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Heterozygous TLR3 Mutation in Patients with Hantavirus Encephalitis
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Abstract
Puumala hantavirus (PUUV) hemorrhagic fever with renal syndrome (HFRS) is common in Northern Europe; this infection is
usually self-limited and severe complications are uncommon. PUUV and other hantaviruses, however, can rarely cause enceph-
alitis. The pathogenesis of these rare and severe events is unknown. In this study, we explored the possibility that genetic defects
in innate anti-viral immunity, as analogous to Toll-like receptor 3 (TLR3) mutations seen in HSV-1 encephalitis, may explain
PUUV encephalitis. We completed exome sequencing of seven adult patients with encephalitis or encephalomyelitis during acute
PUUV infection. We found heterozygosity for the TLR3 p.L742F novel variant in two of the seven unrelated patients (29%, p =
0.0195). TLR3-deficient P2.1 fibrosarcoma cell line and SV40-immortalized fibroblasts (SV40-fibroblasts) from patient skin
expressing mutant or wild-type TLR3 were tested functionally. The TLR3 p.L742F allele displayed low poly(I:C)-stimulated
cytokine induction when expressed in P2.1 cells. SV40-fibroblasts from three healthy controls produced increasing levels of
IFN-λ and IL-6 after 24 h of stimulation with increasing concentrations of poly(I:C), whereas the production of the cytokines was
impaired in TLR3 L742F/WT patient SV40-fibroblasts. Heterozygous TLR3mutationmay underlie not only HSV-1 encephalitis
but also PUUV hantavirus encephalitis. Such possibility should be further explored in encephalitis caused by these and other
hantaviruses.
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Introduction

Zoonotic RNA hantaviruses are carried and spread by rodents.
The viruses are shed to rodent urine, droppings, and saliva,
and they are mainly transmitted to human by inhalation.
Hantaviruses may cause human disease with mortality [1];
hantavirus hemorrhagic fever with renal syndrome (HFRS)
occurs in Europe and Asia whereas severe cardiopulmonary
syndrome (HCPS) cases are seen in Americas [1, 2]. Puumala
hantavirus (PUUV) HFRS is common in Europe with

seroprevalence ranging from a few percent to approximately
13% in Finland [2]. Chronic or recurrent cases have not been
reported. The elderly in rural environment especially in
Northern Europe and those exposed to rodents are most com-
monly affected.

HFRS caused by PUUV primary infection is a complex
acute febrile condition in which most symptoms arise from
transient renal failure, disturbed tissue permeability, and tissue
edema during febrile phase of the disease. Many PUUV
HFRS patients also suffer from mostly secondary central ner-
vous system (CNS) symptoms such as dizziness, headache,
light sensitivity, and disturbed vision [3, 4]. Single cases of
pituitary hemorrhage leading to panhypopituitarism during or
soon after acute PUUV infection have been reported [5–7].
The patients may also rarely develop altered level of con-
sciousness, personality change, new onset of focal neurolog-
ical findings, or seizures consistent with encephalitis or acute
encephalomyelitis [5, 8–10]. These unusual cases may also
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present with an elevated cerebrospinal fluid (CSF) white cell
count, abnormal neuroimaging, or electroencephalography.
PUUV hantavirus in the neuroendocrine cells and vascular
endothelial cells of pituitary gland and in the CSF in single
patients have been documented [5, 11]. PUUV IgM in the
CSF suggestive of intrathecal antibody production has been
found. In addition to PUUV HFRS, cases of Dobrava hanta-
virus HFRS encephalitis and Sin Nombre, Andes, and New
York hantavirus HCPS encephalitis have been reported
[12–15]. Young male patients seem to be at elevated risk of
developing strong CNS symptoms associated with acute
PUUVHFRS [16]. The pathogenesis of these rare and serious
CNS events has remained unknown.

