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Dendritic cells are professional antigen presenting cells that are
central to the induction and regulation of immunity. This review
discusses recent advances in the understanding of dendritic cell
biology.
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DC DIFFERENTIATION AND SUBTYPES

Dendritic cells (DCs) are lineage-negative, MHC class II
positive bone marrow-derived mononuclear cells that are
found in tissues throughout the body (1), and are spe-
cialized for antigen presentation to cells of the adap-
tive immune system (Fig. 1). In human blood, DCs and
DC precursors are commonly divided into two popula-
tions by staining with antibodies to CD11c and CD123.
CD11c+CD123lo blood DCs have a monocytoid appear-
ance and are termed “myeloid DCs” (MDCs), whereas
CD11c−CD123hi DCs have morphological features sim-
ilar to plasma cells and have thus been termed “plasma-
cytoid DCs” (PDCs), a designation that, while imprecise,
has been useful. PDCs and MDCs differ in many ways, in-
cluding their tissue distribution, cytokine production and
growth requirements. PDCs are important cells in innate
anti-viral immunity and autoimmunity and are found pri-
marily in the blood and lymphoid organs. They are the
major interferon α (IFNα) producing cells in the body and
can as such induce anti-viral and in certain circumstances
anti-tumor immune responses (2).

In the blood, MDCs—the main focus of this review—
may be classified into two subsets that are distinguished
by the expression of distinct carbohydrate moieties of
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P selectin glycoprotein ligand 1 (PSGL-1) (3). DCs
with 6-sulfo LacNAc modifications of PSGL-1 have
been termed “inflammatory DCs,” as they produce large
amounts of tumor necrosis factor α (TNFα) and respond to
complement components C5a and C3a. In tissues, MDCs
may also be divided into subtypes depending on their
anatomic location—Langerhans cells of the epidermis
(which express CD1a, langerin and E-cadherin) and inter-
stitial or mucosal DCs, which express mannose receptor,
DC-SIGN and, in the dermis, CD13 (4, 5).

Two models have been proposed for the differentiation
of DCs from hematopoietic progenitor cells, one postu-
lating a single committed DC lineage that has functional
plasticity, the other postulating multiple DC lineages
that are functionally distinct (4). Both models define
three stages of differentiation—DC precursors, imma-
ture DCs and mature DCs. DC precursors and immature
DCs are continuously produced in the bone marrow in
response to fms-like tyrosine kinase-3 ligand (Flt-3L)
and granulocyte-macrophage colony stimulating factor
(GM-CSF).

Traditionally, MDCs have been thought to be of
myeloid origin, and PDCs of lymphoid origin (4). Evi-
dence supporting the lymphoid origin of PDCs includes
recent observations that the gene encoding CIITA, a tran-
scription factor essential for the activation of genes asso-
ciated with MHC class II antigen presentation, is activated
via its myeloid promoter, pI, in MDCs, but via its B cell
promoter, pIII, in PDCs (6). However, other evidence in-
dicates that the differentiation pathways for both types of
DCs are more complex and may even interconnect. For
example, experiments in mice indicate that both PDCs
and MDCs can be derived from Flt3-expressing myeloid
and lymphoid progenitors (7, 8), and that PDCs can dif-
ferentiate into MDCs following viral infection (9).

DCs can display specialized functions dependent upon
their anatomic location. For example, intestinal DCs play
an important role in the induction of local immunity that
ensures an adequate immune response to commensal bac-
teria, allowing their containment to the intestinal lumen
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Fig. 1. Overview of MDCs and their features/tasks as antigen-presenting cells.

without the generation of systemic immunity. In mice,
intestinal DCs harbor live commensal bacteria, allowing
them to induce protective immunity via secretory IgA to
limit mucosal penetration. The restriction of these DCs
to mucosal sites and draining mesenteric lymph nodes
prevents unnecessary systemic immunity to the normal
gut flora (10). In the lungs, a distinct subset of phenotyp-
ically mature pulmonary DCs have been found in mice
that produce IL-10. These pulmonary DCs induce the dif-
ferentiation of IL-10-secreting CD4+ regulatory T cells
(Tr), that in turn mediate tolerance to antigens acquired
through the respiratory tract (11).

