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Abstract Although the interleukin-2 (IL-2)/IL-2R signal-
ing pathway has been the focus of numerous studies,
certain aspects of its molecular regulation are not well
characterized, especially in non-T cells, and a more
complete understanding of the pathway is necessary to
discern the functional basis of the genetic association
between the IL-2-IL-21 and IL-2RA/CD25 gene regions
and TID in humans. Genetic variation in these regions
may promote T1D susceptibility by influencing transcrip-
tion and/or splicing and, hence, IL-2 and IL-2RA/CD25
expression at the protein level in different immune cell
subsets; thus, there is a need to establish links between the
genetic variation and immune cell phenotypes and
functions in humans, which can be further investigated
and validated in mouse models. The detection and
characterization of genetically determined immunopheno-
types should aid in elucidating disease mechanisms and
may enable future monitoring of disease initiation and
progression in prediabetic subjects and of responses to
therapeutic intervention.
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Genetic Control of Type 1 Diabetes

The discovery several decades ago of the association of
type 1 diabetes (T1D) with the major histocompatibility
complex (MHC) human leukocyte antigen (HLA) class II
(chromosome 6p21) region convinced most investigators
that T1D was an autoimmune disease [1-3]. This caused a
fundamental shift in research focused on preventing T1D,
and several trials using the immunosuppressive drug
cyclosporine were conducted. Although cyclosporine could
reverse T1D in new onset patients, an observation that
reinforced the concept that immune cells mediate T1D, the
disease emerged almost immediately after drug withdrawal,
and moreover, long-term immunosuppression as a cure for
T1D has more potentially life-threatening complications
than T1D itself [4]. The search for more clues about the
pathogenesis of T1D from cellular immunological studies
and from the discovery of additional T1D genes character-
ized much of T1D research in the following decades. The
search for other genes with effects on disease susceptibility
as large as those of the HLA class II genes failed, and
results from the nonobese diabetic (NOD) mouse model of
T1D indicated that many genes outside of the MHC
influence disease susceptibility [4]. The belief that a greater
understanding of the genetics underlying T1D would
illuminate disease etiology inspired several investigators
to accumulate even larger numbers of DNA samples from
T1D patients and controls as well as from T1D families to
perform candidate gene association studies [5, 6].

Before recent advances from genome-wide association
studies (GWAS) that have associated additional regions
with T1D [7, 8], there were four non-MHC genes
associated with human TID: the insulin gene (on chromo-
some 11pl5) [9], the cytotoxic T-lymphocyte-associated
antigen-4 (CTLA-4) gene (on 2q33) [10], the PTPN22 gene
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(on 1pl13) [11-13], and the interleukin-2 receptor alpha
chain (IL-2RA/CD25) gene region (on 10p15) [14, 15]. All
four associations emerged from candidate gene studies, and
studies on the CD25 gene, which encodes the inducible
alpha subunit of the IL-2 receptor, were in part inspired by
results from the NOD mouse model showing that a strong
genetic effect for T1D mapped to the chromosome 3 region
encompassing the IL-2 gene (Idd3) [16, 17]. Mice possess-
ing T1D susceptibility alleles at /dd3 have reduced IL-2
levels in comparison to mice with C57BL/6 (B6)-derived
resistance alleles [18], with this allelic variation of the IL-2
gene having at least 46 associated SNPs near and in the
gene, resulting in a twofold reduction in IL-2 expression
[19]. Data supporting the hypothesis that particular SNPs
upstream of the minimal promoter of the IL-2 gene can alter
the transcriptional activity of the gene have also been
presented [20].

