
Journal of Clinical Immunology, Vol. 26, No. 1, January 2006 ( C© 2006)
DOI: 10.1007/s10875-006-7518-8

HIV-1-Specific CD4+ T Cell Responses in Chronically HIV-1
Infected Blippers on Antiretroviral Therapy in Relation to Viral
Replication Following Treatment Interruption

EMMANOUIL PAPASAVVAS,1 JAY R. KOSTMAN,2,3 BRIAN THIEL,1 MAXWELL PISTILLI,1

AGNIESZKA MACKIEWICZ,1 ANDREA FOULKES,4 ROBERT GROSS,3,4 KIMBERLY A. JORDAN,5

DOUGLAS F. NIXON,5,6 ROBERT GRANT,5,6 JEAN-FRANCOIS POULIN,5 JOSEPH M. MCCUNE,5,6

KARAM MOUNZER,2 and LUIS J. MONTANER2,7

Received: May 13, 2005; accepted: July 19, 2005

The impact of transient viral load blips on anti-HIV-1 immune re-
sponses and on HIV-1 rebound following treatment interruption
(TI) is not known. Clinical and immunological parameters were
measured during 40 weeks of antiretroviral therapy (ART) and
following TI in an observational cohort of 16 chronically HIV-1-
infected subjects with or without observed viral load blips during
ART. During therapy, blips in seven subjects were associated
with higher anti-HIV-1 (p24) CD4+ T cell lymphoproliferative
responses (p = 0.04), without a significant difference in T cell
activation or total anti-HIV-1 CD8+ T cell interferon-γ (IFN-γ )
responses when compared to nine matched non-blippers. Ther-
apy interruption resulted in a significantly higher viral rebound
in blippers by 8 week despite retention of higher lymphopro-
liferative p24 responses (p = 0.01) and a rise in CD3+ T cell
activation (p = 0.04) and anti-HIV-1 CD8+ T cell responses in
blippers by week 4 when compared to non-blippers. Past week
4 of interruption, therapy re-initiation criteria were also met by
a higher frequency in blippers by week 14 (p < 0.04) with no
difference between groups by week 24. These data support that
blippers have higher anti-HIV lymphoproliferative responses
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while on ART but experience equal to higher viral rebound as
compared to matched non-blippers upon TI.

KEY WORDS: Blips; HIV; treatment interruption; CD4+ T cell re-
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INTRODUCTION

Introduction of antiretroviral therapy (ART) has resulted
in significant advancement in the treatment of human im-
munodeficiency virus type 1 (HIV-1) infection (1–6). In
the majority of patients, treatment with ART results in
a sustained suppression of plasma HIV-1 RNA levels
to <50 copies/mL and restoration of immune function
(7–17). However, transient increases of low level plasma
HIV-1 RNA between 50 and 1000 copies/mL (blips) (18)
are not uncommonly found in otherwise chronically sup-
pressed subjects on ART (19–25) and may reflect inade-
quate drug levels (26), drug resistance (27), immune acti-
vation following vaccination or concomitant co-infections
(28), or an inherent technical variability of the viral
load assays (29). Blips and their associated HIV-1 anti-
genimia could be expected to drive antiviral T cell re-
sponses, which have been associated with a lower vi-
ral load or lack of disease progression as described in
acute and chronic infection, respectively (30–36). An in-
crease in antigen-specific lymphoproliferative CD4+ T
cell responses in these patient cohorts is commonly in-
terpreted as affecting disease progression by supporting
proliferation of antiviral and other recall CD8+ T cell
responses (37).

While time-defined episodes of viral replication follow-
ing therapy interruption are not associated with a higher
degree of viral control when compared to continuous
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therapy (38), the immune relevance of transient blips in
the presence of continually suppressive therapy with re-
gards to immunologic parameters and viral load rebound
following treatment interruption (TI) is not known. We ex-
amined whether observed low level intermittent viremia
between 50 and 1000 copies/mL (preceded and followed
by plasma HIV-1 RNA <50 copies/mL) was associated
with a change in HIV-specific responses and a differential
viral rebound upon therapy interruption when compared
to matched control subjects that interrupted therapy with-
out observed blips (both groups followed equally prior to
therapy interruption). For this purpose, clinical, virologic,
and immunologic parameters before and after TI were fol-
lowed in chronically infected patients who either did or
did not have transient viremia while on continuous ART.
The association between transient plasma HIV-1 RNA
blips and (a) T cell markers of memory and activation and
anti-HIV-1 cellular immune responses during continuous
ART, and (b) levels of plasma HIV-1 RNA rebound after
TI were examined.