ANTIGEN UPTAKE, PROCESSING
AND PRESENTATION

DCs process antigens acquired both endogenously (i.e.,
synthesized within the DC cytosol), or exogenously (ac-
quired from the extracellular environment). Exogenous
antigen sources include bacteria, viruses, apoptotic or
necrotic cells, heat shock proteins, proteins and immune
complexes. These are captured through phagocytosis,
pinocytosis and endocytosis with the help of cell sur-
face receptors on the DC. Examples include Fc receptors
(12), integrins (13), C-type lectins (14)), and so-called
“scavenger receptors” such as LOX-1 and CD91 (15–17).
Many of these receptors have additional functions such
as initiating intracellular signaling or mediating cell–cell
interactions.

DCs process protein antigens into peptides which are
loaded onto major histocompatibility complex classes I
and II (MHC I and II) molecules and transported to the

cell surface for recognition by antigen-specific T cells.
Endogenous protein antigens, which are processed onto
MHC I, are first ubiquitinated and degraded into peptides
by the proteasome in the cytosol. These are transported via
transporters for antigen presentation (TAP) molecules into
the endoplasmic reticulum (ER), where they are loaded
onto MHC I. The peptide-MHC I complexes (pMHC I) are
then transported from the ER via the trans-Golgi network
to the cell surface for presentation to CD8+ T cells.

Exogenously acquired protein antigens, on the other
hand, are engulfed and processed in endosomes. Endo-
somes containing ingested proteins mature and fuse with
lysosomes, where proteases degrade the proteins into pep-
tides that are loaded onto MHC II molecules. This re-
quires proteolytic degradation of the MHC II-associated
invariant chain (Ii) that normally blocks access to the
peptide-binding pocket of MHC II (18). Peptide-MHC II
complexes (pMHC II) are then transported to the cell sur-
face within specialized tubules for presentation to CD4+

T cells (19).
Exogenous antigens may also be processed by DCs

onto MHC I (13). This phenomenon, called “cross-
presentation” or “cross-priming,” permits DCs to elicit
CD8+ as well as CD4+ T cell responses to exogenously
acquired antigens (20–22). Cross-presentation occurs in
specialized, self-sufficient, ER-phagosome derived com-
partments that contain MHC I, Sec61 protein (presumably
to translocate antigens into the cytosol for proteosomal
processing), TAP (to transport processed peptides from
the cytosol), and calreticulin and calnexin (which facilitate
loading of peptide onto MHC I) (20, 22, 23). MHC class I
molecules which lack endosomal signaling motifs in their
cytoplasmic tail do not cross-present, suggesting that at
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least for some antigens, the MHC I must come from the
cell surface (24). Not all antigens are cross-presented effi-
ciently, for example peptides located in signal sequences
are efficiently processed through the endogenous pathway
but cross-presentation is markedly impaired (25). This
observation suggests either reduced accessibility to the
exogenous pathway or rapid degradation not supplying
efficient antigen expression levels.

Lipid antigens expressed on pathogens (e.g., my-
cobacterial mycolates) or self tissues (sphingolipids,
phosphatidylinositols) are presented on DCs by CD1
molecules, which heterodimerize with β2-microglobulin
and are structurally similar to MHC I (26, 27). Processing
of lipid antigens onto the various CD1 molecules is carried
out in specialized intracellular compartments, not unlike
antigen processing onto MHC II. The CD1d-restricted
repertoire includes T cells with substantial TCR diversity
as well as relatively invariant NKT cells. The latter, which
have the potential to secrete IFNγ , recognize galactosyl
ceramides and tumor cell-derived gangliosides and are
important mediators of T cell immunity (28).

