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Abstract
Vertical mixing in oceans is an essential component of the dynamics of ocean circulation, including meridional circulation. 
Nevertheless, various aspects of mixing, particularly in conjunction with global ocean energetics, remain debatable. One 
of the biggest reasons is the lack of observational facts. With the recent expansion of global vertical-mixing observations, 
attempts have been made to estimate the ocean state using vertical-mixing observation data to better understand the role 
of mixing in oceanography. In this review, we discuss the current status of the ocean state estimation and future synthesis 
of vertically mixing observation data into the oceanic basin-scale state estimation, including progress of data assimilation 
studies using numerical models. These will contribute to the construction of the future line of observation, model, and data 
synthesis studies along which the issues on ocean mixing can be consistently resolved.
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1 Introduction

Since the beginning of modern ocean observations with 
the Challenger in the 1870s, various geophysical and bio-
chemical variables have been observed. A wide variety of 
ocean observation data has been accumulated since the 
beginning of water sampling using ships with the devel-
opment of observation instruments such as Conductivity 
Temperature Depths (CTDs) and eXpendable Bathy Thr-
ermographs (XBTs). The international collaboration in the 
World Ocean Circulation Experiment Program (WOCE) and 
the development of global observations using satellites in the 
1990s, along with the beginning of the international Argo 
program (Argo Science Team 2001) in the 2000s, have led 
to a drastic increase in the amount of observed data and 
a steady decrease in spatiotemporal porosity. Nevertheless, 
the problem of spatiotemporal resolution persists, especially 
in subsurface oceanography. The number of high-accuracy 
observations is particularly low in areas of the ocean where 

the sea conditions are severe in the winter and where the sea 
is far from the general navigation routes and lands.

With respect to the quality of observed data, it has 
become possible to obtain high-precision data due to the 
improvement of sensor accuracy and development of obser-
vation platforms. On the other hand, there are a variety of 
data, ranging from highly accurate ship observation data 
to the developing sensors and automatic instruments with 
medium accuracy. In addition to incessant oceanographic 
observations, various approaches are needed to capture the 
dynamics of the ocean accurately at the basin scale. In this 
context, data synthesis can provide an answer to better uti-
lize the wide variety of available observations.

Synthesis of oceanographic data has been attempted in 
various ways. For example, the World Ocean Atlas (Mon-
terey and Levitus 1997) uses only observational data to 
produce map data in time and space by interpolation under 
statistical assumptions. Many of these approaches are based 
purely on observational data, which is effective in areas 
and periods of relatively high observational density. More 
recently, integrated data sets of temperature and salinity 
fields compiled by month using data from an Argo float have 
been published (Hosoda et al. 2008).

In the late 1990s, as computing power continued to 
improve, the synthesis of observational data on a global scale 
using numerical models also flourished (e.g., Sciller et al. 
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2013). These research and development efforts were based on 
statistical mathematics, control engineering, and meteorologi-
cal "data assimilation" technology, which was already used for 
weather forecasting.

Data integration in the ocean field using numerical models 
can be divided into two main categories: those that assimilate 
observational data sequentially and primarily aim to provide 
initial values for relatively short term (days to months) predic-
tion experiments, and those that search for the time evolution 
of a three-dimensional distribution close to the observational 
data as a smooth time-evolving arena for short-, medium-, and 
long-term (seasons to decades) predictions, dynamical anal-
ysis, and estimation of the time evolution of heat and mass 
transports (e.g., Sciller et al. 2013). The former is often called 
"ocean reanalysis", while, hereafter, we refer to the latter as 
ocean state estimation (Wunsch and Heimbach 2013). For the 
ocean state estimation, a method that emphasizes dynami-
cal consistency is desirable, and dynamical interpolation 
of observed data should be considered (e.g., Stammer et al. 
2002a).

Following CLIVAR (Climate and Ocean: Variability, Pre-
dictability and Change; http://www.cliva r.org), which was 
launched in 1995, GODAE (Global Ocean Data Assimila-
tion Experiment; https ://www.godae .org) was launched in 
1997 with the aim of accelerating research on global ocean 
data synthesis. This movement continues today through the 
CLIVAR GSOP (Global Synthesis and Observations Panel; 
http://www.cliva r.org/panel s-and-worki ng-group s/gsop/gsop.
php) and GODAE OceanView (https ://www.godae -ocean view.
org), which were followed by OceanPredict in 2019.