MATERIALS AND METHODS

Patients and Study Design

As an observational study, data are presented following
post hoc analysis for 16 patients with or without tran-
sient viremia (blips) while participating in the continuous
therapy arm of a larger randomized controlled study in-
vestigating the effects of repeated therapy interruption in
chronic HIV-1 infection (38). Only subjects with a min-
imum of 40 weeks of follow-up on ART before TI were
included. Weeks of follow-up between on ART periods
and TI are distinguished by identifying the latter period
as week C0 (wC0), week C4 (wC4), etc. Demographic
and clinical characteristics of the cohort are shown in
Table I.

Briefly, in the larger randomized trial, 42 chronically
HIV-1-infected patients on suppressive ART were en-
rolled. Seventy-five percent of patients were on their
second to fourth regimen, while 25% were on their first
regimen. Informed consent was obtained from all pa-
tients in this study and human experimentation guidelines
of the US Department of Health and Human Services
and of the authors’ institutions were followed. Study en-
try criteria included being on ART with CD4+ T cell
count >400 cells/mm3 and HIV-1 RNA <500 copies/mL
for >6 months and <50 copies/mL at entry. Subjects
described on this report were randomized in the larger
trial to a first phase (phase I) of 40 weeks of continu-
ous therapy with a final open-ended TI (phase II) sub-
ject to therapy re-initiation criteria (viral load >30,000

over three consecutive visits 2 weeks apart or a loss of
>45% baseline CD4 count at any time). Study visits were
every 4 weeks while on continuous ART during phase
I and every 2 weeks during phase II that lasted up to
46 weeks.

Throughout follow-up on and off ART, clinical (CD4+

and CD8+ T cell count and percent, plasma HIV-1
RNA), immunological (T cell distribution and acti-
vation, anti-HIV-1 CD4+ and CD8+ T cell activity),
and virological [reverse transcriptase (RT) and pro-
tease mutations] parameters were measured as described
(39, 40).

Assessment of Clinical Parameters and T Cell Phenotypes

Clinical parameters (CD4+ and CD8+ T cell count
and percent, plasma HIV-1 RNA) were measured ev-
ery 4 weeks on ART and every 2 weeks off ART
while whole blood was used every 4 weeks to analyze
by flow cytometry T cell subset distribution (CD45RA,
CD45RO, CD62L) and T cell activation (HLA-DR, CD95,
CD28, CD38, TNFRII] with the following directly conju-
gated anti-cell surface antigen antibodies: 1) IgG1 CD3-
phycoerythrin (PE), IgG1 CD38-PE, IgG1 CD62L-PE,
IgG1 CD28-fluorescein isothiocyanate (FITC), IgG2b
CD45RA-FITC, IgG1 CD4-allophycocyanin (APC),
IgG1 CD8-APC, isotypes: mouse IgG1-PE, mouse IgG2a-
PE, mouse IgG1-FITC, mouse IgG2a-FITC, mouse
IgG2b-FITC, mouse IgG2b-APC, mouse IgG2a-TriColor
(TC) (Pharmingen, San Diego, CA, USA); 2) IgG1 CD95-
FITC, IgG2a CD4-FITC, IgG2b HLA-DR-APC, IgG2a
CD4-TC, IgG2a CD8-TC, IgG2a CD45RO-TC, isotypes:
mouse IgG1-APC (CalTag, Burlingame, CA, USA); and
3) IgG2a tumor necrosis factor II (TNFRII)-PE (R&D
Systems, Minneapolis, MN). Briefly, 100 µL of whole
blood were incubated with 10 µL of 10% mouse serum
(Sigma-Aldrich, St. Louis, MO) for 10 min at room tem-
perature and stained with the appropriate monoclonal an-
tibody for 20 min at room temperature. The cells were
then lysed with lysis buffer (Becton Dickinson FACS
Lyse, Becton Dickinson Immunocytometry Systems, San
Jose, CA) for 10 min at room temperature, washed twice
with FACS washing buffer (1× PBS, 2.5% heat inacti-
vated FBS, 0.1% BSA, 0.02% NaN3) and re-suspended
in FACS washing buffer. Samples were analyzed on a
Becton Dickinson FACScalibur flow cytometer using the
CellQuest software package for acquisition and analysis.
Live cell gates were set manually during acquisition of
10,000 events for each staining. Detection thresholds were
set according to isotype-matched negative controls. Re-
sults were expressed as mean fluorescent intensity (MFI)
and % positive.
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Anti-HIV-1 T Cell Responses