DC MATURATION

Maturation is a complex process leading to terminal
differentiation of DCs, transforming them from poorly im-
munostimulatory cells that function as sentinels in the pe-
riphery which capture antigens into cells potent for T cell
stimulation. The process is accompanied by cytoskeletal
reorganization, reduced phagocytic uptake, acquisition of
cellular motility, migration to lymphoid tissues, enhanced
T cell activation potential and the development of char-
acteristic cytoplasmic extensions or “dendrites.” Mature
DCs express a number of specific markers that distinguish
them from immature DCs such as CD83, a cell surface
molecule involved in CD4+ T cell development and cell–
cell interactions (29, 30) and DC-LAMP, a DC-specific
lysosomal protein.

Maturation Stimuli

Maturation is induced by stimuli, so called “danger
signals” that alert the resting DC to the presence of
pathogens, inflammation or tissue injury (31, 32). Matura-
tion signals come from either host-derived inflammatory
molecules such as CD40 ligand (CD40L), TNFα, IL-1,
IL-6 and IFNα, or from microbial products and molecules
released by damaged host tissues, which stimulate Toll-
like receptors (TLRs) (33). The different TLRs have dif-
ferent expression patterns and recognize different sets of
molecules (34). In humans, MDCs have been found to ex-

press TLRs 1 through 5 and, depending upon the subset,
TLRs 7 or 8, whereas PDCs express TLRs 1, 7 and 9 (35–
37). TLR7 was recently identified as a critical receptor for
murine PDC responses to live and inactivated wild type
influenza (38). All TLRs are transmembrane receptors,
although not all may act at the cell surface—TLR9 is
localized in the ER of resting human PDC and moves
to the lysosomal compartment (presumably through ER-
phagosome fusion) as its agonist CpG DNA is internalized
into the cell (39). Other TLRs (7 and 8) are also found
in the endosome where the agonist accesses them, but it
is unclear if translocation occurs from the ER. Activation
of TLRs transiently enhances endocytosis with simulta-
neous actin-rich podosome disassembly, suggesting mo-
bilization of the DC actin cytoskeleton to enhance antigen
capture and presentation (40).

Intracellular Signaling Events Associated
with DC Maturation

TLRs link the recognition of danger signals to DC matu-
ration by initiating complex signaling cascades (41). TLRs
are members of the TLR-IL-1 receptor superfamily, all of
which share an intracytoplasmic Toll-IL-1 receptor (TIR)
domain that mediates the recruitment of TIR-containing
adapter molecules such as MyD88, TIRAP, TRIF and
TRAM. These adaptor molecules function to recruit other
signaling molecules, notably the IL-1 receptor-associated
kinase complex (IRAK). IRAK activates the TRAF6 pro-
tein, which is required for DC maturation in response to
a number of different stimuli (42).

In mice, all TLRs can set off signaling through the
MyD88-IRAK-TRAF6 pathway, which results in the ac-
tivation of the transcription factor NF-κB and mitogen-
activated protein (MAP) kinases, inducing the transcrip-
tion of genes such as TNFα, IL-1 and IL-6. In addition,
MyD88-independent differences in the signaling path-
ways initiated by the different TLRs are beginning to
be described, and are associated with the induction of
different patterns of gene expression. For example, TRIF
controls a MyD88-independent pathway that is unique
to TLR3 and TLR4 signaling and is important for the
secretion of IFNβ (43, 44), and TRAM-deficient mice
have defects in cytokine production in response to TLR4
ligand, but not to other TLR ligands (43).

Cytokine-induced maturation of DCs is under the
feedback regulation of suppressor of cytokine signaling
(SOCS) proteins (45). In an in vitro mouse model, IL-4 and
GM-CSF induced activation of JAK/STAT signal trans-
duction pathways in DCs is accompanied by upregula-
tion of SOCS 1,2,3 and cytokine-induced SH2 protein
(CIS). The STAT6 pathway is constitutively activated in
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immature DCs, but declines with maturation; whereas
STAT1 signaling is most prominent in mature DCs and
required for upregulation of CD40, CD11c and SOCS
expression. The SCOCS pathway may also block TLR-
mediated activation of DCs.

