Skip to main content

Advertisement

Log in

Differential Transcriptional Expression of PPARα, PPARγ1, and PPARγ2 in the Peritoneal Macrophages and T-cell Subsets of Non-obese Diabetic Mice

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Background

The peroxisome proliferator-activated receptors (PPARs) have been implicated in immune regulation. We determined the transcriptional expression of the three isoforms, PPARα, PPARγ1, and PPARγ2 in the peritoneal macrophages, CD4- and CD8-positive lymphocytes in non-obese diabetic (NOD) mice at 5 and 10 weeks of age as well as at diabetic stage.

Results

Compared to the non-obese diabetic resistant (NOR) mice, the peritoneal macrophages of NOD mice expressed increased levels of PPARα but reduced levels of PPARγ2, while PPARγ1 expression was unchanged in all age groups. CD4-positive lymphocytes expressed low levels of PPARα in diabetic NOD mice and greatly reduced expression of PPARγ2 in all age groups. Unlike peritoneal macrophages and CD4-positive cells, the CD8-positive cells expressed low levels of PPARγ1 in diabetic NOD mice but no difference in PPARα and PPARγ2 expression was observed compared to NOR mice.

Conclusion

The current findings may suggest an important regulatory role of PPARs in the pathogenesis of autoimmune diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hutchings P, Rosen H, O’Reilly L, Simpson E, Gordon S, Cooke A. Transfer of diabetes in mice prevented by blockage of adhesion-promoting receptors on macrophages. Nature. 1990;348:639–42. doi:10.1038/348639a0.

    Article  PubMed  CAS  Google Scholar 

  2. Bendelac A, Carnaud C, Boitard C, Bach JF. Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates. Requirement for both L3T4+ and Lyt-2+ T cells. J Exp Med. 1987;166:823–32. doi:10.1084/jem.166.4.823.

    Article  PubMed  CAS  Google Scholar 

  3. Yaacob NS, Kaderi MA, Norazmi MN. The expression of cytokine genes in the peritoneal macrophages and splenic CD4- and CD8-positive lymphocytes of the non-obese diabetic mice. J Clin Immunol. 2004;24:177–84. doi:10.1023/B:JOCI.0000019783.61674.1d.

    Article  PubMed  CAS  Google Scholar 

  4. Rabinovitch A. Immunoregulatory and cytokine imbalances in the pathogenesis of IDDM. Therapeutic intervention by immunostimulation? Diabetes. 1994;43:613–21. doi:10.2337/diabetes.43.5.613.

    Article  PubMed  CAS  Google Scholar 

  5. Isseman I, Green S. Activation of a number of the steroid receptor superfamily by peroxisome proliferators. Nature. 1990;347:645–50. doi:10.1038/347645a0.

    Article  Google Scholar 

  6. Kliewer SA, Forman BM, Blumberg B, Ong ES, Borgmeyer U, Mangelsdorf DJ, et al. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci U S A. 1994;91:7355–9. doi:10.1073/pnas.91.15.7355.

    Article  PubMed  CAS  Google Scholar 

  7. Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta and -gamma in the adult rat. Endocrinology. 1996;137:354–66. doi:10.1210/en.137.1.354.

    Article  PubMed  CAS  Google Scholar 

  8. Vidal-Puig AJ, Considine RV, Jimenez-Linan M, Werman A, Pories WJ, Caro JF, et al. Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J Clin Invest. 1997;99:2416–22. doi:10.1172/JCI119424.

    Article  PubMed  CAS  Google Scholar 

  9. Lampen A, Carlberg C, Nau H. Peroxisome proliferator-activated receptor delta is a specific sensor for teratogenic valproic acid derivatives. Eur J Pharmacol. 2001;431:25–33. doi:10.1016/S0014-2999(01)01423-6.

    Article  PubMed  CAS  Google Scholar 

  10. Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell. 1994;79:1147–56. doi:10.1016/0092-8674(94)90006-X.

