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Successful vaccines contain an adjuvant component that ac-
tivates the innate immune system, thereby eliciting antigen-
specific immune responses. Many adjuvants appear to be lig-
ands for toll-like receptors (TLR), which are thus promising
targets for the development of novel adjuvants to elicit vac-
cine immunogenicity. However, recent evidence suggests that
some adjuvants activate the innate immune system in a TLR-
independent manner possibly through other pattern recognition
receptors and signaling machinery. In particular, newly identified
intracellular retinoic-acid-inducible gene (RIG)-like receptors,
NOD-like receptors, or even as yet unknown recognition ma-
chinery for the adjuvant may regulate TLR-independent vaccine
immunogenicity. To develop optimal vaccines, it will be critical
to understand how TLR-dependent and TLR-independent innate
immune activation, by various adjuvants, control the consequent
adaptive immune responses to vaccine.
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INTRODUCTION

The basic concept of a vaccine is to trigger the host
immune system and mount adaptive immune responses
of sufficient magnitude and duration, including B-cell-
mediated antibody production and/or specific T-cell-
mediated cellular responses to a protective antigen(s) in
order to prevent infection or reduce the related pathol-
ogy. It is now well-known that successful vaccines should
contain not only such a protective antigen(s), but also a
good adjuvant that efficiently activates the innate immune
system for optimal vaccine immunogenicity.

It has been shown that toll-like receptor (TLR), one
of the innate immune sensors, plays important roles not
only in the initial proinflammatory responses, but also in
the consequent antigen-specific immune responses, both
of which are crucial for protective immunity against in-
fectious diseases (1–3). A variety of immunostimulatory
compounds, including protein, lipid, carbohydrates, and
nucleic acids, have been shown to be TLR ligands and
are currently being used experimentally or in clinical tri-
als within vaccine formulations as an adjuvant. However,
recent evidence has shown that conventional adjuvants
such as aluminium hydroxide (Alum), incomplete and
complete Freund’s adjuvant (IFA or CFA), or unconven-
tional adjuvant-containing vehicle such as apoptotic cells
and virus, elicit efficient adaptive immune responses to
vaccine in the absence of TLRs (4–6). Moreover, newly
characterized intracellular innate receptors that sense a
variety of immunomodulatory compounds, such as NOD-
like receptors (NLR), RIG-like receptors (RLR) and yet
unknown intracellular DNA receptors, have been demon-
strated to activate the innate immune responses, and possi-
bly the adaptive immune responses, in a TLR-independent
manner (7–9). Thus, it is important for us to understand
how these innate sensors or their downstream signal-
ing pathway(s) mediate the adjuvant-induced innate and
adaptive immune responses in order to develop potent,
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but also safe, vaccine or related immunotherapy. Here,
we review recent advances in our understanding of the
TLR-dependent and TLR-independent adjuvant activity
of vaccine components.

Specific Delivery and Targeting of an Adjuvant
to the Cognate TLR for Vaccine Potency and Safety

Most TLR ligands, especially, those that can be chem-
ically synthesized or genetically modified, are now under
development as candidate vaccine adjuvants ((10, 11) and
Table I). These TLR agonists are very potent adjuvants in
capacity of activating cells expressing the cognate TLR,
in particular, dendritic cells (DCs), which are the key anti-
gen presenting cells. DCs produce cytokines, chemokines,
and interferons, and up-regulate their functions, including
antigen processing and presentation to naı̈ve T cells. It
has been shown that coadministration of vaccine (antigen)
and TLR agonist, in the form of direct conjugation, or in-
corporation into an efficient targeting vehicle (a delivery
system such as a viral particle, liposome, or an attached
antibody against a surface molecule on DCs) into antigen

presenting cells via the endosomal pathway, is necessary
for the optimal vaccine formulation (12, 13).