HIV-1-specific lymphoproliferative responses were
measured every 4 weeks on and off ART by use
of fresh peripheral blood mononuclear cells (PBMCs,
250,000 cells/well, isolated by standard Ficoll-hypaque
density gradient centrifugation as previously described)
(41). Lymphoproliferative (LPA) responses to whole anti-
gen associated with activation of CD4 T cell responses
(7, 42–45) were tested in six replicates for the fol-
lowing conditions: (a) insect cell/baculovirus recombi-
nant HIV-1 antigen [HIV-1 p24 core protein including
additional amino acids of the C-terminus of p17 and
N-terminus of p15 with molecular weight of 35,000 Da on
sodium dodecyl sulfate/polyacrylamide gel electrophore-
sis (SDS/PAGE) (5 µg/mL, Protein Sciences, Meriden,
CT)], (b) protein control provided by the manufacturers
of recombinant viral antigens (5 µg/mL, Protein Sciences,
USA), (c) Candida albicans (Greer Laboratories, Lenoir,
NC), and (d) phytohemagglutinin (PHA, 5 µg/mL, Sigma-
Aldrich, USA). Results were expressed as �counts per
minute (�cpm) scores and stimulation index (SI) scores
calculated respectively as:

�cpm = antigen stimulated mean cpm−internal control
stimulated mean cpm.

SI = antigen stimulated mean cpm/internal control stimu-
lated mean cpm.

HIV-1-specific interferon-γ (IFN-γ ) secreting CD8+ T
cell responses were measured in cryopreserved PBMCs
by enzyme-linked immunospot (ELISPOT) as described
(40). Briefly, 96-well filtration plates (Millipore, France)
were coated overnight at 40◦C with 5 µg/mL of the pri-
mary anti-IFN-γ mab (Mabtech, Stockholm, Sweden),
washed four times with 1× PBS and blocked with RPMI
containing 5% PHS for 1 h. Uninfected and infected (re-
combinant vaccinia virus expressing either Gag, Pol, Env,
Nef, Rev, or Tat or no HIV-1 antigen as control) PBMC
were added to the wells and incubated overnight. Plates
were washed four times with 1× PBS prior addition of
the secondary antibody at 1 µg/mL for 2 h. Plates were
washed four times in PBS with 0.1% Tween 20 and
avidin-bound horseradish peroxidase H was added to the
wells for 1 h at room temperature. Plates were washed
four times with 0.1% Tween 20 and diaminobenzidene
tetrahydrochloride was added. The spots were counted
with a stereomicroscope and vaccinia control signals for
each donor were substracted from each corresponding
HIV-specific response. Only spots with a fuzzy border
and a brown color were counted. Results were expressed
as spot forming cells (SFC) per 106 PBMC. From our
previous studies of HIV-1-infected subjects we have es-

tablished this response to be CD8+ T cell mediated and
have proposed a descriptive range for the strength of CTL
responses: Low (SFC 10–200 per 106 PBMC), moderate
(SFC 201–500 per 106 PBMC), high (SFC >501 per 106

PBMC) (46, 47). For data analysis, responses per pro-
tein were added to measure total CD8+ T cell responses
against HIV-1.

Thymic Activity

T cell receptor (TCR) rearrangement excision circles
(sjTREC) were measured in cryopreserved PBMC at en-
try and at baseline of TI. A two-steps quantitative PCR
(nested) was used as described (48) [except that β-globin
was used as the reference gene instead of a portion of the
CD3γ chain gene].