    Article  PubMed  CAS  Google Scholar 

  11. Zhu Y, Qi C, Korenberg JR, Chen XN, Noya D, Rao MS, et al. Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms. Proc Natl Acad Sci U S A. 1995;92:7921–5. doi:10.1073/pnas.92.17.7921.

    Article  PubMed  CAS  Google Scholar 

  12. Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, et al. International Union of Pharmacology LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev. 2006;58:726–41. doi:10.1124/pr.58.4.5.

    Article  PubMed  CAS  Google Scholar 

  13. Daynes RA, Jones DC. Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol. 2002;2:748–59. doi:10.1038/nri912.

    Article  PubMed  CAS  Google Scholar 

  14. Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature. 1998;391:82–6. doi:10.1038/35154.

    Article  PubMed  CAS  Google Scholar 

  15. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature. 1998;391:79–82. doi:10.1038/34178.

    Article  PubMed  CAS  Google Scholar 

  16. Yang XY, Wang LH, Chen T, Hodge DR, Resau JH, DaSilva L, et al. Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor gamma (PPARgamma) agonists. PPARgamma co-association with transcription factor NFAT. J Biol Chem. 2000;275:4541–4. doi:10.1074/jbc.275.7.4541.

    Article  PubMed  CAS  Google Scholar 

  17. Augstein P, Dunger A, Heinke P, Wachlin G, Berg S, Hehmke B, et al. Prevention of autoimmune diabetes in NOD mice by troglitazone is associated with modulation of ICAM-1 expression on pancreatic islet cells and IFNg expression in splenic T cells. Biochem Biophys Res Commun. 2003;304:378–84. doi:10.1016/S0006-291X(03)00590-4.

    Article  PubMed  CAS  Google Scholar 

  18. Awara WM, El-Sisi AE, El-Refaei M, El-Naa MM, El-Desoky K. Insulinotropic and anti-inflammatory effects of rosiglitazone in experimental autoimmune diabetes. Rev Diabet Stud. 2005;2:146–56. doi:10.1900/RDS.2005.2.146.

    Article  PubMed  Google Scholar 

  19. Reddy S, Liu W, Elliott RB. Distribution of pancreatic macrophages preceding and during early insulitis in young NOD mice. Pancreas. 1993;8:602–8. doi:10.1097/00006676-199309000-00012.

    Article  PubMed  CAS  Google Scholar 

  20. Pozzilli P, Signore A, Williams AJ, Beales PE. NOD mouse colonies around the world—recent facts and figures. Immunol Today. 1993;14:193–6. doi:10.1016/0167-5699(93)90160-M.

    Article  PubMed  CAS  Google Scholar 

  21. Clark RB, Bishop-Bailey D, Estrada-Hernandez T, Hla T, Puddington L, Padula SJ. The nuclear receptor PPAR gamma and immunoregulation: PPAR gamma mediates inhibition of helper T cell responses. J Immunol. 2000;164:1364–71.

    PubMed  CAS  Google Scholar 

  22. Yoon JW, Jun HS, Santamaria P. Cellular and molecular mechanisms for the initiation and progression of beta cell destruction resulting from the collaboration between macrophages and T cells. Autoimmunity. 1998;27:109–22. doi:10.3109/08916939809008041.

    Article  PubMed  CAS  Google Scholar 

  23. McDuffie M, Maybee NA, Keller SR, Stevens BK, Garmey JC, Morris MA, et al. Nonobese diabetic (NOD) mice congenic for a targeted deletion of 12/15-lipoxygenase are protective from autoimmune diabetes. Diabetes. 2008;57:199–208. doi:10.2337/db07-0830.

    Article  PubMed  CAS  Google Scholar 

  24. Middleton MK, Rubinstein T, Pure E. Cellular and molecular mechanisms of the selective regulation of IL-12 production by 12/15-lipoxygenase. J Immunol. 2006;176:265–74.