In humans, the T1D-association in the gene region
encompassing /L2RA was first discovered by Vella et al.
[15], using a tag SNP approach [21, 22]: A strong statistical
evidence for an association in the region was found (P=
6.5x10°®), and this finding was later replicated by Qu et al.
[23] in an independent family collection. The association of
IL2RA with T1D has been further verified in a large-scale
genetic fine-mapping study by Lowe et al. [14] that
localized the T1D association in the region to two
independent SNP groups (groups 1 and 2, Fig. 1). The
groups span 14- and 40-kb overlapping regions that
encompass /L2RA intron 1 and the 5’ regions of /L2RA
and RNA binding motif protein (RBM17; OR=2.04, 95%
CI=1.70-2.45, P=1.92x10°%). As the two SNP groups
found by Lowe et al. [14] localized to a region centered on
the 5’ region of both /L2R4 and RBM17, one or both SNP
groups could affect either of the genes; however, IL2RA is
the favored candidate because of its known immunological
relevance. Six positive regulatory regions and two negative
regulatory elements have been found to be involved in the
regulation of IL2RA expression [24]. Lowe et al. [14]

Fig. 1 IL2RA locus and the
T1D-associated SNP groups.
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resequenced these regions and found no associated SNPs in
any of the known regulatory elements, suggesting that
disruption of one of these regions is not the cause of the
disease association. However, the SNPs may potentially
affect CpG dinucleotides [14], noting that CpG dinucleotide
methylation is important in gene transcriptional regulation
[25]. The genome-wide mapping technique used by Roh et
al. [26] has also identified high acetylation levels in the
IL2RA 5' region in both resting and activated T cells, and
one or more of the associated SNPs may be implicated in
histone remodeling and, thus, in /L2RA transcription. It is
also interesting to note that recently, the Wellcome Trust
Case-Control Consortium completed a GWAS involving a
scan of 500,000 SNPs across the genome, which showed a
significant association between T1D and six previously
unknown chromosome regions (P<5x107"), including
4927, which contains the IL-2 and IL-21 genes; further
fine-mapping is required, however, to better localize the
association within this region [8].

Influence of the IL-2/IL-2RA Pathway in Autoimmunity
and Tolerance

The genetic evidence that the IL-2/IL-2R pathway is
involved in the development of T1D in both humans and
mice raises questions concerning how functional variation
of this pathway can promote TID susceptibility and
whether the precise mechanisms involved are conserved
between species. Moreover, might variation in these path-
ways alter susceptibility to autoimmune diseases in addition
to TID?

IL-2 knockout mice develop autoimmunity, including
a type of inflammatory bowel disease [27-29], while mice
deficient in CD25 show an initial normal lymphoid
development, but subsequently develop peripheral lym-
phoid organ enlargement as polyclonal T and B cells
undergo expansion and activation-induced cell death

6120 6130 6140 6150 6160 6170 kb
1 ] 1 ) 1 1

chromosome region 10p15. Two I T T
groups of SNPs, found in the

ILZRA

intron 1 and 5' regions of /L2RA
are independently associated ‘
with TID (OR=2.04, 95% Cl=
1.70-2.45, P=1.92x1072%) [14]

L1
mrinri
Protective SNP Group 1

Protective SNP Group 2

W = protective SNP
O =susceptible SNP

@ Springer



J Clin Immunol (2008) 28:685-696

687

(AICD) is impaired, and with age autoimmunity develops
[30]. These observations are consistent with the develop-
ment of TID in NOD mice associated with reduced IL-2
levels [18, 19], and furthermore, /dd3 alleles are known to
affect the development of a number of other autoimmune
diseases, including autoimmune ovarian dysgenesis [31],
experimental autoimmune encephalomyelitis [32], and
Sjogren’s syndrome-associated manifestations [33, 34]. In
addition, experiments utilizing /dd3 congenic mouse strains
demonstrated that mice with Idd3 susceptibility alleles have
reduced sensitivity to tolerance induction to allogeneic [35]
and xenogeneic [36] islet grafts. Similarly, protective alleles
at Idd3 and Idd5 facilitated islet-antigen specific tolerance
as compared with NOD mice; the proliferation of auto-
reactive CD8" T cells was greatly reduced in the pancreatic
lymph nodes (PLNs) upon activation by cross-presented
islet antigens and migration to the islets appeared to be
eliminated [37].

In humans, van Heel et al. [38] have found evidence of
an association in the /L2-IL2] region with celiac disease
(P=1.3x10""%), and this group also found an association in
this region with rheumatoid arthritis and confirmed the
initial T1D association found by Todd et al. [8], in an
independent case-control cohort [39]. Todd et al. [8] also
found evidence of an association in this region with
autoimmune thyroid disease (Graves’ disease). Similarly,
apart from its association with T1D, the /L2RA region has
been found to be associated with Graves’ disease [40],
rheumatoid arthritis [7], and multiple sclerosis [41] through
GWAS, and rare IL2RA mutations cause severe autoim-
mune disease [42, 43].