The aim of our study was to search for genetic explanation
for encephalitis or encephalomyelitis caused by PUUV hanta-
virus. We enrolled all 7 PUUV HFRS patients hospitalized at
Oulu University Hospital due to acute encephalitis or dissem-
inated encephalomyelitis, diagnosed according to
International Encephalitis Consortium diagnostic criteria [8].
We hypothesized that defective antiviral responses triggered
by Toll-like receptor 3 (TLR3) can be responsible. TLR3 rec-
ognizes double-stranded RNA (dsRNA), an intermediate or
by-product of replication by many viruses. Mutations in the
TLR3 gene predispose to herpes simplex virus 1 (HSV1) en-
cephalitis (HSE), severe influenza pneumonia, and varicella
zoster virus (VZV) ophthalmicus [17–19]. Limited evidence
suggests that defective TLR3 signaling may also associate
with a wider range of viral infections [20]. Our patients there-
fore underwent whole exome sequencing (WES) to test the
hypothesis that their encephalitis may be associated with de-
fective TLR3 signaling.

Methods

Inclusion Criteria

Adult patients with acute PUUV HFRS fulfilling the
International Encephalitis Society criteria for encephalitis or
encephalomyelitis were included [8]. Laboratory diagnosis of
PUUV HFRS was based on serology analyzed using a com-
mercial enzyme-linked immunosorbent assay of IgM antibod-
ies (Reagena Puumala IgM EIA kit, Reagena, Toivala,
Finland). In selected cases, the samples were also analyzed
with indirect immunofluorescence test for PUUV IgG which
displayed a granular staining pattern in cases of typical acute
infection [2].

None of the patients (described in detail in Supplementary
materials) with acute PUUV hantavirus HFRS suffered from a
known primary or secondary immunodeficiency and tested
negative for human immunodeficiency virus. They had symp-
toms and findings consistent with encephalitis (patients 2, 4,
5, 6) or acute disseminating encephalomyelitis (ADEM,

patient 1). One patient developed aggressive multiorgan fail-
ure (patient 7). Patient 3 suffered from confusion, pituitary
hemorrhage, and a prolonged ocular disease triggered by
PUUV. Siblings of patient 1 were analyzed for TLR3 genetics
and viral serology.

Approval and Patient Consent

The study was conducted in accordance with principles of the
Declaration of Helsinki and was approved by the Oulu
University Hospital Ethics Committee. Written informed con-
sent was obtained from the study subjects.

Molecular Genetics

Genomic DNA was extracted from EDTA-blood samples
using standard protocols. Briefly, the WES libraries were pre-
pared according to manufacturer’s instructions at the Institute
for Molecular Medicine Finland, Helsinki, Finland. In library
preparation, the following kits were used: SureSelect Human
All Exon V5 (Agilent Technologies, Santa Clara, CA, USA;
patient 6), SureSelect Clinical Research Exome (Agilent
Technologies, Santa Clara, CA, USA; patients 1, 5, and 7),
Nextera Flex for Enrichment (Illumina, San Diego, CA, USA;
patients 3 and 4), and SeqCap® EZ MedExome (Roche
Diagnostics, Rotkreuz, Switzerland; patient 2). The sequenc-
ing was performed on HiSeq1500, HiSeq2500, or NovaSeq
platforms (Illumina, San Diego, CA, USA). Sequencing reads
were analyzed using in-house developed variant calling pipe-
line (VCP) for quality control, short read alignment, variant
identification, and annotation [21]. Versions 3.1 (patient 6),
3.2 (patients 1, 5, and 7), and 3.7 (patients 2, 3, and 4) of VCP
were used. Sanger sequencing was performed to confirm the
TLR3 variations, primer information and sequences are avail-
able upon a request.

The analysis included only exonic and splicing variants.
Synonymous variants, variants with minor allele frequency
(MAF) > 0.01 in Genome Aggregation Database (gnomAD;
Cambridge, MA, USA; https://gnomad.broadinstitute.org/)
and REVEL pathogenicity score < 0.3 were filtered out [22].
The analysis was targeted to known Primary Immune
Deficiency Disease (PIDD) genes (in-house designed
customized list of 513 genes) and to disease genes causative
for encephalitis in Human Gene Mutation Database (HGMD;
phenotype search “encephalitis,” list of 42 genes, July 2019).
The remaining variants are listed in the Supplementary mate-
rial Tables E1 (PIDD genes) and E2 (encephalitis genes); they
were not validated by Sanger sequencing. In the variant prior-
itization in silico, prediction tools included in Annovar were
utilized and the pathogenicity of variants was predicted ac-
cording to the American College of Medical Genetics
(ACMG) Standards and Guidelines [23–25]. Since the molec-
ular genetic diagnosis remained unresolved, we loosened the
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filtering criteria for encephalitis disease genes: variants with
MAF < 0.02 in Finnish populations listed in gnomAD
(Cambridge, MA, USA; https://gnomad.broadinstitute.org/)
and REVEL pathogenicity score > 0.2 were included [22,
24, 25].