    PubMed  CAS  Google Scholar 

  25. Yu Z, Scheider C, Boeglin WE, Brash AR. Epidermal lipoxygenase products of the hepoxilin pathway selectively activate the nuclear receptor PPARα. Lipids. 2007;42:491–7. doi:10.1007/s11745-007-3054-4.

    Article  PubMed  CAS  Google Scholar 

  26. Tontonoz P, Nagy L, Alvarez JGA, Thomazy VA, Evans RM. PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell. 1998;93:241–52. doi:10.1016/S0092-8674(00)81575-5.

    Article  PubMed  CAS  Google Scholar 

  27. Li M, Pascual G, Glass CK. Peroxisome proliferator-activated receptor gamma-dependent repression of the inducible nitric oxide synthase gene. Mol Cell Biol. 2000;20:4699–707. doi:10.1128/MCB.20.13.4699-4707.2000.

    Article  PubMed  CAS  Google Scholar 

  28. Cunard R, Ricote M, DiCampli D, Archer DC, Kahn DA, Glass CK, et al. Regulation of cytokine expression by ligands of peroxisome proliferator activated receptors. J Immunol. 2002;168:2795–802.

    PubMed  CAS  Google Scholar 

  29. Jones DC, Ding X, Daynes RA. Nuclear receptor peroxisome proliferator-activated receptor α (PPARα) is expressed in resting murine lymphocytes. The PPARα in T and B lymphocytes is both transactivation and transrepressioncompetent. J Biol Chem. 2002;277:6838–45. doi:10.1074/jbc.M106908200.

    Article  PubMed  CAS  Google Scholar 

  30. Dreyer C, Krey G, Keller H, Givel F, Helftenbein G, Wahli W. Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell. 1992;68:879–87. doi:10.1016/0092-8674(92)90031-7.

    Article  PubMed  CAS  Google Scholar 

  31. Marx N, Kehrle B, Kohlhammer K, Grüb M, Koenig W, Hombach V, et al. PPAR activators as antiinflammatory mediators in human T lymphocytes: implications for atherosclerosis and transplantation-associated arteriosclerosis. Circ Res. 2002;90:703–10. doi:10.1161/01.RES.0000014225.20727.8F.

    Article  PubMed  CAS  Google Scholar 

  32. Wang P, Anderson PO, Chen S, Paulsson KM, Sjogren HO, Li S. Inhibition of the transcription factors AP-1 and NF-kappaB in CD4 T cells by peroxisome proliferator-activated receptor gamma ligands. Int Immunopharmacol. 2001;1:803–12. doi:10.1016/S1567-5769(01)00015-7.

    Article  PubMed  CAS  Google Scholar 

  33. Saubermann LJ, Nakajima A, Wada K, Zhao S, Terauchi Y, Kadowaki T, et al. Peroxisome proliferator-activated receptor gamma agonist ligands stimulate Th2 cytokine response and prevent acute colitis. Inflamm Bowel Dis. 2002;8:330–9. doi:10.1097/00054725-200209000-00004.

    Article  PubMed  Google Scholar 

  34. Yoshida K, Kikutani H. Genetic and immunological basis of autoimmune diabetes in the NOD mouse. Rev Immunogenet. 2000;2:140–6.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the IRPA Grant (No. 305/PPSP/6110251) provided by the Ministry of Science, Technology and Environment, Malaysia. MAK was supported by the National Science Fellowship under the same ministry. We are grateful to Mr. Jamaruddin Mat Asan for his expert technical assistance in flow cytometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd-Nor Norazmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaacob, NS., Kaderi, M.A. & Norazmi, MN. Differential Transcriptional Expression of PPARα, PPARγ1, and PPARγ2 in the Peritoneal Macrophages and T-cell Subsets of Non-obese Diabetic Mice. J Clin Immunol 29, 595–602 (2009). https://doi.org/10.1007/s10875-009-9300-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-009-9300-1

Keywords

Navigation