DC Maturation Enhances Antigen Processing
and Presentation

Antigen processing and loading onto MHC II is highly
regulated by DC maturation. In the immature state, DCs
efficiently capture antigens but their ability to stimulate
T cells is limited, in part because their MHC II molecules
are largely retained in lysosomes unable to form pMHC II.
Upon maturation, DCs develop an enhanced ability to
form pMHC II through the activation of lysosomal hydro-
lases, which degrade endocytosed proteins and MHC II-
associated Ii. This effect is mediated by upregulation of
the ATP-dependent vacuolar proton pump in mature DCs,
which increases the acidification of lysosomes (46). Ma-
ture DCs develop tubules which enhance the transport of
pMHC II from lysosomes to the cell surface (19).

Unlike pMHC II, pMHC I may be formed in imma-
ture DCs more efficiently. However, DC maturation also
upregulates synthesis of TAP and components of the im-
munoproteasome, enhancing the processing of pMHC I
(18).

In mice, cross-presentation of exogenous antigens on
MHC I is tightly controlled by DC maturation induced
by CD40 ligation and treatment with TLR agonists such
as LPS, poly I:C or immunostimulatory CpG DNA (47,
48). MyD88 plays an important role in cross-presentation,
lack of MyD88 resulting in decreased IFNγ production
and reduced CTL-mediated killing (49).

Maturation Induces Adhesion Molecules,
Costimulatory Molecules and Cytokine Production

Maturation is accompanied by increased expression of
adhesion molecules and co-stimulatory molecules that are
involved in the formation of the immunological synapse,
an area encompassing sites of contact between T cells and
DCs. Upregulated molecules include semaphorins, pMHC
and members of the B7, TNF receptor and TNF families.
These molecules are involved in bidirectional signaling
between DCs and T cells, modulating both T cell activa-
tion and DC function. The complexity of these interactions
can be illustrated by the B7 family of molecules, of which
there are five members described to date. Signaling via
pMHC and the T cell receptor (signal 1), and B7-1/B7-2
and CD28 (signal 2) is essential for T cell activation. B7-
DC, a molecule primarily found on DCs, synergizes with

B7-1 and B7-2 to stimulate CD4+ T cells, enhance DC
presentation of pMHC, promote DC survival and increase
DC secretion of IL-12p70, a key Th1-promoting cytokine
(50, 51). In contrast, related members of the B7 (B7-H3,
B7x) and CD28 (CTLA-4, PD-1) families serve to down-
regulate T cell activation. B7-H3 and B7x are broadly
expressed on many cell types and may be involved in at-
tenuation of inflammatory responses in peripheral tissues
(52, 53).

Maturation induces DCs to secrete cytokines that de-
termine the type of ensuing immune response. The spe-
cific cytokine profile induced depends upon the type of
maturation stimulus, the subtype of DC stimulated and
the origin of the DC. For example, Listeria monocyto-
genes induces IL-12 production by MDCs (54), whereas
cholera toxin generates mature MDCs that do not pro-
duce IL-12 (55). PDCs, but not MDCs, characteristically
produce extremely high levels of type I IFN (IFNα/β) in
response to bacterial CpG DNA as well as to a number
of viruses. A recent report, however, indicates that mouse
MDCs may have TLR independent pathways of type I
IFN production (56).

