVIDio n = 24) using
the elastic net model using MILR1, LILRB4, IL10, IL12RB1 and CD83
as variables. b Distribution of classifying variables selected in the elastic
net model. Training cohort healthy controls (HC, n = 15), CVIDio (n =
16), CVIDid (n = 14), testing cohort HC (n = 27), CVIDio (n = 24),
CVIDid (n = 23). The horizontal line inside the box represents the medi-
an. The whiskers represent the lowest and highest values within 1.5 ×
interquartile range. P values: Mann–WhitneyU test after FDR correction
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ROC curve enet model MILR1, LILRB4, IL10, IL12RB1 and CD83
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0.006, FC = 1.94), and FC receptor-like protein 3 (FCRL3)
(adj. p = 0.001, FC = 2.14) [29]. Increased Th1-associated
proteins were CXCL9 (adj. p = 0.018, FC = 2.20), CXCL11
(adj. p = 0.013, FC = 2.62), IL18 (adj. p = 0.024, FC = 1.56),
CD28 (adj. p = 0.020, FC = 1.64) and IL12B (adj. p = 0.010,
FC = 1.98). Inflammatory markers KLRD1 (adj. p = 0.001,
FC = 1.80), TNF-β (adj. p < 0.001, FC = 2.00), SH2D1A
(adj. p = 0.001, FC = 1.82), CD5 (adj. p = 0.001, FC = 1.63),

CD6 (adj. p = 0.001, FC = 1.90) and one of its ligands CDCP1
(adj. p = 0.048, FC = 1.54), and TRANCE (adj. p = 0.005,
FC = 1.76) were also upregulated.

Subgroup analyses of granulomatous disease, lymphoprolif-
eration, enteritis, and malignancy did not yield any differential-
ly expressed proteins, possibly due to smaller sample size.

In order to integrate these findings, a literature-based path-
way analysis was performed using ingenuity pathway analysis.
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Fig. 3 Volcano plots: Green dots indicate markers with log2 fold change
> 0.58 (= fold change 1.5) and FDR-adjusted p value < 0.05. Red dots
indicate markers with log2 fold change < 0.58 and FDR-adjusted p value
< 0.05. Orange dots indicate markers with log2 fold change > 0.58 and
FDR-adjusted p value > 0.05. a Differential expression analysis of pro-
teins upregulated in CVID with immune dysregulation (CVIDid, n = 37)
as compared to CVID with infection only CVIDio, n = 40). bDifferential

expression analysis of proteins upregulated in CVID with autoimmunity
(n = 22) as compared to CVID without autoimmunity (n = 55). c
Differential expression analysis of proteins upregulated in CVID with
GLILD (n = 10) as compared to CVID without GLILD (n = 67). d
Differential expression analysis of proteins upregulated in CVID with
splenomegaly (n = 17) as compared to CVID without splenomegaly
(n = 60)
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Of the upregulated proteins in CVIDid, IL10 had the most
connections to the other differentially expressed markers
(Fig. 4a), indicating that IL10 may be a keystone regulator in
the inflammatory profile of CVIDid. The same was observed
for pathway analysis of proteins upregulated in autoimmunity,
GLILD, and splenomegaly (data not shown).

Discussion

We demonstrated that an algorithm using serum biomarkers
MILR1, LILRB4, IL10, IL12RB1, and CD83 identified by
targeted serum proteomics could classify immune dysregula-
tion in CVID in a discovery cohort and in our independent
testing cohort, providing a first step towards the development
of a screening tool for immune dysregulation in CVID. Of the
selected biomarkers, IL10, IL12RB1, and CD83 were consis-
tently upregulated in the testing and the training cohorts, in

contrast to MILR1 and LILRB4 which were not reproducible
in the testing cohort. This may be due to sensitivity of MILR1
and LILRB4 to batch effects or minute differences in sample
handling. However, an algorithm using only IL10, IL12RB1,
and CD83 performed almost as well as when MILR1 and
LILRB4 were included. This is in accordance with previous
findings of upregulated IL10 [17, 18, 21], IL12 [18, 21], and
CD83 [21] in CVID compared to healthy controls.

As a next step towards the application of this screening
tool, the dynamics of these serum markers in early disease
need to be monitored, as this cohort included only patients
with current immune dysregulation or immune dysregulation
in remission. If these markers are upregulated before the full
clinical phenotype has developed, the algorithm may be used
for early detection of disease, and allow for earlier interven-
tion with immunosuppressive therapy. Moreover, the screen-
ing tool may be further improved by retraining and testing the
algorithm on additional cohorts. To simplify the applicability
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Fig. 4 Literature-based pathway
analysis of differentially
expressed proteins upregulated in
CVID with immune
dysregulation (CVIDid) as com-
pared to CVID with infections
only (CVIDio), using ingenuity
pathway analysis software
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of the screening tool, further studies may choose to measure
the selected biomarkers using more widely available tech-
niques such as ELISA. Possibly, IL12B can substitute
IL12RB1 in the model, as IL12B was also differentially
expressed in this study and assays may be more widely avail-
able. A limitation of the PEA technology is that the NPX
values were not converted to an absolute concentration but
could only be compared between samples in the same run.
In this study, the healthy control samples were used to correct
for batch effects between the testing and training cohorts, but
this is not practical for use in the clinic. A solution would be to
include standard curves for the biomarkers of interest, and/or
to use a different technique such as ELISA in order to quantify
these markers and identify cutoff values for the normal range.