Thus, there is increasingly strong evidence supporting
the hypothesis that genetic variants in the IL-2/IL-2R
pathway play a critical role in the balance between
tolerance and autoimmunity. Although for many of the
above autoimmune diseases fine-mapping is required to
find the most associated SNP or group of SNPs, once each
independent allele is identified, the process of understand-
ing the mechanism by which the likelihood of breaking
self-tolerance is altered by genetic variation at the /L2-IL2]
and/or IL2RA regions will require identification of
genotype—phenotype correlations for each allele. It is even
possible that an allele that is protective for one autoimmune
disease would be neutral or confer susceptibility to another
depending on aspects of the two disease processes such as
disease location, the effector cells and mechanisms used to
destroy the targeted self-tissues, and the subsets of
regulatory cells engaged to counter each disease. To begin
to understand how genetic variation may alter function and
lead to disease susceptibility or resistance, we need to
consider what is already known about the molecules in
question, and about the cellular consequences of their
interaction.

IL-2/IL-2R Transcriptional Regulation: Splicing

As the two groups of T1D-associated SNPs in the /L2RA
region are found in noncoding regions, they could influence
overall CD25 transcript levels or splicing; indeed, levels of
alternatively spliced CTLA-4 forms vary by genotype and
are associated with T1D susceptibility in both humans and
mice [10]. A genotype-associated alteration in the mRNA
splice form levels of BANKI, a gene associated with
systemic lupus erythematosus, has also been reported [44].

The full-length, 55-kDa CD25 glycoprotein is encoded
by eight exons. The first studies indicating that CD25 has
alternative splice forms identified a splice form lacking
exon 4 (A4) [45, 46]. The A4 protein isoform was further
characterized by Neeper et al. [47]: Unlike full-length
CD25, the A4 isoform was incapable of binding IL-2.
Horiuchi et al. [48] also provided evidence for another
alternatively spliced mRNA from /L2RA encoding an
isoform lacking the amino acids encoded by exons 5 to 7,
which includes the transmembrane region, and is pre-
sumably secreted.

A study by Eicher et al. [49] used different IL-2RA/
CD25 constructs lacking specific exons to investigate some
of the characteristics of the regions encoded by the various
exons in IL-2R subunit oligomerization. This work is of
particular interest in light of the potential existence of
several CD25 isoforms. The trimeric IL-2R comprises
CD25 (Fig. 2a), the IL-2Rf3 chain (IL-2RB/CD122) (which
is shared with IL-15R), and the common <y chain (IL-2RG/
CD132) (which is also shared by IL-4, IL-7, IL-9, IL-15,
and IL-21 receptors). By using CD25 constructs, it was
determined that a deletion of exon 4, but not exons 5 or 6,
resulted in an « chain that showed an absence of the IL-2-
induced oligomerization response typically observed when
full-length CD25 was coexpressed with IL-2RB or with IL-
2RB and IL-2RG. Interestingly, it was also observed that,
when full-length CD25 was expressed alone, a high
baseline reporter signal for oligomerization was detected,
indicating that CD25 can undergo a spontaneous, cytokine-
independent oligomerization, and this phenomenon was
confirmed by fluorescence resonance energy transfer
(FRET) analysis. The spontaneous CD25 homo-association
was attenuated upon deletion of exon 6, but not exons 4 or
5 [49]. Hence, it seems likely that CD25 splice isoforms
may differ in certain functional aspects compared to the
full-length form, and it remains to be determined whether
any splice isoform variation is correlated with T1D
susceptibility.