Maturation Alters DC Expression of Chemokines
and Chemokine Receptors

Immature blood DCs can enter inflamed tissue by virtue
of interactions with ICAM-2 and P- and E-selectins ex-
pressed on activated endothelium (57), and through the
expression of chemokine receptors such as CCR1, CCR2
and CCR5. Maturation imparts on peripheral DCs the abil-
ity to migrate from the tissues to T cell zones of lymph
nodes. This is accomplished, at least in part, through
downregulation of CCR1 and CCR5 and upregulation
of CCR7, which targets DCs to lymphatic vessels and
lymph nodes via chemokines CCL19 and CCL21. CCL19-
mediated migration is enhanced by local secretion of
leukotrienes, perhaps from the DCs themselves (58). Mat-
uration also induces DCs to secrete chemokines such as
TARC, MDC or IP-10 (which recruit various T cell sub-
sets), and RANTES, MIP-1α and MIP-1β, which recruit
monocytes and DCs into the local environment. Incom-
plete maturation (e.g. following uptake of apoptotic cells)
may still upregulate CCR7, so partially matured DCs may
be able to display enhanced lymph node homing (59).
In addition, CCR7 has been identified as essential to the
migration of dermal and epidermal DCs into afferent der-
mal lymphatics, both under inflammatory and steady-state
conditions (60). This could be an important mechanism
by which DCs convey peripheral self-antigens to lymph
nodes for tolerance induction.
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DC Survival

DC lifespan and immunogenicity depend on signals de-
rived from the innate and adaptive immune systems, and
are mediated through the activity of Bcl-2 family proteins
(61). Ligands for TLRs and T cell-expressed costimula-
tory molecules (such as CD40L and TRANCE) stimulate
the survival of activated DCs, dependent on Bcl-xL. How-
ever, TLRs can also trigger cell death by a pathway that is
blocked by Bcl-2. Bcl-2 thus regulates the apoptosis path-
way, setting the lifespan of the DC and thereby regulating
the magnitude of the induced T cell response.

DC-T CELL INTERACTIONS

DCs prime T cell responses in secondary lymphoid
organs such as lymph nodes, spleen or mucosal lymphoid
tissues. Real-time imaging of murine DCs and naive T
cells in intact explanted lymph nodes reveals that a DC
interacts with as many as 500 T cells/h (29, 62, 63). In
the presence of antigen, stable and durable DC-T cell
contacts form, with antigen-bearing DCs engaging more
than 10 T cells at a time. Intranodal in vivo imaging of the
naive CD8+ T cell–DC interaction suggests three distinct

phases: Initial short encounters of T cells with numerous
DCs were followed by a phase of long-lasting T cell–DC
interactions (up to several hours) leading to T cell cy-
tokine secretion and upregulation of activation markers.
Finally, after T cells dissociated from DCs, rapid migra-
tion and vigorous proliferation occurred, before exiting
through efferent lymphatics (64). Rac1 and Rac2 (Rho
family guanosine triphosphatases) in mature DCs have
been implicated in controlling the formation of dendrites
and directional membrane projections toward naı̈ve T cell,
as well as controlling DC migration toward T cells neces-
sary for priming (65).

Strength of DC Priming Signal is Associated
with T Cell “fitness”

Effective priming of naive T cells results in their clonal
expansion and differentiation into cytokine-secreting ef-
fector cells and memory cells (Fig. 2). The ensuing T
cell response is dependent on many factors, including the
concentration of antigen on the DC, the affinity of the
T cell receptor for the pMHC, the duration of the DC-T
cell interaction, the state of DC maturation and the type
of DC maturation stimulus (66). T cell stimulation by
mature DCs is required for long-term T cell survival and

Fig. 2. Central role of MDCs—stimulation of cells of the innate and adaptive immune systems.
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differentiation into memory and effector T cells, since T
cell proliferation after stimulation by immature DCs is
only short-lasting. The enhanced T cell survival capacity
following priming by mature DCs is referred to as T cell
“fitness,” and is defined by resistance to cell death in the
absence of cytokines, and by responsiveness to IL-7 and
IL-15 which promote T cell survival in the absence of
antigen stimulation (66, 67).

CD4+ T Cell Polarization Depends on the Subtype
of DC and Type of DC Maturation Stimulus

Following priming, CD4+ T cells may differentiate to-
wards T helper 1 (Th1) cells, which produce IFNγ and
support CD8+ cytotoxic T lymphocyte (CTL) responses,
or towards T helper 2 (Th2) cells, which produce IL-4,
IL-5 and IL-13, support humoral immunity and downreg-
ulate Th1 responses. The secreted cytokine profile of the
stimulating DC determines the direction of this Th polar-
ization (Fig. 2). IL-12, IL-18 and IL-27 polarize toward
Th1, whereas CCL17, CCL22 or the absence of IL-12
skew the response toward Th2. The DC cytokine profile
depends on the DC subtype, the local environment and
anatomic location of the DC and the type of maturation
stimulus (55). These factors control other characteristics
of the T cell response as well, such as tolerance induction
(11) or T cell homing (44, 68).