After merging the two cohorts, differentially expressed
proteins specific for CVIDid as a whole, and CVID with au-
toimmunity, GLILD and splenomegaly, were identified. In
our study, IFNγ-responsive cytokines CXCL9, − 10 and −
11 were upregulated in CVIDid, which are instrumental in
Th1 skewing [30]. This is in line with previous data showing
accumulating support for Th1/T follicular helper (Tfh) 1
skewing in CVIDid patients [21, 31]. Our data also indicates
Th17 activation in CVID patients with immune dysregulation,
reflected by upregulation of IL17, IL12B (the subunit for both
IL12 and IL23) and CCL20 in CVIDid, which are associated
with Th17 skewing and consistent with reports in other in-
flammatory disorders [32]. Upregulation of IL6, which may
be consistent with Th17 and Tfh activation, was observed in
both CVIDio and CVIDid compared to HC in the present
study. Other Th17-associated cytokines such as IL21 and
IL22 were not measured here. However, these findings are
in contrast to previous studies reporting a suppression of
IL17/TH17 cells in CVID [18, 33, 34]. A possible alternative
source for IL17 production in these patients are a population
of innate lymphoid cells that produce IL17 and IFNγ that
were described in the blood of CVID patients with immune
dysregulation [35].

In parallel to the Th1/Th17-associated inflammatory cyto-
kines, we observed an increase of immune regulatory proteins.
The induction of IL10 often accompanies production of proin-
flammatory cytokines in both myeloid and T helper cells, sug-
gestive of an (in this case insufficient) compensatory feedback
loop that limits immune pathology [36]. While IL10 can be
produced by regulatory T cells, there was no coupregulation of
TGF-β in this cohort, suggesting an alternative source for the
IL10, such as monocytes. Induction of IL10 due to persistent
antigen exposure can result in functional T cell exhaustion
[37]. Chronic antigen exposure in CVIDid despite IgRT may
be related to bacterial translocation from the gastrointestinal
tract [38].

LAG3, TNFRSF9 (also known as 4-1BB) and CD83 were
also upregulated in immune dysregulation in our cohorts and
may reflect a chronically activated immune state and immune

exhaustion. LAG3 is a coinhibitory receptor that limits the
proliferative capacity of T cells and can confer suppressive
properties to other T cells [39, 40]. However, the soluble form
of LAG3 has been shown to be immune potentiating and is
being investigated as a vaccine adjuvant [41]. TNFRSF9 also
has complex effects on different cell types [42, 43], and in-
creased serum levels of soluble TNFRSF9 correlate with dis-
ease severity in rheumatoid arthritis and other autoimmune
diseases, suggesting that the soluble form may act as a decoy
receptor preventing TNFSF9-mediated suppression of T cells
[44]. Similar dynamics have been described for antigen pre-
senting cell maturation marker CD83, which is reported to be
immunosuppressive in autoimmune diseases in its soluble
form [25].

Taken together, the upregulation of IL10, LAG3,
TNFRSF9, and CD83 in immune dysregulation in CVID
may indicate a chronic and refractory immune activated state.
Whether functional exhaustion of T cells also occurs in these
patients will need to be assessed on a cellular level. One study
that investigated this in a mixed cohort of CVIDid and CVIDio
patients reported functional exhaustion of CD4 T cells, which
correlated with serum endotoxemia [45]. Authors of this study
did not find upregulation of membrane-bound LAG3, but do
report increased surface expression of PD-1 [45]. In our study,
serum levels of PD-L1 (the ligand for PD-1) were significantly
increased in CVID with autoimmunity but did not pass the
fold-change criterion (adj. p = 0.029, FC = 1.32).

To conclude, this study shows a promising first step in the
development of a screening tool for immune dysregulation in
CVID using serum proteins IL10, IL12RB1, and CD83 as
biomarker. In addition, the immune dysregulation clinical
phenotype was associated with increased levels of Th1- and
Th17- related serum proteins, and displays a complex immune
regulatory profile that includes IL10, LAG3, TNFRSF9, and
CD83 signaling. Further research focusing on the dynamics of
these biomarkers longitudinally is necessary to evaluate its use
as an early detection screening tool for immune dysregulation
in CVID. In addition, studying the behavior of these bio-
markers under immunosuppressive therapy will indicate
whether these markers can be used to monitor therapeutic
response.
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