In recent years, global data integration studies that con-
sider observational variables excluded from the forecast 
variables of numerical models have also been pursued. In 
particular, there is a discussion on how to refine the mapping 
of vertical mixing, which is essential for the dynamics of 
oceanic circulation, including meridional circulation, using 
observed information.

In this paper, we present the current status of the global 
ocean state estimation. The future approach to synthesize 
vertical-mixing observation data using data assimilation 
systems is also discussed. Chapter 2 introduces the current 
ocean state estimation, and Chapter 3 presents the optimiza-
tion of the vertical diffusion coefficient using temperature 
and salinity data. Chapter 4 discusses the promising direc-
tion of data synthesis for vertical-mixing observations, and 
Chapter 5 summarizes future challenges.

2  Current ocean state estimation

Since the 2000s, several research groups have estimated the 
ocean state. This estimation often involves the application of 
a four-dimensional variational adjoint method (e.g., Sasaki 

1970; Awaji et al. 2003; Wunsch and Heimbach 2007) or 
the Kalman smoother approach (e.g., Evensen and van 
Leeuwen 2000; Fukumori 2002). These operations typi-
cally require large computers and complex coding schemes. 
Consequently, there is a limited number of institutions con-
ducting data synthesis studies on the ocean state estimation. 
Representative examples of a global-scale long-term state 
estimation are presented next. The ECCO consortium, led by 
NASA’s Physical Oceanography, Modeling, and Cryosphere 
Programs (https ://ecco-group .org/home.cgi) in the United 
States, was the first to successfully estimate the global ocean 
state over several decades, and it has been providing high 
quality data sets such as those reported by Stammer et al. 
(2002b) and Wuncsh and Heimbach (2013). This technol-
ogy has also been transferred to the University of Hamburg, 
Germany, and separately developed as a German ECCO 
(G-ECCO), which has also significantly contributed to the 
global ocean state estimation (e.g., Köhl et al. 2012).

In Japan, the K7 consortium formed at JAMSTEC, Kyoto 
University, has been conducting long-term global ocean data 
synthesis studies since the early 2000s (Awaji et al. 2003; 
Masuda et al. 2003). In the 2010s, the consortium provided a 
synthesized dataset for climate research (Estimated STate of 
Ocean for Climate research: ESTOC; Osafune et al. 2015). 
This dataset is capable of successfully reproducing mid- 
and long-term changes in the deep ocean by applying an 
anomaly data assimilation for the full depth of the ocean. 
Climate change research targeting deep-water warming (e.g., 
Fukasawa et al. 2004) using this system represents a unique 
achievement that demonstrates the advantage of the state 
estimation (Masuda et al. 2010). ESTOC has also been used 
to assess the reliability of estimates of global deep-sea heat 
storage increases. It has significantly contributed to studies 
showing that increases in deep-sea heat storage represent 
8–20% of the ocean surface (Kouketsu et al. 2011). Table 1 
summarizes global ocean data synthesis efforts using 
smoother methods by updating a review article of Sciller 
et al. (2013).

The estimation of the long-term global ocean state is 
becoming possible. Therefore, the role of oceans in global 
changes should be further elucidated at this stage by com-
prehensively understanding the changes in the subsurface 
layers of the ocean. For this reason, the dynamics of the 
mid-deep ocean must be understood more accurately. To 
obtain more accurate estimations, expansion of the subsur-
face observation data such as the enhancement of repeat 
hydrography (http://www.go-ship.org), expansion of the 
automatic ascending drifting buoy array, Argo array (http://
www.jcomm ops.org/board ?t=Argo), and its extension to 
the deep sea (http://www.jamst ec.go.jp/ARGO/deepn inja) 
should be vital.

The performance of numerical models is also recog-
nized as an important factor. Some research groups have 
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successfully constructed state-of-the-art basin-scale state 
estimations of 1/6 − 1/10 degree horizontal resolution 
(SOSE: Mazloff et al. 2010; FORA-WNP30: Usui et al. 
2017), leading to a new global state estimation. In addition, 
another promising line is the utilization of observation infor-
mation that does not correspond to model variables, which 
has been difficult to integrate directly.