When we consider utilizing TLR-agonists as adjuvants
in vaccine development, it will be important to appreciate
that the intracellular localization of TLRs is quite distinct
between subfamilies. While certain TLRs (TLRs 1, 2, 4,
5, 6, and possibly, 10 and 11) are expressed on the cell
surface, others (TLRs 3, 7, 8, and 9) are found almost
exclusively in intracellular compartments such as the en-
doplasmic reticulum and endosomes. Cell surface TLR1,
TLR2, and TLR6 recognize lipoproteins, TLR4 recog-
nizes lipopolysaccharide (LPS), and TLR5 (or TLR11,
which is not functional in humans though) recognizes a
pathogen-derived protein; by contrast, endosomal TLR3
and TLR7, TLR8, and TLR9 recognize nucleic acids
(14, 15). The physiological meaning of these distinct
expression patterns between cell types and intracellular
compartments is yet to be elucidated, but it is thought
that ligands easily liberated from pathogens, such as flag-
ellin, lipoprotein, and LPS on a pathogen’s surface, are
recognized by the host’s cell surface TLRs, while ligands
hidden inside the pathogens, such as nucleic acids, are

Table I. Adjuvants and Their Usage of Innate Immune Receptors

Adjuvant Innate immune receptor Ligand component Source (origin) Reference(s)

Pam3Cys-SK4 TLR2 and TLR1 Lipoprotein Bacteria or synthetic (85)
MALP-2 TLR2 and TLR6 Lipopeptide Bacteria or synthetic (86, 87)
OspA TLR2 + unknown Bacterial cell wall Borrelia burgdorferi (27, 28)
Hib-OMPC Haemophilus influenzae

type b
(29)

PolyI:C TLR3 dsRNA Virus or synthetic (47, 88)
MDA5 (51, 52)

MPL (Monophosphoryl-lipid
A/trehalose dicorynomycolate
(“Ribi” adjuvant))

TLR4 + unknown LPS + unknown Gram negative bacteria (4, 21)

Flagellin TLR5 Flagellin Bacteria (36–39)
IPAF (42, 43)
NAIP5 (41, 89)

Imidazoquinolins TLR7/8 Synthetic RNA analogs Virus or synthetic (58–60, 66, 90)
Polyuridylic acid (poly-U) TLR7/8 + unknown ssRNA (91)
CpG ODN TLR9 Unmethylated CpG motifs Bacteria or synthetic Reviewed in (70, 72)
Hemozoin TLR9 Hemozoin Plasmodium falciparum

or Synthetic
(92, 93)

Plasmid DNA TLR9 + unknown CpG motifs + unknown Bacteria (77–79)
iE-DAP (γ -d-glutamyl-meso-DAP) NOD1 Desmuramylpeptides (DMP)

containing diaminopimelic
acid (DAP) within

Bacteria or synthetic (30, 94, 95)

FK565 and FK156 NOD1 Peptidoglycan (34)
Complete Freund’s adjuvant (CFA) NOD2 + unknown

(TLR2, 4?)
Muramyldipeptide (MDP) Bacteria (30–32)

? NALP3/cryopyrin/CIAS Muramyldipeptide N/A (96–99)
Toxins
Bacterial RNA
Uric acid crystals

Note. Aluminium hydroxide (Alum), oil in suspensions (incomplete Freund adjuvant (IFA)) and Saponin-based adjuvant (such as QS-21, ISCOM,
MF59) are reviewed in (12, 100, 101).
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recognized in endosomes after lysosomal degradation of
microbes or cells. Such evidence can be translated into
vaccine formulation and delivery systems. Not only vac-
cines need to target antigen presenting cells, but also the
antigen and adjuvant need to reside in the same vesicle
in a cell for efficient antigen processing and presentation
through the endosomal or phagosomal pathway, coupled
with TLR-dependent DC activation/maturation in order to
prime CD4 T cells (16).