Although alternatively spliced IL-2 mRNAs have not
been studied in the context of autoimmunity, two alterna-
tively spliced IL-2 mRNAs have been identified in humans.
These two produce proteins lacking the amino acids
encoded by exons 2 and 3, respectively, and act as
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Fig. 2 The IL-2R subunits,
their affinities for IL-2, and the a
expression of the cytokine and
its receptor by multiple immune
cell types. a CD25 (IL-2R«)
alone has a low affinity for IL-2,
it is incapable of intracellular
signaling and may be found at
the cell surface as a monomer or
homodimer. Upon immune-cell
activation sCD25 is generated
by proteolytic cleavage. The
high-affinity trimeric IL-2R
comprises CD25, IL-2Rf3, and
the common <y chain (IL-2Rvy).
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competitive inhibitors of full-length IL-2, blocking its
ability to costimulate T cell proliferation and bind to the
trimeric IL-2R, in a dose-dependent fashion [50].

The IL-2/IL-2R Complex and Downstream Signaling

CD25 alone has a low affinity (K4~10 nM) for IL-2 [51].
The dimer of IL-2RB and IL-2RG is also capable of
binding IL-2 with an intermediate affinity (K4~1 nM) [46].
The high-affinity trimeric IL-2R complex has a K of
~10 pM [52] (Fig. 2a). Rickert et al. [53] solved the crystal
structure of IL-2 bound to CD25. CD25 has two extracel-
lular domains (D1 and D2) that are homologous to a set of
[-sandwich protein domains known as sushi domains,
complement control protein repeats or short consensus
repeats [54, 55]. The structure of the trimeric IL-2R
ectodomains bound to IL-2 has been solved by Wang et
al. [70] and, subsequently, by Stauber et al. [56]. Interest-
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ingly, CD25 does not contact either IL-2RB or IL-2RG
(noting that only the ectodomains of the receptor chains
were present); Wang et al. [57] proposed that the basis of
the cooperativity of the trimeric receptor is a decrease in
entropy whereby CD25 binds and concentrates IL-2 at the
cell surface for presentation to IL-2RB and IL-2RG, or
alternatively, a CD25-induced alteration in IL-2 conforma-
tion may occur, hence stabilizing the complex [57].

When IL-2-induced oligomerization of the trimeric IL-
2R occurs, this results in the activation of the JAKI1 and
JAK3 cytoplasmic protein tyrosine kinases that are associ-
ated with the intracellular domains of IL-2RB and IL-2RG,
respectively. These kinases then phosphorylate certain IL-
2RB tyrosine residues that act as docking sites for signal
transducer and activator of transcription (STAT)5a and
STATSD, for example [58]. The IL-2-induced activation of
numerous signaling pathways eventually results in the
transcription of target genes that contribute to the many
functions associated with the IL-2/IL-2R pathway [59—61].
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There is also some evidence that CD25 on one cell can
present IL-2 to IL-2RB/IL-2RG dimers on another cell, in a
high-affinity, intercellular interaction [62]. Even though the
signal transduction cascades downstream of the IL-2/IL-2R
binding event have been quite extensively studied in T
cells, much remains to be elucidated with respect to the
status of these downstream pathways in non-T cells.

The IL-2/IL-2R Pathway and T cell Function

The IL-2/IL-2R signaling pathway is known to have a
pleiotropic role in T cell biology, and the in vivo necessity
for this signaling pathway according to T cell type and
function has been recently reviewed [61]. In 1980, Mier
and Gallo [63] identified IL-2 as an autocrine factor
necessary for the long-term culture of CD4" T cells, and
the involvement of IL-2 in T cell responses is widely
accepted. The activation of T cells through their T cell
receptor (TCR) along with costimulatory signaling results
in the production of IL-2 and the expression of the IL-2R at
the cell surface. The interaction of the cytokine with its
receptor results in clonal expansion and the differentiation
of effector cells [61, 64], as this interaction drives a STATS-
dependent positive feedback loop that induces CD25
upregulation and, hence, increased signaling through
augmented IL-2 capture by its receptor on the activated T
cells [65]. IL-2R-induced signaling also leads to repression
of IL-2 transcription, whereby IL-2 negatively regulates its
own production [66, 67]. In addition to downregulating its
own generation, IL-2 alters the immune response by
causing T cells to become susceptible to apoptosis
following a further strong TCR cross-linking that increases
the expression of death-mediating molecules in the Fas and
tumor necrosis factor (TNF) pathways, in a process termed
AICD [68].