In summary, larger fragment of the sjTREC and
the β-globin were sequentially cloned into the same
BluescriptTM vector (Stratagene, La Jolla, CA). This plas-
mid, containing both amplicons, was used to generate
standard curves for real-time quantification of TREC.
Parallel quantification of the sjTREC, together with the
β-globin amplicon was performed for each sample using
the TaqManTM technology (ABI, Perkin-Elmer, Boston,
MA). This protocol allowed us to precisely normalize for
the input DNA in each quantification, thus providing an
accurate TREC frequency.

Briefly, cells (approximately 2×105 PBMCs) were
lysed in Tween 20 (0.1%), NP-40 (0.1%), and Proteinase
K (100 µg/mL) for 30 min at 56◦C and then 15 min at
98◦C. Multiplex PCR amplification was performed for
sjTREC together with the β-globin gene in a final volume
of 50 µL (10 min initial denaturation at 95◦C, 30 s at 95◦C,
30 s at 60◦C, 2 min at 72◦C for 22 cycles) using the outer
3′/5′ primer pairs. The linearity of this first round multi-
plex assay was demonstrated in triplicate experiments up
to 24 cycles when using a maximum of 2×105 PBMCs.
These PCR conditions were used for all subsequent ex-
periments. Following the first round of amplification, the
PCR products were diluted 10-fold prior to simplex, real-
time amplification using the TaqManTM technology. PCR
conditions in the TaqManTM experiments were: 10 min
initial denaturation at 95◦C, 30 s at 95◦C, 2 min at 60◦C for
40 cycles. Fluorescence measurements were performed at
the end of each of the annealing/extension phase steps.
For each PCR product, the TREC and β-globin second
round amplification were performed in different plate
wells but in the same run and quantified using a seri-
ally dilute standard curve. This highly sensitive nested
quantitative PCR assay has a detection threshold of one
copy out of 105 cells. The results were expressed as ab-
solute number of TRECs per 105 cells. Quantification of
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sjTREC frequencies was performed in duplicate. Primers
and probes used are shown in Table II.

Viral Mutations

Viral mutations in the protease and the RT genes were
analyzed by retrospective genotyping of cryopreserved
plasma samples with a viral load >50 copies/mL on and
off ART, using the TruGeneTM Assay as described (39).
The genotyping TrueGeneTM assay accurately identified
97.6% of codons and codon mixtures at 54 sites associ-
ated with drug resistance in blinded repeated testing of
blood plasma specimens from HIV-1-infected adults (49).
Resistant genotypes were defined by the presence of viral
sequences associated with impaired drug susceptibility
or virologic suppression as specified by the International
AIDS Society-USA mutations panel (50). Genotypic re-
sistance to a protease inhibitor (PI) was defined by
the presence of at least one primary mutation in the pro-
tease gene (D30N, M46I, G48V, V82A, I84V, or L90M),
while genotyping resistance to nucleoside reverse tran-
scriptase inhibitors (NRTIs) and non-nucleoside reverse
transcriptase inhibitors (NNRTIs) was defined by the pres-
ence of any mutation in the RT gene (M41L, E44D, K65R,
D67N, any insertion at T69, K70R, L74V, V75T, V118I,
Q151M, M184I/V, L210W, T215Y/F, K219Q/E for the
NRTIs and L100I, K103N, V106A, V108I, Y181C/I,
Y188C/L/H, G190A for the NNRTIs) (51).

Statistics

Analysis of data was performed after variables were
summarized with means, medians, standard deviations
(SDs), standard errors (SEs), and ranges for both groups.
Unless specified otherwise, results are expressed as medi-
ans, while 25 and 75% interquartiles ranges (IQR) are
shown in parenthesis. For analysis and graphing pur-
poses plasma HIV-1 RNA <50 copies/mL was consid-
ered as equal to 50 copies/mL (threshold of detection).
Each group of data was analyzed for normal distribution
by the Shapiro–Wilk W-test (p > 0.05) and all subsequent
comparisons between groups were two-tailed. Differences
amongst groups were tested using One-way Anova t test
for normally distributed data or the Wilcoxon/Kruskal–
Wallis Tests (rank sums) for non-normally distributed
data. Linear regression analysis was used to estimate asso-
ciations between the different sets of data (all independent
values were included as continuous data points). Pairwise
correlations using the Pearson correlation coefficient or
the Spearman’s Rho test were performed accordingly.
Linear regression and correlation analysis results were
considered significant if r > 0.3 and p < 0.05 (52). Chi-
square test was employed to determine frequency dif-

ferences between groups with regards to re-initiation of
therapy following TI. A two-sided alpha level of 0.05
(p < 0.05) was considered significant. All descriptive
analysis and statistical tests were performed using JMP
4.0 (SAS Institute, Cary, NC, USA).