In addition, expression of each TLR is also quite dis-
tinct among cell types. TLR2 and 4 are expressed on
various immune cells including macrophages, DCs, B
cells, granulocytes, NK cells, and T cells, and even on
nonimmune cells such as fibroblasts and epithelial cells.
TLR7 and TLR9 are largely expressed in the immune
cells. In particular, these receptors are predominantly ex-
pressed in plasmacytoid DCs that produce a large amount
of type-I interferon during viral infection. The intercel-
lular crosstalk between these TLR-expressing cells may
influence the outcome of adjuvant-induced adaptive im-
mune responses. In the case of viral, DNA, or RNA anti-
gens, which are expressed inside cells, cross-presentation
of antigen to CD8 T cells is known to occur, during which
TLRs in nonantigen presenting cells may affect the out-
come. TLR expression can be altered in response to a
variety of cytokines and environmental stresses induced
by pathogens or vaccines. Thus, the efficient and specific
delivery of vaccine antigen as well as adjuvant into anti-
gen processing and/or presenting cells should be carefully
considered for potent, but also safe, vaccine development.

TLR2/4 and NOD1/2 as Sensors for a Bacterial
Cell-Wall-Based Adjuvant

TLR2 and TLR4 on the cell surface, and intracellu-
lar proteins such as NOD1 and NOD2, which contain a
nucleotide-binding oligomerization domain, are known to
recognize distinct components within bacterial cell walls;
these include LPS (recognized by TLR4), lipoprotein (rec-
ognized by TLR2), peptideglycan (PGN) (recognized by
NOD) and lipoteichoic acid (LTA) (recognized by TLR2).
It is known that the adjuvant activity of bacterial cell walls
is responsible for their ability to activate the innate im-
mune system through cognate receptor(s), and purified
components of bacterial cell walls have also been proven
to be potent adjuvants. The TLR4 ligand LPS has been
experimentally shown to be a potent adjuvant for vaccines,
although its extreme toxicity prevents its use in humans
(17, 18). The adjuvant effect of LPS is solely dependent
on TLR4-mediated, MyD88-dependent signaling (19, 20).
Efforts to eliminate the toxicity of lipid A led to the de-
velopment of monophosphoryl lipid A (MPL) (17, 18).

MPL-based adjuvant (monophosphoryl-lipid A/trehalose
dicorynomycolate (“Ribi” adjuvant)) has been used in hu-
man clinical studies as a new-generation vaccine adjuvant
against infectious diseases and seasonal allergic rhinitis,
and was proved to be safe and effective (21, 22). MPL
contains lipid A as a TLR4 ligand; however, it was re-
cently shown that the dependency of TLR4 on adjuvant
effect of MPL was surprisingly minor, at least for antigen-
specific antibody responses (4), suggesting that there are
yet unknown TLR-independent adjuvant factors within
the MPL compound.

TLR2 mediates the adjuvant activity of its ligand,
lipoprotein; for example, Mycoplasma macrophage-
activating lipopeptide 2 (MALP-2) is recognized by a
heterodimer of TLR2 and TLR6, and the synthetic bacte-
rial lipopeptide PAM3CSK4 is recognized by a dimer of
TLR2 and TLR1 (23, 24), both of which have been proven
to be potent adjuvants in vivo (25, 26). Outer-surface
lipoprotein (OspA) of Borrelia burgdorferi, which is used
in vaccines for Lyme disease, and conjugate polysaccha-
ride vaccines containing outer membrane protein com-
plex derived from Haemophilus influenzae type b (Hib-
OMPC) are both potent vaccine formulations. OspA and
Hib-OMPC not only contain protective antigen, but also
contain immunostimulatory cell wall components as an
adjuvant mainly recognized by TLR2. In humans, low
responders to OspA vaccine have impaired expression of
TLR1, and TLR1−/− as well as TLR2−/− mice were
unable to mount a protective response after OspA vac-
cination (27). However, recent evidence suggests that
there may be other adjuvant factors within the OspA vac-
cine formulation as TLR2−/− mice were protected by
a Pam3Cys-modified OspA vaccine (28). Similarly, Hib-
OMPC vaccine-induced proinflammatory cytokines were
TLR2-dependent; however, antigen-specific IgG titers
were not dramatically reduced in the absence of TLR2
(29), suggesting the existence of other adjuvant factors in
this vaccine formulation.