Although these findings support the involvement of the
IL-2/IL-2R pathway in the development of immune
responses, 1L-2- or CD25-deficient mice are still capable
of developing effective immune responses in vivo upon
antigenic challenge [61, 69], suggesting that this pathway
may actually be dispensable. One difficulty in interpreting
studies using such mice is that the autoimmunity associated
with the lack of IL-2 or CD25 may provide a confounding
setting in which a requirement for IL-2 may be circum-
vented. Yet this does not seem to be the case: For example,
TCR-transgenic IL-2- or CD25-deficient mice (that in some
cases have been further crossed with Rag knockout mice)
[70, 71] have little or no autoimmune disease, but they are
still capable of developing effective immunity despite the
lack of IL-2/IL-2R signaling, suggesting that this signaling
pathway may indeed have a redundant role in the elicitation
of an immune response [61, 69]. However, there is some

evidence that IL-2/IL-2R signaling may be mandatory in
the CD8" memory T cell responses associated with long-
lasting T cell immunity [72, 73], and in light of the
possibility of compensatory mechanisms to become en-
hanced when IL-2 or CD25 are deficient, the true
contribution of IL-2/IL-2R signaling in T cell responses in
vivo remains to be determined.

Apart from its function in stimulating effector T cells, the
IL-2/IL-2R pathway also has a role in the maintenance of
self-tolerance. CD25 is constitutively expressed at high
levels on CD4" Foxp3" regulatory T cells (Tregs), which
suppress putatively autoreactive peripheral T cells that
escape thymic deletion during the establishment of central
tolerance [74—77], and Treg depletion causes autoimmunity
in mouse models [78]. Foxp3 is a transcription factor that is
fundamental for Treg production and function [79-81]:
Targeted ablation of the Foxp3 gene results in severe
autoimmune manifestations in mice, and in humans, natural
mutations of the orthologous gene lead to immune
dysregulation, polyendocrinopathy, enteropathy, and X-
linked inheritance (IPEX) syndrome [82—84] and X-linked
autoimmunity-allergic dysregulation syndrome [85]. A
notable feature of Tregs is their inability to produce IL-2,
even upon TCR stimulation [86], and this transcriptional
repression is mediated by Foxp3 and its interaction with
NFAT and AMLI1/Runx1 [87, 88]. The interaction of Foxp3
with these transcription factors is generally responsible for
the establishment of the Treg signature, which includes the
high expression of CD25 [87, 88]. The incapacity to
produce IL-2 themselves along with their high CD25 levels
renders Tregs uniquely sensitive to paracrine IL-2, and this
raises questions regarding the detailed mechanisms by
which the IL-2/IL-2R pathway contributes to Treg devel-
opment and function.

Natural Tregs develop in the thymus, and this develop-
ment requires binding of self-antigen to the TCR and
costimulation through CD28 [89, 90], the latter contributing
to Foxp3 induction and to the production of IL-2 by other T
cells that may act as a paracrine supply of the cytokine for
the developing Tregs [91]. IL-2 has been shown to increase
Foxp3 levels [92], and as the development and maintenance
of Tregs rely on the sustained, high expression of Foxp3,
the TIL-2/IL-2R pathway may indeed be involved in Treg
generation and lineage commitment. Interestingly, utilizing
an ins-HEL TCR transgenic mouse model, it has been
demonstrated that IL-2 plays a critical role in the level of
autoantigen-specific Tregs that are selected in the thymus
and thus found in the periphery, and it has been suggested
that IL-2 promotes the development of Tregs with a high
avidity for self, which may be more efficient in suppressing
autoreactive T cells [93]. Apart from the thymic-derived
Tregs, conventional T cells can become Foxp3-induced
Tregs in the periphery [94], and considering the potential
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role of IL-2/IL-2R signaling in natural Treg development, it
seems likely that this pathway may be involved in the
generation of these induced Tregs. In addition, the IL-2/IL-
2R interaction is required by Tregs in the periphery for the
maintenance of their homeostasis and competitive fitness in
vivo [95].