RESULTS

Increased Anti-HIV-1 Lymphoproliferative T Cell
Responses in Blippers Together with Lack of
Difference in Other Variables During
Antiretroviral Therapy

During a period of observation of 40 weeks on ther-
apy (characteristics for cohort listed in Table I), 7 of 16
subjects showed one or more viral load blip episodes (50–
999 copies/mL), while the remaining 9 subjects sustained
plasma HIV-1 RNA of <50 copies/mL at all time-points
tested (Fig. 1). Treatment history was confirmed for 14/16
subjects before start of follow-up with half (7/14) on their
first regimen and the rest on their second to fourth regi-
men. Patients had no clinical history to document previous
treatment failures in association with a resistance profile.
No change in ART was observed in any of the subjects
under follow-up.

No significant differences (p > 0.05) were noted be-
tween the two groups regarding variables measuring clin-
ical parameters, whole blood T cell distribution, or ac-
tivation changes or anti-HIV-1 CD8+ T cell ELISPOT,
except for a significant difference in anti-HIV LPA re-
sponses against HIV-1 p24 antigen. More precisely, the
blipping group showed significantly higher anti-HIV-1
p24 response at baseline and at time of TI (also referred
to as week 0 of therapy interruption wC0, p = 0.04 for
�cpm) as compared to the non-blipping group (Table III
and IV Fig. 2, top left). Consistent with this difference,
6/7 of the blippers versus 3/9 of the non-blippers showed
a higher frequency of SI > 3 against HIV-1 p24 antigen
as defined by >30% of time-points tested while on ART
(SI ≤ 3 in the remaining time-points). By contrast, no
difference in the frequency of positive LPA responses
against C. albicans or PHA (Table III and IV) or their ab-
solute amount at any time-point were observed between
the two groups. Importantly, no difference was observed
in total anti-HIV CD8+ T cell responses by ELISPOT
between the two groups at the time of TI suggesting that
patients with a blipping history had higher HIV-specific
CD4+ rather than CD8+ T cell responses. In addition, no
correlation was found between the frequency of the blips
and the level of anti-HIV LPA or total anti-HIV CD8+

T cell responses at the time of TI. While a significant
difference in TREC was observed at the last observed
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Fig. 1. Plasma HIV-1 RNA measurements in chronically HIV-1-infected patients under ART determine presence or ab-
sence of blips. Graph shows viral load in patients with blips (>50 and <1000 copies/mL, top) and patients with no blips
(<50 copies/mL, bottom) during a median of 40 weeks of follow-up under continuous “suppressive” ART. For analysis and
graphing purposes plasma HIV-1 RNA <50 copies/mL was considered as equal to 50 copies/mL (threshold of detection).
Patients in each group are shown at the right side of the graphs.

point on therapy between groups, the lack of a difference
at baseline, the small magnitude of change noted for this
variable, and the lack of associated changes within the
naı̈ve T cell subsets reduces the potential that this change
represents a differential thymic activity between groups.

Finally, viral blips measured in this study were predom-
inantly amplified as wild-type for protease and RT regions
except in two of seven blipping subjects. More precisely
in patient S13, the RT mutation M184V was observed in
presence of 3TC- (EPIVIR, GlaxoSmithKline, Research
Triangle park, NC) containing regimen, while in patient
S21 the RT mutations M184V, A62V, and V75T were
observed in presence of 3TC- and d4T- (ZERIT, Bristol-
Myers Squibb, New York, NY) containing regimens.