Several intracellular events within the DC that deter-
mine Th polarization have been described. Distinct TLR
ligands differentially modulate MAP kinase signaling to
instruct human MDCs to induce distinct Th cell responses
(69). LPS and flagellin, which trigger TLR4 and TLR5,
respectively, instruct murine DCs to phosphorylate p38
and JNK1/2 kinases, which stimulate Th1 responses via
IL-12 production. In contrast, a TLR2 agonist, (Pam3cys)
and a classic Th2 stimulus (schistosome egg antigens)
stimulate ERK1/2 phosphorylation, which results in sta-
bilization of the transcription factor c-Fos (a suppressor of
IL-12) and Th2 polarization. DCs can also express T-bet,
the transcription factor which is associated with IFNγ

production in T cells. T-bet induced production of IFNγ

in DCs can in turn skew Th polarization towards Th1
responses (70).

Generation of CD8+ T Cell Memory

CD4+ T cell help at the time of priming is required to
generate CD8+ T cell memory (7, 44, 71). It is believed
that this T cell help is mediated by CD40–CD40L interac-
tions with DCs, which in turn fully prime the CD8+ T cell
response (72). One study, however, suggests that CD4+ Th
cells may interact directly with CD40 on CD8+ T cells to
mediate this effect, although this is still controversial (73).

Other T cell surface molecules are also involved in the
generation of memory. Members of the immunoglobulin-
related CD28 family of molecules are clearly important,
but cannot fully account for the co-stimulatory activity
that is necessary for the induction of long-lived T cell
responses and T cell memory (74). Members of the tumor
necrosis factor receptor (TNFR) superfamily, including
OX40 (CD134) and 4-1BB (CD137) are critical for both
initiating and sustaining long-lived T cell immunity. The
ligands for OX40 and 4-1BB (OX40L and 4-1BBL) are
expressed on activated, but not immature, DCs (74). Lig-
ation of OX40 promotes Bcl-xL and Bcl-2 expression in
CD4+ T cells and is essential for their long-term survival
(75).

A recent observation in mice showed that memory
and/or effector T cells induced by oral administration of
antigens can educate DCs via IL-4 and IL-10 to induce
naı̈ve T cells to produce the same cytokines. In vitro data
suggest that ‘educating’ and naı̈ve T cells do not need to
encounter the DC at the same time. Therefore, a small
number of memory and/or effector T helper cells is able
to educate a significant number of DCs and influence a
large pool of naı̈ve T cells (76).

DC Induction of Tolerance

Antigen presentation by immature DCs in vivo is con-
sidered to be an important pathway by which tolerance to
self antigens is maintained. This occurs through induction
of abortive proliferation and anergy of antigen-reactive T
cells, and by the induction of immunosuppressive (reg-
ulatory) T cells (77) (Fig. 2). In mice, antigen uptake
(e.g. cross-presentation of self antigens in the form of au-
tologous apoptotic cells) by resting (“steady-state”) DCs
in vivo leads to initial antigen-specific T cell activation
and expansion, but the T cell response is not sustained.
This abortive proliferation results in residual T cells that
are unresponsive to systemic challenge with antigen (14,
78). Similar observations have been reported using mice
engineered to have inducible expression of antigenic pep-
tides in steady state CD11c+ cells (79). In these studies,
antigen-specific CD8+ T cell expansion and protective
immunity was only seen with co-administration of anti-
CD40 agonistic antibody.