In addition to the major role of TLR2 and 4 in the cell
surface recognition of antigens and the subsequent acti-
vation of the innate immune system, NOD1 and NOD2,
which are localized in the cytoplasm, have been shown
to recognize PGN, a component of the bacterial cell wall
(30, 31). Muramyldipeptide (MDP), a common structural
component of PGN, is a ligand for NOD2, and other
bioactive moieties of PGN, desmuramylpeptides (DMP)
containing diaminopimelic acid (DAP), were found to be
ligands for NOD1. Interestingly, MDP is a minimally re-
quired component of complete Freund’s adjuvant (CFA),
which is composed of a mycobacterial extract in an oil
emulsion and is one of the most common adjuvants used
experimentally (32). Although purified MDP is capable
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of inducing innate immune responses in human cells (but
not in mouse cells) strong synergisms have been observed
with the other TLR ligands (33, 34); these synergisms
may contribute to the whole adjuvant activity of CFA, as
CFA seems to contain TLR2 and/or TLR4 ligands. Simi-
larly, the BCG vaccine, which is known to contain TLR2
and TLR4 ligands (as well as TLR9 ligand), has been
shown to be able to induce adaptive immune responses
in the absence of MyD88, a critical adaptor for TLR-
mediated innate immune activations, suggesting that the
BCG vaccine may contain TLR-independent adjuvant ac-
tivity, probably NOD-like receptor ligands (35). Further
studies should clarify which component(s) and host re-
ceptor(s) are critical for the adjuvant activity within these
potent vaccine and adjuvant formulations.

TLR5 and NOD-Like Proteins Mediate
the Flagellin-Induced Adjuvant Effect

TLR5 recognizes the bacterial protein flagellin, which
is found in the flagellar structures of many bacteria (36).
TLR5 is detected in epithelia in the lung and gut, and is
also highly expressed in residual dendritic cells such as
those in the lamina propria of the intestine (37). Flagellin
is a potent immune activator, stimulating diverse biologic
effects that mediate both innate inflammatory adaptive
immune responses. The protein nature of flagellin is con-
sidered to be an advantage for many immuno-therapeutic
applications mainly due to its ease of manipulation; for
example, a DNA vaccine encoding a chimeric version
of antigenic protein and flagellin has been developed
(38, 39).

TLR5, however, appears not to be the only receptor that
mediates the flagellin-induced adjuvant effect. Indepen-
dently of TLR5 or MyD88, a member of the NOD-LRR
protein family, neuronal apoptosis inhibitory protein 5
(NAIP5), has been shown to be involved in the detection
of flagellin in the cytoplasm as well as in the caspase-
1-dependent control of Legionella pneumophila infection
by macrophages (40, 41). ICE protease activating fac-
tor (IPAF), another CARD-containing NOD-LRR protein,
has been shown to recognize Salmonella typhimurium,
whose infection also results in caspase-1 activation. Flag-
ellin delivered to the cytosol activates caspase-1 via IPAF,
and independently of TLR5 (42, 43). Although the mech-
anism by which these two proteins recognize the same
ligand is not yet clear, NAIP5 and IPAF may cooperate in
the recognition of such bacterial components as they can
physically interact with each other. It will be of interest to
clarify how the potent adjuvant activities of flagellin are
mediated by these three flagellin receptors: cell-surface
TLR5, the intracellular NOD-like protein NAIP5, and
IPAF.

TLR3, 7, and 8, and RIG-Like Receptors Mediate
the RNA-Induced Adjuvant Effect

TLR3 recognizes double-stranded (ds) RNA derived
from the viral genome, or intermediates generated during
viral replication, all of which have been shown to play
an important role in antiviral responses. Poly-I:C, a syn-
thetic version of dsRNA was one of the first therapeutic
agents used to treat HIV and leukemia patients, but was
abandoned due to its toxicity (44). Several studies have
been undertaken to reduce the toxicity of poly-I:C, and
this agent is currently undergoing clinical trials for breast
cancer and ovarian cancer (45). Importantly, the dsRNA-
induced, TLR3-mediated maturation of CD8 dendritic
cells was shown to play an important role in the induc-
tion of antigen-specific CD4+ and CD8+ T cell responses
via type I interferon-mediated cross-priming, suggesting
that TLR3 is a good adjuvant target for inducing cellular
immune responses (46, 47). However, dsRNA still stimu-
lated dendritic cells in TLR3−/− mice, especially, when
administered directly into the cytosol by transfection, in-
dicating the existence of a TLR3-independent adjuvant
receptor for dsRNA.