Lack of Difference in Viral Rebound Amongst Groups
During Therapy Interruption Despite Increased Anti-HIV
Lymphoproliferative Responses in Blippers

Following therapy interruption, both groups showed
viral rebound as early as 2 weeks [wC2: mean
plasma HIV-1 RNA in blippers = 67841.571 copies/mL

(STE: 67474.419), mean plasma HIV-1 RNA in non-
blippers = 25639.222 (STE: 22986.791)] (Fig. 3). The
blipping group showed higher viral rebound with a sig-
nificant difference observed at 8 weeks of therapy inter-
ruption [wC8: mean plasma HIV-1 RNA in blippers =
87419.8 copies/mL (STE: 47701.75), mean plasma HIV-
1 RNA in non-blippers = 12252.5 (STE: 6191.543)]
(p = 0.04). In support of a greater impact of viral load on
the blipping arm, a significant increase in the frequency
of CD3+/HLA-DR+ (p = 0.01) and of memory and
activated CD8+ T cells (CD8+/CD45RO+/CD45RA−,
p = 0.04; CD8+/HLA-DR+, p = 0.04) was observed in
this group at 4 weeks of TI (no difference observed in
non-blipping group at this time-point). Furthermore, a
significant decrease in naı̈ve CD8+ T cells and on the ex-
pression of CD28 (CD8+/CD62L+/CD45RA+, p = 0.01;
CD8+/CD28+, p = 0.01) was also present after 4 weeks
of TI in the blipping group. Total anti-HIV CD8+ T cell
responses following TI showed a four-fold increase in
the blipping group (p = 0.06) and a two-fold increase in
the non-blipping group (p = 0.03) from values at start
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Table IV. Analysis of the Changes in Immune Parameters During Therapy and Therapy Interruption in “Blippers” and “Non-Blippers”

Analysis (p values)

Within group

“Blippers” (n = 7) “Non-blippers” (n = 9) Between group

Parameters Bsl vs. wC0 wC0 vs. wC4 Bsl vs. C0 wC0 vs. wC4 Bsl wC0 wC4

Clinical data
CD4+ (cells/mm3) 0.93 0.1 0.07 0.02 0.61 0.18 0.41
CD8+ (cells/mm3) 0.57 0.81 0.2 0.76 0.83 0.67 0.86

T cell distribution
CD4+/CD45RA+/CD62L+ (%) 0.55 0.93 0.19 0.24 0.88 0.93 0.59
CD4+/CD45RA−/CD45RO+ (%) 0.19 0.59 0.13 0.12 0.96 0.86 0.59
CD8+/CD45RA+/CD62L+ (%) 0.7 0.01 0.37 0.32 0.95 0.96 0.45
CD8+/CD45RA−/CD45RO+ (%) 0.17 0.04 0.03 0.19 0.22 0.28 0.11

T cell activation
CD3+/CD95+ (%) 0.54 0.97 0.31 0.31 0.34 0.92 0.63
CD3+/HLA-DR+ (%) 0.8 0.01 0.05 0.07 0.68 0.7 0.28
CD4+/HLA-DR+ (%) 0.28 0.62 0.91 0.73 0.59 0.22 0.36
CD4+/TNFRII+ (%) 0.46 0.93 0.54 0.68 0.05 0.45 0.44
CD4+/CD28+ (%) 0.29 0.03 0.57 0.09 0.95 0.87 0.87
CD4+/CD38+ (%) 0.34 0.17 0.93 0.45 0.56 0.82 0.54
CD8+/HLA-DR+ (%) 0.57 0.04 0.1 0.46 0.03 0.05 0.96
CD8+/TNFRII+ (%) 0.93 0.15 0.12 0.73 0.75 0.59 0.16
CD8+/CD28+ (%) 0.72 0.01 0.94 0.46 0.75 0.52 0.67
CD8+/CD38+ (%) 0.72 0.04 0.13 0.98 0.33 0.86 0.06

Thymic activity
sjTREC/105 CD3+ cells 0.68 N/A 0.33 N/A 0.49 0.03 N/A

T cell responses
LPA against p24 (�cpm) 0.24 0.17 0.84 0.74 0.04 0.04 0.01
LPA against Candida (�cpm) 0.09 0.05 0.26 0.47 0.16 0.48 0.84
LPA against PHA (�cpm) 0.74 0.61 0.93 0.03 0.07 0.08 0.005
ELISPOT (SFC per 106 (�cpm) 0.18 0.06 0.84 0.03 0.9 0.67 0.84