3  Ocean state estimation optimized 
by controlling vertical mixing

Vertical mixing, especially diapycnal diffusivity, is critical 
to determine the energetics in the global ocean in association 
with meridional overturning, heat, and mass budgets (e.g., 
Munk and Wunsch 1998). Global dissipations of about 2 
TW are thought to be mostly compensated by internal wave 
power sources from tides and winds (e.g., Kunze 2017). 
Hence, mixing has a large intermittency in space and time 
(e.g., Kunze et al. 2006) and depends on the ocean state, 
sources, and bottom topography through wave dynamics 
(e.g., Hibiya et al. 2017). Among these, deep ocean mix-
ing mainly provides a downward buoyancy flux to maintain 
global meridional circulation while main thermocline mix-
ing is smaller by one order (e.g., Lumpkin and Speer 2007). 
Deep ocean mixing is, thus, an important factor in refining 
the ocean state estimation. In numerical models, it is com-
mon for diffusion coefficients to be treated as an external 
model parameter rather than a model variable.

In this context, it is important to determine if the amount 
of change in the results when the diffusion coefficient of the 
model changes is relevant, that is, if it is appropriate to use 
the diffusion coefficient as a control variable. The depend-
ence of numerical calculations on the magnitude of diffusion 
coefficients has been studied since the early stage of ocean 
circulation model development (e.g., Bryan 1987; Cummins 
et al. 1990; Sasaki et al. 2012; Richards et al. 2012; Melet 
et al. 2013; Oka and Niwa 2013). Recently, Furue et al. 
(2015) and Jia et al. (2015) have examined in detail how 
different vertical diffusion coefficients for different oceans 
affect the representativity of the model. The results indicate 
that the application of vertical diffusion coefficients with 
spatiotemporal distribution effectively reproduces realistic 
ocean circulation fields in terms of reducing representative-
ness errors. Another study (Niwa and Hibiya 2004) evalu-
ated the three-dimensional distribution of tidal mixing using 
a tidal model. All these studies have important implications 
for understanding the distribution of vertical mixing and the 
dynamics of ocean circulation.

Attempts have been made to optimize the diffusion coef-
ficients at the ocean basin scale using general circulation 
models and conventional ocean observation data. Liu et al. 
(2012), based on the G-ECCO system, applied the four-
dimensional variational adjoint method to optimize global 
vertical and horizontal diffusion coefficients as control varia-
bles using data such as temperature, salinity, and sea surface 
height. Consequently, the reproducibility (cost attenuation) 
of temperature, salinity, and sea surface height anomalies 
has been improved by 10–20%, and the mean sea level devia-
tion has been improved by 45%. Liu et al. (2014) analyzed 
the geographic distribution of the model parameters for 
diffusion (Fig. 1) and proposed a new parameterization by 
focusing on their correlation with the seafloor topography. 
The effects of internal waves generated by surface wind and 
long-propagating waves from remote sources are implicitly 
excluded according to a strong-constraint formalism. These 
are practical examples that can be adapted to other models 
and help elucidate the dynamics related to diffusion.

Toyoda et al. (2015) applied Green’s function method 
(e.g., Menemenlis et al. 2005) to temperature and salinity 
data to blend several existing vertical diffusion schemes at 
optimal proportions. They assumed a simple linear coupling 
and obtained the optimal mixing ratio for vertical diffusion 
coefficients (Fig. 2). The mixed layer scheme was independ-
ent from this optimization procedure. Consequently, they 
improved the reproducibility of the water temperature dis-
tribution and circulation field, mainly in the deeper layers. 
Moreover, their method significantly reduced the degrees of 
freedom and, by adopting a Monte Carlo legal strategy, effi-
ciently achieved optimization with a relatively small amount 
of computational resources.