Cell Culture

The cell culture experiments to analyze the activity of the
TLR3 p.L742F variant were conducted in generally accept-
ed conditions as previously described [17, 18, 26]. Briefly,
primary human fibroblasts were obtained from skin biop-
sies from patient 1 (P1) and healthy controls. The cells
were transformed with SV40 vector to generate immortal-
ized SV40-fibroblast cell lines as previously described
[26]. The TLR3-deficient P2.1 fibrosarcoma cell line was
provided by D.W. Leaman (University of Toledo, Toledo,
OH). Stably transfected P2.1. cells were transfected with
wild-type TLR3, or TLR3 L742F, R867Q or E746X mu-
tants as previously described [18]. The SV40 fibroblasts
and P2.1. cells were maintained in DMEM supplemented
with 10% FCS.

TLR3 agonist poly(I:C) (Amersham) (concentrations 1, 5,
and 25 μg/ml) was used as described [18]. The cells were
stimulated with 25 μg/ml poly (I:C) with or without the pres-
ence of Lipofectamine (Invitrogen). Cells or supernatants
were harvested, and their cytokine mRNA or protein produc-
tion was analyzed by quantitative RT-PCR or ELISA as de-
scribed [18].

HSV-1 and HSV-2 Serology

HSV-1 and HSV-2 type specific IgG antibodies were per-
formed using HerpeSelect (Focus Diagnostics) ELISA kit ac-
cording to the manufacturer’s instructions at the Department
of Medical Microbiology, Turku University Hospital,
Finland. The index values < 0.9 were defined as negative,
0.9–1.10 as a borderline and > 1.10 as positive result.

Results

Genetic Analysis

Exome sequencing identified patients 1 and 7 to carry the
same heterozygous TLR3 variation (rs147431766;
ch r4 :187005064C>T ENSG00000164342 :ENST
00000296795:exon4:c.C2224T:p.L742F) which is enriched
in the Finnish population (allele frequency (AF) 0.01621 in
Finnish population) compared to more heterogenous
European population (AF 0.0007 in European non-Finnish,
Genome Aggregation Database; gnomAD; https://gnomad.
broadinstitute.org/), and has not been described in any

human patients. Regardless, the p.L742F variation is
significantly enriched in our patient cohort (29%, p = 0.
0195) compared to general Finnish population. Other two
patients, patients 2 and 3, are heterozygous for a common
TLR3 p.L412F variation (rs3775291, AF 0.324487 in
Finnish population), but this variant showed no enrichment
in our patients. The TLR3 variants were validated by Sanger
sequencing in all patients. The L742F variant found in our
PUUV HFRS patients is shown in Fig. 1g. Figure 1 g also
illustrates previously characterized TLR3 mutations associat-
ed with HSE, severe influenza, and other viral infections
[17–20].

We performed family segregation of the p.L742F TLR3
variation, using DNA from siblings of patient 1. We found
that a total of 6 of the 9 analyzed family members were pos-
itive for the TLR3 p.L742F variant (Supplementary material
Figure, family tree of patient 1). Patient 7 (p.L742F) did not
have siblings, he lived with his grandmother, and his parents
were not available for analysis. Family members of patients 2
and 3, who are heterozygous for the TLR3 p.L412F common
variant, were not tested, as this variation is not enriched in our
patients.

In addition to TLR3 variants, several genetic findings of
uncertain significance were identified in the whole exome
sequencing data of patients 1 and 7 (Supplementary material
Tables E1, E2, and E3). Interestingly, patient 7 carried a het-
e rozygous myos in -b ind ing pro t e in C muta t ion
(chr11:47354442C>T, c.G3413A, p.R1138H, rs187705120)
known to cause hypertrophic cardiomyopathy (OMIM
600958), which may have contributed to his severe
phenotype.