There is increasing evidence that naturally occurring
regulatory T cells (Tr)—are critically important in the
maintenance of peripheral immune tolerance (80, 81).
Both CD4+ and CD8+ Tr populations apparently exist
(80). CD4+ Tr can be grouped into two subsets. Natu-
rally occurring Tr produced in the thymus constitutively
express CD25 (IL-2Rα), CTLA-4 and the transcription
factor Foxp3, and exert their immunosuppressive effect
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in a cell contact-dependent manner. CD25+CD4+ T cells
constitute 5–10% of peripheral CD4+ T cells, and re-
moval of this T cell population in mice triggers excessive
inflammatory responses and autoimmunity (82). The sec-
ond type of CD4+ Tr, referred to as Th3 or Tr1 cells,
are induced peripherally and suppress immune responses
via secretion of cytokines such as IL-10 and TGFβ (81).
Immature DCs have been shown to induce both CD4+

and CD8+ IL-10-producing Tr (79, 83, 84) but even ma-
ture autologous DC in the absence of exogenous antigen
can induce a fraction of CD4+ T cells to proliferate and
acquire regulatory properties, such as secretion of IL-10
and TGF-β, induction of Foxp3 mRNA expression and
suppression of T cell proliferation in an allogeneic mixed
lymphocyte reaction (85).

In mice, both immature and mature DCs can maintain
the expansion of CD25+CD4+ Tr (86), although mature
DCs can also inhibit CD25+CD4+ Tr-mediated immune
suppression through the production of IL-6 (87). DC
expression of CD40 is an important factor determining
whether priming will result in immunity or Tr-mediated
immune suppression. Antigen-exposed DCs which lack
CD40 prevent T cell priming, suppress previously primed
immune responses and induce IL-10-secreting CD4+ Tr
that can transfer antigen-specific tolerance to primed re-
cipients (88).

A novel mechanism for peripheral T cell tolerance in-
duced by steady state DC was recently discovered and
involves increased expression of CD5. Induced CD5 ex-
pression on peripheral T cells leads to proliferative un-
responsiveness to antigenic re-challenges, however these
self-reactive T cells remained highly responsive to TCR
crosslinking in vitro (89).

Specific subtypes of DCs appear to be tolerogenic
in situ. In humans, a subset of monocyte-derived DCs
has been described that expresses indoleamine 2,3-
dioxygenase (IDO), an enzyme that catabolizes trypto-
phan. DC IDO activity is associated with inhibition of T
cell proliferation and induction of T cell death in vitro
(90). IDO can be induced in DCs by ligation of DC B7
molecules with CTLA-4 (91, 92) (Fig. 3). The presence
of “IDO DCs” in tumor-draining lymph nodes might con-
tribute to the immunologic unresponsiveness in cancer
patients (90, 93).

MDCs can be rendered tolerogenic in culture. Culture
of mouse bone marrow cells in the presence of IL-10
induces the differentiation of a distinct subset of CD11clo

DCs that specifically express CD45RB (94). These DCs
have a plasmacytoid morphology, are present in the spleen
and lymph nodes of normal mice, are enriched in the
spleen of IL-10 transgenic mice, and secrete high lev-
els of IL-10 after activation. When pulsed with antigenic

Fig. 3. Inhibition and activation of MDCs by cells of the innate and adaptive immune systems.
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peptide, CD45RB DCs induce antigen-specific tolerance
through the induction of Tr cells. The presence of TGFβ,
Vitamin D3, IL-10 and corticosteroids in culture also con-
fer tolerogenic properties upon DCs (94). DCs may also be
rendered tolerogenic by naturally-occurring CD8+CD28-
Tr, which upregulate inhibitory receptors (ILT3 and ILT4)
on the DC surface and disrupt CD40-mediated stimulation
of B7-1 and B7-2 expression on the DC (95).

PDCs can also be tolerogenic—PDCs can induce CD8+

Tr in vitro (78), and ligation of specific PDC receptors such
as BDCA-2 confers inhibition of T cell activation (55).