Table 1  List of four-dimensional oceanic applications of smoother 
methods. This is an update to Sciller et al. (2013) and not a compre-
hensive list of all applications

Smoother method Related articles

Optimal smoother Evensen and van Leeuwen (2000)
Kalman smoother Fukumori (2002)

Cosme et al. (2010)
Freychet et al. (2012)

Adjoint method Stammer et al. (2002a)
Stammer et al. (2000b) ECCO
Awaji et al. (2003) K7
Masuda et al. (2003) K7
Wenzel and Schröter (2007)
Köhl and Stammer (2008a, b) G-ECCO
Hoteit et al. (2010) ECCO
Masuda et al. (2010) K7
Mazloff et al. (2010) SOSE
DeVries and Primeau (2011)
Köhl et al. (2012) G-ECCO
Wunsch and Heimbach (2013) ECCO
Osafune et al. (2015) k7/ESTOC
Usui et al. (2017) FOR A
DeVries and Holzer (2019)



362 S. Masuda, S. Osafune 

1 3

These results may be highly model-dependent as the 
dynamics represented by the diffusion coefficients may dif-
fer according to the model resolution and other factors. In 
this context, there are unique state estimations that implicitly 
revise vertical mixing in the model by controlling model 
errors with oceanic initial conditions (DeVries and Primeau 
2011; DeVries and Holzer 2019). Regardless of the approach 
selected, a careful comparison and verification with direct 
vertical-mixing observations (e.g., Waterhouse et al. 2014) 

and field information on vertical mixing assessed from 
existing temperature and salinity data, for example from the 
global Argo array (Whalen et al. 2012), will be essential.

4  Data synthesis of vertical‑mixing 
observations

The number of vertical-mixing observations is much lower 
than the data on temperature and salinity. In addition, verti-
cal mixing has a remarkably high spatiotemporal variability. 
Although Waterhouse et al. (2014) compiled the available 
microstructure profiles to detect global patterns of diapycnal 
mixing, in general, it is difficult to construct a continuous 
map of mixing on the global scale solely from observa-
tions. The data synthesis experiments using a global-scale 
numerical model shown in the previous section used obser-
vation data of temperature, salinity, and sea surface height 
properties, but not vertical mixing when refining the model 
parameters (vertical diffusion coefficients). Thus, there are 
not data synthesis of vertical mixing observations. Here, we 
discuss technical issues unique to the synthesis of mixing 
data using numerical models and effective approaches to 
solve such issues.

Considering the same physical quantities for the variables 
calculated in the numerical model, such as water temperature 
and salinity, data synthesis is relatively easy to envision. 
The nudging method, one of the most simple and traditional 
approaches, could be used for this synthesis. In this method, 
the model variables are restored towards the observed val-
ues. Since water with its properties modified through this 
method is transported through advection and diffusion, this 
creates a continuous data set with a distribution close to the 
observed values. However, it is difficult to create a map of 
vertical mixing in the same manner because the turbulent 
energy dissipation rate obtained from observations is not 
calculated in most numerical models and it is not a conserva-
tive variable.

Fig. 1  Distribution of the estimated  kgmskew, eddy-induced thick-
ness advection parameter in  m2  s−1, at 1160 m applied by Liu et al. 
(2014). This parameter represents the skewed part incorporated in an 
eddy-mixing scheme presented by Gent and McWilliams (1990) and 

Gent et al. (1995) (Eden et al. 2007). Black contours show the bottom 
depth H in m, and green contours show the barotropic stream func-
tion in Sv (Liu et al. 2014)

Fig. 2  Horizontally averaged vertical profiles of vertical diffusivity 
for various schemes. Toyoda et al. (2015) considers a linear combina-
tion of three different vertical diffusivity schemes: Type III of Tsujino 
et al. (2000) as one of the most skillful background vertical diffusiv-
ity (TJN; green), Gargett’s (1984) state-dependent scheme (GGT; yel-
low), and the Hasumi and Suginohara’s (1999) scheme for bottom-
intensified vertical diffusivity (HSM; blue). Optimization result is 
obtained through the best linear combination of the three schemes 
(red) (Toyoda et al. 2015)
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The optimization of model parameters (vertical diffusion 
coefficients) using water temperature, salinity, and sea sur-
face height anomaly observations, as described above, can 
provide a realistic ocean state (dynamically self-consistent 
results) together with optimal parameters. It is a kind of data 
synthesis of observed information and a dynamical interpo-
lation that considers a numerical model (available formalism 
or model equations).