The L742F TLR3 Protein Is Severely Hypomorphic
In Vitro

We aimed to analyze the effect of the TLR3 L742F variant in
the TLR3-deficient P2.1 fibrosarcoma cell line, which does
not produce detectable amounts of TLR3 protein and does
not respond to the dsRNA mimic polyinosinic:polycytidylic
acid (poly[I:C]) [32]. To do so, we generated cell lines stably
transfected with empty plasmid or with plasmids containing
C-terminally HA-tagged WT and mutants TLR3 cDNAs. In
P2.1 cells expressing WT TLR3, the production of IFNL1
mRNAs was induced after poly(I:C) stimulation, whereas
cells expressing the L742F displayed low poly(I:C)-stimulat-
ed induction of IFNL1 mRNA, like those expressing the pre-
viously reported R867Q allele, while the previously reported
E746X allele displayed no induction of IFNL1 (E746X) (Fig.
1a, b). We chose not to analyze activity of the TLR3 p.L412F
variation, as this variant is not enriched in our patients and it is
thoroughly analyzed by previously studies in different condi-
tions. [27–31]
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Impaired Responses to Poly(I:C) in Patient Fibroblasts
Heterozygous for TLR3 L742F

We further tested whether heterozygosity for the TLR3 L742F
mutation is related to an AD TLR3 deficiency at the cellular

level. Human dermal fibroblasts respond to extracellular
poly(I:C) stimulation in a TLR3-dependent manner [17, 26,
33]. We studied the response to poly(I:C) in SV40-
immortalized skin fibroblasts (SV40-fibroblasts) from P1
(L742F/WT), three healthy individuals and a HSE patient with
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Fig. 1 TLR3mRNA expression levels were determined by RT-qPCR, as
normalized to wild-type (WT) relative expression levels, in P2.1 TLR3-
deficient fibrosarcoma cells without transfection (NT) or transfected with
empty vector (EV), HA-tagged TLR3 WT, L742F (p.Leu742Phe),
R867Q (p.Arg867Gln), or E746X (a). IFNL1 (IL29) induction by
poly(I:C) stimulation, as normalized to wild-type (WT) fold induction
level, in P2.1 cells not transfected (P2.1) or stably transfected with
empty vector (P2.1+EV), HA-tagged TLR3 WT, L742F, R867Q, or
E746X (b). Production of IL-29 (c and d), and IL-6 (e and f) in SV40-
fibroblasts from three healthy controls (C1, C2, C3), P1, and a TLR3−/−
HSE patient, 24 h after stimulation with 1, 5, or 25 μg/ml poly(I:C) (c and
e), or with 25 μg/ml poly(I:C) in the presence of lipofectamine
(poly(I:C)+lipo; d and f), or lipofectamine alone, as assessed by

ELISA. Schematic structure of the human TLR3 gene and protein,
featuring the leader sequence (L), leucine-rich repeats (LRRs) of the
ectodomain, transmembrane domain (TM), linker region (LR), and
Toll/IL-1 receptor (TIR) domain. Roman numerals indicate the coding
exons. Previously reported mutations found in patients with HSE patients
(E110K, L297V, L360P, P554S, G743D, R811I, R867Q), severe
influenza (F303S, P554S, P680L) or Varicella zoster virus infection
(L199F, R867X), that have been previously experimentally
characterized (F303S, L360P, P554S, P680L, G743D, R811I, R867Q,
R867X) or not (E110K, L199F, L297V) are shown in blue. The L742F
mutation found in the two patients with complicated Puumala hantavirus
infection is shown in red (g)
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AR complete TLR3 deficiency (TLR3−/−, due to compound
heterozygous P554S and E746X mutations) [26, 33] (Fig. 1c–
f). The fibroblasts from the three healthy controls produced
increasing levels of IFN-λ and IL-6 after 24 h of stimulation
with increasing concentrations of poly(I:C), whereas the pro-
duction of the cytokines was impaired in P1 TLR3 L742F/WT
and abolished in TLR3−/− fibroblasts.