CD4" CD25"™ Foxp3" Tregs and T1D

Given the importance of Tregs in peripheral tolerance, the
involvement of the IL-2/IL-2R pathway in their develop-
ment and function, and the genetic association of compo-
nents of this pathway with T1D in both humans and mice,
the Treg population has been much studied in the context of
this autoimmune disease.

Treg depletion or blocking of the B7/CD28 pathway
(which decreases Treg frequency) in NOD mice leads to
accelerated disease onset [89, 90], as does IL-2 neutraliza-
tion [96]. Furthermore, T1D resistance in aged NOD mice
has been correlated with Treg expansion in PLNs [97, 98],
and Foxp3-deficient NOD mice show earlier onset and a
higher incidence of T1D compared to normal NOD mice
[99]. More recently, Tritt et al. [100] have investigated the
frequency and function of Tregs in the primary and
secondary lymphoid tissues in the NOD mouse model; the
researchers found no differences in Treg numbers between
T1D-susceptible and T1D-resistant mice, and although the
Tregs did not affect the priming or initial expansion of
diabetogenic T cells, they did influence the differentiation
of these cells in the PLNs.

Yamanouchi et al. [19] provided direct evidence that
IL-2 affects Tregs in the context of T1D by showing
that diabetes susceptibility associated with a NOD allele at
Idd3 is indeed because of allelic variation of the IL-2
gene, with an approximately twofold reduction in expres-
sion correlating with disease. Engineered haplodeficiency
of IL-2 gene expression also reduced IL-2 production by
T cells and resulted in dysregulatory effects similar to
those of the naturally occurring //2 diabetes susceptibility
alleles. Moreover, either the natural or engineered
deficiency of IL-2 production correlated with reduced
Treg function. In accordance with this, Tang et al. [101]
found a progressive decline in the number of Tregs
relative to effector T cells in inflamed NOD mouse islets
(but not in the PLNs), with the intra-islet Tregs expressing
decreased amounts of CD25 and Bcl-2, indicating a Treg
decrease in numbers by apoptosis, potentially because of
an IL-2 deficiency, as IL-2 can induce both CD25 and
Bcel-2 in T cells [102]. The administration of low-dose
IL-2 was capable of promoting Treg survival (noting that
these Tregs had high levels of CD25) and preventing
diabetes.
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In humans, several studies have reported either numer-
ical [103] or functional [104, 105] defects in the Treg
population in T1D patients, while one study suggests no
Treg-related defects at all [106]. Tree et al. [107] have
collectively considered these conflicting results and suggest
that the numerical deficiency in Tregs observed by Kukreja
et al. [103] may be because of the methodology by which
this cell population was defined and the fact that the ages of
their T1D patients and controls were significantly different.
Recently, Brusko et al. [108] have more extensively
investigated Treg frequency and absolute numbers in
long-standing and new-onset T1D patients, their relatives
and healthy controls with no significant differences being
found. Notably, Treg frequency was determined to be age
independent [108], and there is some evidence that Tregs
are maintained by the rapid turnover of memory popula-
tions in vivo [109]. Although, in mice, Foxp3 is only
expressed in Tregs [95], in humans, transiently activated
effector T cells can also express the transcription factor
[110], and thus, definitive Treg identification requires
functional testing for suppressive capability. In relation to
Treg functional defects in T1D patients, Tree et al. [107]
indicate that the discordance between studies may be
because of the different stimulatory conditions utilized in
the assays measuring suppressive capacity. It has been
shown that the strength of stimulation used to activate
effector T cells can greatly affect the suppressive capacity
of Tregs [111], with increasing T cell signal strength
reducing the Treg suppressive capability [112]. Hence,
Brusko et al. [104] and Lindley et al. [105] may have been
able to observe a defect in Tregs from T1D patients because
of the precise stimulatory conditions used. To date there has
been no investigation of Treg number or function in relation
to genetic variation at the IL2RA or IL2-IL21 regions in
humans.