If the use of vertical-mixing observation data is consid-
ered as an analogy to the use of temperature, salinity, and sea 
surface height observations, an approach, which optimizes 
parameters such as vertical diffusion coefficients along with 
temperature, salinity fields, and circulation fields as control 
variables using vertical-mixing observations, can be con-
sidered. In this context, the distribution of vertical diffusion 
coefficients obtained with information from observations, 
including vertical mixing, can represent the data synthesis 
of vertical mixing observations. The use of a data synthe-
sis system in which the majority of the model representa-
tion errors are compensated by modifying vertical-mixing 
parameters will likely compromise the reliability of the 
diffusivity values, and there is a danger that the optimized 
vertical-mixing map cannot be applied to observational 
data synthesis. Therefore, a vertical mixed parameterization 
rooted in mechanics should be adopted to the fullest (e.g., St. 
Laurent et al. 2002), and the results of careful optimization 
to mitigate the representation errors of the model should be 
verified.

5  Discussion

With the expansion of vertical-mixing observations, Yasuda 
et al. (http://omix.aori.u-tokyo .ac.jp), who proposed the new 
academic area "ocean mixing", started to synthesize these 
observations. This synthesis is an attempt to refine the repro-
duction of the mid-deep ocean state by utilizing vertical-
mixing observations. In this framework, the adjoint-based 
four-dimensional variational method was applied to estimate 
the ocean state and optimal spatial three-dimensional distri-
bution of the vertical diffusivity by modifying parameters 
in parameterizations of tidal-induced vertical mixing based 
on outputs of a global barotropic tide model (St. Laurent 
et al. 2002; Hibiya et al. 2006). Hibiya et al. (2006) com-
prehensively includes remote sources mainly by bottom 
topographies.

St. Laurent et  al. (2002) proposed a mixing scheme, 
which is widely used in OGCMs at present. Following their 
scheme, we represent the turbulent dissipation rate, � , as

(1)� =
q

�
Eg(x, y)F(z),

where q is the local dissipation efficiency, � is the reference 
density of seawater (kg  m–3), Eg (W  m–2) is the rate of con-
version of barotropic tidal energy into internal waves, and 
F(z) is a vertical distribution function that assumes � decays 
exponentially away from the ocean bottom as

where z is the vertical coordinate (positive upward), H is 
the bottom depth, and h is the vertical decay scale. Verti-
cal diffusivity, κ, is calculated following the Osborn (1980) 
relationship for the mechanical energy budget of turbulence 
as κ = Γ�N−2 , where Γ is the mixing efficiency of turbu-
lence and N is the buoyancy frequency. While St. Laurent 
et al. (2002) assumed q was a constant, Tanaka et al. (2010) 
showed that q can take different values for subinertial and 
superinertial tidal frequencies, which are referred to as qsub 
and qsup , respectively.

Osafune et al. (2014) calculated the adjoint sensitivity 
of these parameters in addition to some other parameters 
using turbulent dissipation rate observations in the North 
Pacific sections. Then the adjoint sensitivity was used as 
a clue to optimize the parameters (Fig. 3). The sensitivity 
here is a statistically evaluated variable, and it indicates 
that the difference between the observed data and numeri-
cal model results can be resolved by changing the vertical 
diffusivity. It is an approach to synthesize vertical-mixing 
observations.

The dataset obtained as a result of optimization will pro-
vide new insights for various scientific issues on the ocean 
interior, which have attracted attention in recent years such 
as the identification of the mechanisms of deep ocean cli-
mate change and changes in the meridional circulation, 
including deep-water warming. In addition, the distribution 
of optimized vertical mixing, although it contains model 
representativeness errors, should be validated as a single 
mapping result that synthesizes observations. The continu-
ous research along this line with sustainable observations 
will lead to breakthroughs that shall elucidate the influence 
of vertical mixing in ocean circulation and global change.

In addition, the construction of a new numerical model 
framework in which the variables on turbulence are used 
as model variables may become possible in the near future 
due to advances in computer science. A wide range of 
direct observation data is expected to be densely acquired 
through turbulence observations using platforms such as 
Argo floats and underwater gliders, which are now enter-
ing the practical stage.

(2)F(z) =
exp

(

−
H+z

h

)

�

(

1−exp
(

−
H

h

)) ,

http://omix.aori.u-tokyo.ac.jp
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