Recently, three homologous DExD/H box RNA he-
licases were identified as cytoplasmic sensors for vi-
ral infection and dsRNA (48, 49). Two family mem-
bers, retinoic-acid-inducible gene I (RIG-I) (also called
DDX58) and melanoma-differentiation-associated gene
5 (MDA5) (also called Helicard), share two N-terminal
CARDs followed by an RNA helicase domain (48). RIG-
I and MDA5 differentially sense invasion of a variety of
RNA viruses by recognizing distinct features of the RNA
genome or RNA products and trigger a TLR-independent
signaling pathway through IPS-1, culminating in antiviral
immune responses including type-I IFN production (50).
Surprisingly, recent evidence suggests that MDA5, but
not RIG-I, is essential for TLR3-independent, Poly-I:C-
mediated innate immune responses, including type-I IFN
production and dendritic cell activation (51, 52). These
results also provide the important information that MDA5
may play a role not only in innate antiviral responses,
but also in adaptive immune responses to virus or vaccine
where dsRNA acts as an adjuvant.

Unlike dsRNA, single-stranded RNA had long been
thought to be immunologically inert, because host cells
are abundant with single-stranded RNA species. However,
recent evidence suggests that single-stranded RNA is not
inert, but rather very immunostimulatory unless heavily
modified by methylation or with certain sequences (53–
56) that may explain the ability of single-stranded RNA
to reach endosomes (57). Single-stranded RNA genomes,
oligoribonucleotides derived from HIV or influenza
virus, some double-stranded short interference (si) RNAs
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developed for RNA interference (RNAi), and small syn-
thetic compounds known as imidazoquinolins, are recog-
nized by TLR7 in mice, and by both TLR7 and TLR8 in
humans; this recognition activates various immune cells
that produce type I IFNs and elicit cellular immune re-
sponses (58–60). In humans, TLR7, but not TLR8, is
highly expressed in plasmacytoid DCs, and activation of
TLR7 in these cells leads to the production of type-I IFNs.
By contrast, TLR8 (but not TLR7) is highly expressed in
monocytes, and activation of TLR8 in these cells leads to
the production of proinflammatory cytokines, especially,
IL-12 (61). TLR7 and possibly TLR8 utilize MyD88 as
an essential adaptor to downstream signaling pathways.
Several TLR7 agonists have been approved for clinical
use in various viral infections (62). The TLR7 agonist
imiquimod (5% cream) has been shown to be effective for
external genital warts, basal cell carcinoma, and actinic
keratosis (63–65), and is in a phase I clinical trial against
human papillomavirus (22). Several other synthetic TLR7
agonist compounds have been in phase I or phase II trials
against hepatitis B virus, hepatitis C virus, and cancer (22).
The adjuvant activity of TLR7 ligand was also confirmed
in nonhuman primates (66).

However, immunostimulatory single-stranded RNA de-
rived from either RNA viruses, such as influenza, or syn-
thetic oligoribonucleotides has been reported to stimulate
the immune system in a TLR7/8-independent manner also.
While immunostimulatory RNA and the RNA genomes
of viruses such as influenza activate plasmacytoid DCs
via TLR7, they were also able to activate myeloid cells,
such as monocytes, conventional DCs, or fibroblasts, in a
TLR7- or MyD88-independent manner (6, 55, 67). More-
over, recent studies suggest that RIG-I, in fact, recognizes
5′-triphosphate of single-stranded RNA (68, 69). Thus,
it is important for us to know which innate immune re-
ceptors, TLRs and/or RIG-like receptors are critical for
the induction of protective innate and adaptive immune
responses during viral infection or vaccination with an
RNA-based vaccine that may contain immunostimulatory
RNA as an internal adjuvant. By knowing these details, we
will be able to efficiently target such an RNA-containing
vaccine to the right cells, and optimize their adjuvant ac-
tivity depending on the innate immune receptors described
above, to provide protective immune responses.