Note. Bsl, baseline of the study on ART; wC0, wC4, week 0 and week 4 of therapy interruption, respectively; N/A, not applicable;
ELISPOT results expressed as SFC (spot forming cells) per 106 PBMC are against total HIV as described in ‘Material and methods’
Section.

of TI. As observed while on therapy, LPA responses
against HIV-1 p24 antigen remained higher in the blip-
ping arm (p = 0.01 for �cpm) (Fig. 2, bottom left). A
lack of correlation between cellular anti-HIV responses
(LPA or ELISPOT data) at time of interruption and viral
rebound at weeks 4, 6, or 8 of TI was present in either
group as shown in Table V (analysis was not performed
for further time-points on TI due to sample number limi-
tations). Following week 4, subjects in each group started
to meet re-treatment criteria due to sustained viral loads
>30,000 copies/mL with the blipping arm having a sig-
nificantly higher frequency of subjects back on therapy by
week 14 (4/7) as compared to the non-blipping group (1/9,
p = 0.04). This difference between groups was sustained
up to week 24 suggesting that although the blipping arm
may have reached higher levels of viral rebound after
12 weeks off therapy, both groups had the potential to
experience similar viral rebounds if followed to 24 weeks
off therapy.

Analysis of rebounding viral sequences in all subjects
showed no difference in the genotypic profile of resistant

viruses between groups. Briefly, in the blipping group,
only the M184V mutation was still detected in one (patient
S13) out of the two patients with RT mutations detected
during viral blips on ART, while in the non-blipping group
the mutations K101K/Q and K70K/R were detected in 2/9
patients (patients S32 and S40, respectively, mutations
were not associated with patients regimen at time of TI).

DISCUSSION

We conducted an observational study in order to ex-
amine the effect of viral load blips observed during an-
tiretroviral therapy in chronically HIV-1-infected patients
on the virologic and immune responses during therapy
and its interruption. We observed higher anti-HIV CD4+

T cell responses before and after therapy interruption in
blippers when compared to matched non-blippers (Fig. 2).
Surprisingly, the presence of significantly higher lympho-
proliferative responses in blipping subjects was associated
with a higher rather than lower viral rebound upon therapy

Journal of Clinical Immunology, Vol. 26, No. 1, 2006
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Fig. 2. Significantly higher anti-HIV-1 CD4+ T cell responses in blippers compared to non-blippers at time of treatment interruption and at week 4
of treatment interruption. CD4+ T cell lymphoproliferative responses against HIV-1 p24 (left panels) and C. albicans (right panels), expressed as
�counts per minute (�cpm), in patients with viral load blips (>50 and <1000 copies/mL) and patients with no blips (<50 copies/mL) at week 0 of
therapy interruption (wC0, top panels) and week 4 of treatment interruption (wC4, bottom panels) are shown. Non-parametric Wilcoxon/Kruskal–
Wallis tests (rank sums) were performed for comparisons between the groups. Data shown as interquartile box plots (median and 25th–75th
interquartiles), with significant p values on the top of each graph.

interruption (Fig. 3). The latter was an unexpected finding
that suggests that viral blips in patients on ART can be
indicative of a higher viral rebound upon therapy interrup-
tion. While viral rebound during ART has been reported
before (20–23), this is the first study that compares viral
rebound from matched subjects with the presence or ab-
sence of viral blips in defining correlates of viral control
upon therapy interruption.

Although the presence of anti-HIV-1 lymphoprolifera-
tive responses in chronically infected subjects on ART in
conjunction with low T cell activation profiles has been
reported by us and others (40, 53), our data supports that
the LPA anti-HIV response is significantly associated with
a history of intermittent viral blips. Our data challenges
the assumption that the presence of lymphoproliferative
responses in long-term non-progressors would suggest

Fig. 3. Viral rebound during treatment interruption between blippers and non-blippers. Plasma HIV-1 RNA levels (mean ± SE) per group during a
period of follow-up of 46 week after treatment interruption. Bottom table shows number of patients at time-points shown for viral load in the second
panel. The decrease in viral load over time is due to the re-initiation of therapy in patients with higher viral load.
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Table V. Correlations Amongst Anti-HIV T Cell Responses at Week 0 of Treatment Interruption and Plasma
HIV-1 RNA During Treatment Interruption in “Blippers” and “Non-Blippers”