Non-regulatory T cells and T1D

Apart from a potential IL-2/IL-2R-associated defect in Treg
numbers and/or function, an alternative, although not
mutually exclusive, possibility is that an IL-2/IL-2R-
associated defect in effector T cells renders them resistant
to Treg suppression, therefore, resulting in a breakdown of
peripheral tolerance that promotes susceptibility to T1D.
Indeed, an acquisition of resistance to suppression by
effector T cells with time as diabetes progresses in NOD
mice has been observed [113-115]. A study by Waithman
et al. [116] indicates that the provision of IL-2 signaling
through the use of an activatory anti-IL-2 antibody-IL-2
complex can drive tolerant, naive T cells toward autoim-
munity, and memory T cells were also found to upregulate
CD25 subsequent to self-antigen recognition. These results
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suggest that enhanced IL-2 signaling can induce autoim-
munity, and when considered along with the IL-2 deficien-
cy associated with T1D susceptibility at Idd3, these
otherwise paradoxical findings imply that there is a fine
balance between tolerance and autoimmunity and that there
is a necessity for the maintenance of an optimal level of
IL-2/IL-2R signaling, given the multiple functions of this
pathway.

The role of nonregulatory T cells in human T1D has
focused primarily on the antigen-specificity of the
effector T cells, although a correlation has been identified
between genotype at the /L2RA region and soluble CD25
(sCD25) [14]. sCD25 is considered to be a marker of
immune-cell activation as increased amounts, above the
basal circulating level, are observed during acute graft
rejection or infections [117]. Although alternatively
spliced mRNA species can encode non-membrane bound
CD25 as discussed above, it has been postulated that most
of the sCD25 found in the blood is generated by
proteolytic cleavage as T cells become activated and
proliferate [118], and there is conflicting evidence regard-
ing its monomeric [119] or dimeric [120] nature under
physiological conditions. Tregs proliferate in vivo more
quickly than do non-Treg CD4" T cells [109, 121-123]
suggesting the possibility that Tregs contribute to blood
levels of sCD25. Competitive binding studies indicate that
sCD25 binds IL-2 with low affinity [124], although in
vivo functional properties remain to be elucidated. The
half-life of sCD25 is about 40 min in the circulation [125],
and it has been suggested that sCD25 inhibits bioactive
IL-2 [126-128]. Kobayashi et al. [125] have evaluated the
extent of the protection from degradation conferred by
sCD25 on IL-2. sCD25 was found to protect IL-2 from in
vitro inactivation.

Lowe et al. [14] measured the total sCD25 concentra-
tion in plasma samples from 1,357 T1D cases and found
that susceptibility at the /L2RA region was significantly
associated with lower sCD25 levels (P=6.28x102%).
The functional significance of this lower level of sCD25
in T1D patients with susceptibility alleles at IL2RA 1is
unknown, but it could suggest a reduced T cell activity
and/or proliferation, which is potentially indicative of a
lowered state of T cell responsiveness in vivo, and which
might, very speculatively, be consistent with the /dd3-
associated IL-2 deficiency observed in NOD mice. Such
hyporesponsive T cells have been reported in T1D
patients in vitro [129] and in rodent autoimmune-prone
models ex vivo [130]. However, much remains to be
determined regarding the significance of the IL2RA
genotype-sCD25 correlation; any functionality of
sCD25 is unknown, as is the actual cellular origin of it,
as there is evidence that non-T cells can also produce
it (see the next section).

The IL-2/IL-2R Pathway in Other Immune Cell Types

Even though the function of the IL-2/IL-2R pathway has
been most studied in T cells historically, there is now
increasing evidence from work in both humans and mice that
this pathway has a much broader immunological function
(Fig. 2b) that needs to be investigated with respect to the
function of the genetic variants in the IL-2/IL-2R pathway
that influence T1D and other autoimmune diseases.