TLR9-Dependent and TLR9-Independent Adjuvant
Effect of DNA

As a fundamental entity of most living organisms,
DNA is normally tightly sequestered within the nuclear
or mitochondrial membranes in eukaryotes, the cell wall
in bacteria, or the envelope in viruses. However, in the

circumstances of microbial infection or failure of host
DNA clearance, DNA can be released from microbes or
damaged host cells, and is detected by and modulates
the innate immune system. Currently, TLR9, the only
known receptor to detect immunostimulatory DNA such
as CpG DNA, has been shown to play critical roles in
mediating the protective immune responses to various
infectious agents, allergic disorders, and cancer, and is
implicated in a pathological role in certain autoimmune
diseases (reviewed in (70–72)). Synthetic oligodeoxynu-
cleotides (ODNs) that contain unmethylated CpG motifs
trigger TLR9-mediated, MyD88-dependent signaling in
macrophages, dendritic cells, and B cells to induce the pro-
duction of proinflammatory cytokines, chemokines, and
immunoglobulins. The robust innate immune response to
CpG ODNs skews the host’s immune milieu in favor of
a strong cellular immune response, including induction
of CD4 Th1 and CD8 CTL, an effect that underlies their
use as vaccine adjuvants and anti-allergens. Preclinical
studies provide evidence that CpG ODNs are effective for
each of these uses and can modulate the immune response
to coadministered allergens and vaccines (73, 74).

Plasmid DNA derived from bacteria contains immunos-
timulatory CpG motifs (72), which have been shown to
stimulate the innate immune system; thus, these motifs can
act as a “built-in” adjuvant for DNA vaccines (75). TLR9
is currently the only known receptor for the immunostim-
ulatory CpG motifs in DNA, and TLR9-deficient antigen
presenting cells, including dendritic cells, do not respond
to CpG motifs (76). As expected, TLR9-deficient mice
failed to mount Th1-biased antigen-specific immune re-
sponses to protein vaccines using CpG ODN as an adju-
vant (76).

However, in the case of DNA vaccines, TLR9-deficient
mice mounted a comparable amount of the encoded-
antigen-specific IgG, including IgG1 and IgG2a, IFNγ

secretion and CTL responses, to the amounts produced by
wild-type mice (77, 78); another report showed a partial
reduction of immune responses in TLR9-deficient mice
(79). Moreover, recent evidence suggests that not only
DNA derived from microbes, but also DNA derived from
host cells, activates the innate immune system in a CpG
motif-independent manner that is dependent on its double-
stranded (ds) structure when it is introduced into the cy-
tosol (80, 81) or if the homeostatic clearance of such DNA
is hampered, this pathway is activated (82). Double-
stranded (ds) DNA in the right-handed B-form (B-DNA),
but to a lesser extent in the left-handed Z-form (Z-DNA),
activates both immune and nonimmune cells to produce
type I interferons (IFNs), cytokines, and chemokines
through a TLR9-independent pathway, but as an yet unde-
fined DNA recognition machinery, and a distinct signaling
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pathway in which TBK1, a noncanonical IkB kinase is
involved (83, 84). These results suggest that the immuno-
genicity of DNA vaccines is controlled mainly by TLR9-
independent and, possibly, CpG-motif-independent
factors in the plasmid DNA that act as “built-in” adju-
vants. It will be of interest to investigate whether TLR9-
independent innate immune recognition of and regula-
tion by DNA provide clues to the understanding of their
physiological roles in the immunogenicity of DNA-based
vaccines or immunotherapy.

Concluding Remarks

As TLR-related research on the innate immune sys-
tem matures, TLR-independent pathway(s), which con-
trol not only innate, but also adaptive immune responses,
have emerged. Further understanding of both pathways of
innate immune recognition and regulation by many im-
munologically active compounds will hopefully facilitate
the development of more potent and safer adjuvants, ulti-
mately toward protective vaccines for applicable diseases.
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