HSV and PUUV Serology Study in Patient Families

We 9 family members of patient 1 for PUUV hantavirus,
HSV1 and HSV2 serology (Supplementary material Figure,
Family 1). All tested family members were positive for HSV1
and negative for HSV2 antibodies. In addition to the index
(P1), only one TLR3 heterozygous sibling had PUUV hanta-
virus IgG. He was also HSV-1 seropositive. None of the fam-
ily members had suffered from an episode of encephalitis.
Incomplete penetrance for HSE is well documented in fami-
lies with heterozygous TLR3 variations, including in individ-
uals infected with HSV-1, as is expected for sporadic enceph-
alitis [17, 26]. The patients and their family members were not
analyzed for influenza virus or VZV antibodies.

Discussion

Inborn errors in TLR3-mediated immune response can ex-
plain at least severe HSV1 and influenza complications in
some patients [18, 26]. Our current study suggests that
TLR3 deficiency may predispose also to hantavirus encepha-
litis. In previously described HSV1 and influenza cases, poor
TLR3-mediated in vitro interferon production has been docu-
mented. In agreement with these previous results, heterozy-
gosity of the TLR3 p.L742F mutation was related to signifi-
cantly compromised responses to TLR3 stimulation in patient
fibroblasts, in terms of interferon and IL-6 induction. The
TLR3 activities were examined in widely used cell culture
conditions including a TLR3 deficient cell line and SV40
immortalized patient skin fibroblasts. Our results are also sup-
ported by the previously published data on ability of hantavi-
ruses to activate TLR3-dependent immune responses in vitro
[34, 35].

Hantavirus HFRS is a complex acute condition during
which a sequence of diverse presentations in most organs of
human body can be observed. PUUV HFRS patients experi-
ence, for example, febrile phase with acute kidney failure, and
they have disturbed tissue permeability with edema. This is
followed by the recovery of kidney function during which the
urine output can be extremely high. Most patients suffer from
mild CNS symptoms such as head ache and dizziness during
this dynamic disease development. A very low number of
these HFRS patients, however, develop obvious symptomatic
encephalitis that fulfills the accepted criteria [8]. When

compared to HSE, for example, the CNS symptoms in
PUUV HRFS encephalitis are obviously more diverse. This
variability in the PUUV HFRS encephalitis presentation is
well demonstrated in our patient cases described in detail in
Supplementary materials.

Exome sequencing can identify knownmonogenic disease-
causing genes in approximately 10 to 20% of patients with
primary immunodeficiency [36]. In our study, the TLR3
p.L742F variant showed reduced biological activity, and sig-
nificant enrichment in our cohort of patients as it was found in
two of the seven cases. When compared with HSE patients,
TLR3 deficiency was found in 6 (5%) of the 120 HSE cases
reported [17]. We found the TLR3 p.L742F variant to be
significantly more common in our patient cohort compared
to general Finnish population (29%, p = 0.0195). Although
the role of TLR3 p.L742F appears important, we cannot ex-
clude the possibility that other genes may also contribute to
the described events. For example, the heterozygous myosin-
binding protein C mutation in patient 7 may have affected the
course of his disease. Also, consequences of this mutation on
immune responses in primary human PUUV infection should
require further studies [37]. The TLR3 p.L412F variant with-
out enrichment in our patient population was observed in an-
other two patients; this common variant exhibit neutral func-
tional testing and it is not associated with any disease condi-
tion in heterozygous form [27–30]. All cases and their family
members with the hypormophic TLR3 p.L742F variant or the
common p.L412F variant were positive for HSV1 antibodies;
none of them had a history of HSE. One patient with p.L412F
developed chronic eye symptoms soon after the acute PUUV
infection (patient 3, Supplementary material). Ocular features
are among the most common presentations of PUUV hanta-
virus infection, although this may be not related to the TLR3
p.L412F variation at all [2].

Several hantavirus species can cause encephalitis of vary-
ing severity in humans. Our current study may explain for the
first time genetic and biological mechanisms for these most
severe CNS conditions caused by the hantaviruses. It seems
possible that genetic defects in antiviral response should at
least partly explain these potentially life-threatening condi-
tions. PUUV HFRS in our study represents a mild form of
hantavirus disease. It is possible that encephalitis caused by
other hantaviruses with a higher rate of complications and
mortality can be explained with similar genetic and biological
mechanisms. We recommend further studies to explore the
potential of defective TLR3 signaling or other innate antiviral
responses to associate with severe complications upon infec-
tions with other hantavirus species [26, 33].
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