Aside from T cell-related IL-2 production, dendritic cells
(DCs) also produce IL-2 upon activation with microbial
stimuli [131], and natural killer (NK) and NKT cells are
capable of generating the cytokine as well [96, 132, 133].
Although the functional consequences of NK- and NKT-
cell IL-2 production are not clear, DC-associated IL-2
secretion plays an important role in T cell priming:
Granucci et al. [131] found that mouse IL-2 DCs were
impaired in their ability to induce CD4" and CDS" T cell
proliferation. Feau et al. [134] subsequently showed that
human myeloid and plasmacytoid DCs could also produce
IL-2, and they showed that this production was regulated
by IL-15 in both humans and mice. The ability of DCs to
produce IL-2 raises the question of whether the cytokine
may affect these cells in an autocrine manner, rather than
acting only as a paracrine factor. Both human and mouse
DCs have been found to express CD25 at their plasma
membrane [135, 136]. Work by Naranjo-Gomez et al. [137]
indicates that CD25 can be quickly upregulated on CpG-
and CD40L-activated human plasmacytoid DCs within
6 h of activation, and the administration of exogenous IL-
2 increases the secretion of pro-inflammatory cytokines
such as TNF-«, as well as plasmacytoid DC survival.
Mnasria et al. [138] used lipopolysaccharide (LPS) to
upregulate CD25 at the surface of myeloid DCs, and the
addition of antagonistic anti-CD25 antibodies to the LPS
stimulation resulted in decreased production of pro-inflam-
matory cytokines and impaired ability of the DCs to prime
Tyl cells. Hence, 1L-2/IL-2 signaling is important in DCs
themselves, for their survival and for the generation of
appropriate inflammatory and adaptive immune responses.

Physiologically, the intercellular presentation of IL-2
may play a role in disseminating IL-2-mediated T cell/DC
activation and in activating bystander IL-2RB/IL-2RG-
expressing cells. Such cells include NKT cells [139], and
NK cells, whose activity is augmented upon IL-2 admin-
istration [140—142], and it has more recently been shown in
mice that myeloid DC-derived IL-2 directly acts on NK
cells, stimulating these cells to produce interferon-y
(IFNvy), that in turn promotes NK-cell cytotoxicity [143].
Resting neutrophils also possess the intermediate-affinity
IL-2R, and the IL-2-mediated effects on these cells include
resistance to apoptosis [144], enhanced anti-fungal activity
[145], and increased protein synthesis and cytokine pro-
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duction [146—148]. Jung et al. [149] reported that CD25 is
expressed at the surface of activated B cells and that
recombinant IL-2 stimulates their proliferation, thus con-
firming the existence of a direct effect of IL-2 on B cells, as
had been previously proposed by Swain et al. [150] and
Parker [151]. Monocytes also constitutively express the
intermediate affinity IL-2R [152], and CD25 expression can
be induced at the cell surface upon activation with various
stimuli, including LPS [153, 154]; moreover, after activa-
tion, the supernatants of activated monocytes have high
levels of sCD25 [153]. Consistent with these findings are
the gene expression profiling results of Martinez et al. [155]
regarding monocyte-to-macrophage differentiation and po-
larization. These results show that classically polarized M1
macrophages, which are induced by IFNy with or without
microbial stimuli such as LPS or cytokines such as
granulocyte-macrophage colony-stimulating factor, have
higher CD25 transcript levels than nonclassically activated
M2 macrophages.

The IL-2/IL-2R interaction may also have functions
outside of the immune system. IL-2 is able to augment
endothelial cell proliferation and hence vascularization
[156]. Other studies have shown that IL-2 affects enterocyte
ion secretion and proliferation [157], and it has also been
demonstrated to be an important neuroregulatory molecule
implicated in neurite survival and extension, oligodendro-
cyte proliferation, hypothalamic-pituitary function and
analgesia [158].

Conclusion

Although the IL-2/IL-2R signaling pathway has been the
focus of numerous studies, certain aspects of its molecular
regulation are not well characterized, especially in non-T
cells, and a more complete understanding of the pathway is
necessary to discern the functional basis of the genetic
association between the IL-2-IL-21 and IL-2RA/CD25 gene
regions and TID in humans. Genetic variation in these
regions may promote T1D susceptibility by influencing
transcription and/or splicing and hence IL-2 and CD25
expression at the protein level in different immune cell
subsets; thus, there is a need to establish links between the
genetic variation and immune cell phenotypes and func-
tions in humans, which can be further investigated and
validated in mouse models. The detection and character-
ization of genetically determined immunophenotypes
should aid in elucidating disease mechanisms, and may
enable future monitoring of disease initiation and progres-
sion in prediabetic subjects and of responses to therapeutic
intervention.
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