“Blippers” “Non-Blippers”

Log HIV-1 RNA (copies/mL) Log HIV-1 RNA (copies/mL)

Parameters wC4 wC6 wC8 wC4 wC6 wC8

CD4+ T cell responses against HIV
p24 at wC0 (�cpm)
r −0.7 −0.46 −0.34 +0.3 −0.14 −0.18
p 0.06 0.35 0.57 0.43 0.72 0.67
N 7 6 5 9 9 8
Total anti-HIV-1 CD8+ T cell responses
at wC0 (IFN-γ , SFC/106 PBMC)
r +0.01 +0.79 +0.91 −0.24 −0.02 +0.24
p 0.97 0.05 0.03 0.52 0.95 0.57
N 7 6 5 9 9 8

Note. wC0, wC4, wC6, or wC8, weeks 0, 4, 6, or 8 of therapy interruption, respectively; SFC, spot forming
cells.

that these responses are a direct correlate of viral con-
trol if present in chronic infected subjects on ART. Our
observation that viral replication is associated with an in-
crease in lymphoproliferative responses, as suggested by
the blipping history, is supported by previous longitudinal
data from studies characterizing the relation between lym-
phoproliferative responses and IL-2-induced viral blips
on ART (54) and from therapy interruption studies (41)
even if progressively lost upon repeated (55) or extended
(56) therapy interruptions. Our observations document-
ing higher anti-HIV-1 lymphoproliferative responses by
week 4 of therapy interruption at the same time that viral
replication is observed is consistent with our prior obser-
vations (41). The latter may reflect a temporal association
between antigen and T cell function upon viremia that
later progresses to a loss of this response upon continual
viral replication as supported by data from McNeil et al.
(56) and others showing an inverse relationship between
these variables (43, 57–63).

While pathogenesis studies have associated the CD4
lymphoproliferative response with low viral loads sup-
porting a mechanistic role for these responses in achiev-
ing viral control (17, 42, 64), our study strongly suggests
that additional factors may need to be characterized in
defining correlates to control of viral replication. From
the host side, factors such as a dysfunction of the innate
immune system (65, 66), clonal exhaustion (67), matu-
ration and functional impediments of the CD8+ T cells
(68, 69) may provide barriers to viral control in chronic
infection in spite of higher lymphoproliferative responses.
From a virological perspective, in vivo viral diversity with
regards to the antigen used in vitro or relative to different
reservoirs in vivo (70–73) also may need to be established
before characterizing the CD4+ T cell response measured
in relation to viral control in vivo. Taken together, our

data does not exclude the lymphoproliferative response as
a component of viral control but suggests that its presence
in chronically infected persons on ART is more likely to
be indicative of viral antigenimia than a strong correlate
to viral control upon therapy interruption.

Our observations showing that therapy interruption and
viral rebound will increase T cell activation and anti-HIV
CD8+ T cell responses are also consistent with previous
data (74). We interpret that the significantly higher levels
of activation observed in the blipping as compared to the
non-blipping reflect the lower number of subjects with
high viral load rebound (>5000 copies/mL) in the latter
group (3/9) when compared to the former group (5/7) at
4 weeks of TI.

In contrast to previous empirical data suggesting that
multiple blips are predictive of virologic failure (75), our
study did not observe a relation between blips and lack of
viral suppression (22). In spite of our limited sample size,
resistance data collected during the study did not support
a difference in the viral populations between subjects as a
dominant factor associated with the presence of lympho-
proliferative responses in the blipping group. In contrast
to the findings of Cohen et al. (20), showing an association
of viral blips with selection of drug-resistant virus, viral
blips measured in this study were predominantly amplified
as wild-type.

Our current data indicate that although viral blips dur-
ing ART may provide sufficient antigen to activate higher
levels of CD4+ HIV-specific responses against HIV-1 p24,
these responses are not a significant correlate to viral con-
trol upon therapy interruption but instead were indicative
of a higher viral rebound. It remains to be determined
whether correlates for viral control outcomes in subjects
receiving ART may be addressed by other quantitative
or qualitative criteria such as measures of HIV-specific
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CD8+ T cells proliferation or the frequency of IL-2 se-
creting, CD4+ central memory T cells as suggested by
recent data (76).
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