Two recent reports indicate that STAT3 activity in DCs
is critical for the induction of antigen-specific T cell tol-
erance. If activated by tyrosine phosphorylation follow-
ing exposure to IL-10, impaired antigen-specific T cell
responses result. Targeted disruption of STAT3 in DCs
results in their ability to prime antigen-specific T cells
in response to a normally tolerogenic dose of antigen.
This enhanced T cell priming is largely mediated by DC
secretion of IL-12 and RANTES (33). IL-6 is a dom-
inant cytokine for regulating the DC and T cell state
in lymph nodes and spleen. In mice, IL-6 signaling in-
creases numbers of resting/immature DCs and decreases
numbers of activated/mature DCs, suggesting IL-6 acts
a immunosuppressive cytokine through STAT3 activation
(96). STAT3 hyperactivation might be one mechanism for
abnormal DC differentiation and impaired functional ac-
tivity in cancer. In mice, tumor-derived factors (tumor cell
conditioned medium) prevented the differentiation of DCs
and led to an increased production of immature myeloid
cells via constitutive activation of Jak2/STAT3 in myeloid
cells (97).

DC INTERACTIONS WITH OTHER LYMPHOCYTES

Dendritic cells play a central role in the regulation of
innate and adaptive immunity and directly interact with
natural killer (NK) cells, natural killer T (NKT) cells and
B lymphocytes (Figs. 2 and 3).

Both immature and mature DCs can activate and in-
duce the expansion of resting NK cells (98). The mecha-
nisms underlying NK activation are not well understood
Requirements for direct cell contact, soluble factors, or
inducible expression of MHC class I-related chains A and
B (MICA/B), which are ligands for the NKG2D activating
receptor on NK cells, have been described (99, 100). In
mice infected with murine cytomegalovirus, cytokines re-
leased by DCs via the TLR9/MyD88 pathway such as type
1 IFN and IL-12 are critical for the activation of NK cells
(101). IL-15 Rα expression by DCs has been shown to be
critical for NK cell activation. DCs present bound IL-15

to NK cells via the IL-15 receptor; this activation route
might explain the need for direct cell contacts (102). In
contrast, NK cells are able to edit DCs in the periphery at
sites of inflammation and in lymph nodes (100). Activated
NK cells can lyse immature, but not mature, DCs. This has
been shown to be dependent on TNF-related apoptosis-
inducing ligand (TRAIL) (103). IFNγ -secreting NK cells
have also been shown to polarize immune responses to-
ward type 1, stimulate DCs to produce IL-12 and to induce
protective CD8+ T cell responses to cross-presented anti-
gens (100, 104, 105).

DCs presenting the synthetic glycolipid α-galactosyl
ceramide (αGalCer) on CD1d can activate NKT cells to
produce IFNγ and promote resistance to tumors (28).
Activated NKT cells can rapidly induce the full maturation
of DCs and can enhance both CD4+ and CD8+ T cell
responses in vivo through direct interaction with DCs (77,
106).

Activated MDCs can directly induce B cell prolifer-
ation, isotype switching and plasma cell differentiation
to T independent antigens through the production of B
cell activation and survival molecules, BAFF and APRIL,
which interact with three receptors on B cells (BAFF-R,
TACI and BCMA) (107–109). In culture, human PDCs
induce the differentiation of CD40-activated B cells into
IgG-secreting plasma cells in response to influenza virus
(110). This is mediated through the sequential action of
type I IFN (which induces B cell differentiation into
non-immunoglobulin-secreting plasmablasts), and IL-6
(which promotes differentiation into immunoglobulin-
secreting plasma cells). Human PDCs can also enhance
plasma cell differentiation and immunoglobulin produc-
tion in a T cell-independent manner, when B-cells are
stimulated by B cell receptor ligation and CpG DNA
in vitro (111).

CONCLUDING REMARKS

Recent advances in DC biology and knowledge about
bidirectional interactions with other immunocompetent
cells make the exploitation of DCs for immunotherapies
possible and exciting. We refer the reader to recent reviews
on modulation of DCs for therapeutic antitumor vaccines
(112, 113).
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