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Abstract
The crystal structure of [Cu3(C7H5O3)4(C20H20NO5)2(H2O)2]·2(H2O) (1) and analysis of temperature and field depend-
ence of magnetic susceptibility is reported in this work. The structure of 1 is composed of trinuclear complex units and 
water molecules. The middle copper atom occupies the center of symmetry. N, O-bonded (6,7-dimethoxy-isoquinolin-1-
yl)-(3,4-dimethoxy-phenyl)-methanolato ligands, 2-hydroxybenzoates with bridging carboxylic groups, and oxo-bridged 
water molecules connect the middle Cu(II) atom with the terminal copper atoms. Two 2-hydroxybenzoates coordinate the 
terminal copper atoms via one carboxylic oxygen and an O atom of the hydroxyl group. The analysis of copper coordination 
by bond-valence sum approach and relevant structural correlation is consistent with hexacoordinated Cu(II) centers. Cu···Cu 
separation is 3.0269(3) Å. The magnetism of 1 shows a strong ferromagnetic interaction between the neighboring metallic 
centers accompanied by very weak antiferromagnetic intermolecular interactions. The complex units are mutually held by 
π···π stack interactions of 2-hydroxybenzoates and hydrogen bonds.
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Graphical Abstract
A new N,O bonded ligands, (R, S)-[(6,7-dimethoxy-isoquinolin-1-yl)-(3,4-dimethoxy-phenyl)-methanolate] coordinate the 
terminal atoms of the trinuclear copper(II) complex.

Keywords  Trinuclear copper(II) complex · Crystal structure · Carboxylate · Magnetic properties · Structure correlation · 
Inner coordination

Introduction

Structurally Closely Related Alkaloids to Papaverine

( 1 - [ ( 3 , 4 - d i m e t h o x y p h e n y l ) m e t h y l ] - 6 , 7 -
dimethoxyisoquinoline) are important pharmacological 
drugs and biologically active compounds [1–3]. The mol-
ecule of papaverine (Scheme 1) is unstable toward oxygen 
and can be oxidized easily to papaverinol and papaveraldine 

[4–7]. However, the crystal structure of papaverine hydro-
chloride [8] is composed of relatively stable nonoxidized 
papaverine molecules. The formation of copper complexes 
with the potential ligands contained in human organisms 
can cause many changes in cells [9]. To our knowledge, 
until now, with papaverine, only the crystal structure of the 
binuclear complex [Zn2(C6H5COO)4(pap)2] (pap = papa-
verine) was resolved [10]. Carboxylic copper(II) complexes 
may be mononuclear, binuclear, tetranuclear, or polynuclear 
[11–14].

Chemical coordination [15] defined by Werner [16] is 
an array of atoms surrounding the central atom because 
of chemical bonding. In transition element complexes, the 
atoms often interact with the central atom very weakly. In 
the quantum chemical definition, atomic valence is a meas-
ure of the degree of electron sharing of the given atom with 
the other atoms [17]. According to the residual valency of an 
atom, the atoms in a molecule may be subvalent, normal, or 
hypervalent [18]. Such classification deviates from the tradi-
tional valence of an atom in the crystal structure. It suggests 
using the atomic valence approximated by the bond valence 
sum as a parameter that is as close as possible to the integral 
value or “formal oxidation number“ [19, 20].Scheme 1   Molecule of papaverine
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The valence of a bond is the measure of interaction 
between electrons sharing the bonding of atoms. For the 
amorphous materials, the coordination spheres were limited 
[21, 22]. Beyond the distance, to the central atom around 
6 Å, the refined parameters of dependence bond valance 
vs. interatomic distance do not change [23, 24]. Introduc-
ing chemical considerations, the concept of coordination 
requires estimating if an atom of a coordination array is 
bonded to the central atom or not. If such an atom signifi-
cantly influences the interatomic distances of the remaining 
atoms of the array, it is primary bonded to the central atom.

For the big family of copper complexes, the concept of 
coordination sphere plasticity [25] and equatorial-axial influ-
ence [26] reflect such influence via the central atom. Both 
effects are manifested in structural correlations of bond dis-
tances within the chromophores of transition element com-
pounds. The structural correlations of coordination com-
pounds with CuO6 and CuN6 chromophores approach the 
asymptotical values with the shortest equatorial bond length 
at around 1.9 Å [25]. Small changes in coordination poly-
hedra may cause significant changes in a hydrogen-bonding 
network [27]. In most cases, electronic distortions do not 
violate the valence sum rule [28, 29]. Importing dynamic 
features into molecular chemistry requires shifting from 
“static” to “dynamic” covalent bonds leading from molecu-
lar to constitutional dynamic chemistry [30].

As the magnetic properties of linearly arranged trinuclear 
hydroxy-bridged copper(II) complexes studied by the meth-
ods of density functional theory (DFT) showed, the angle 
Cu–O–Cu and out-of-plane displacement of the hydrogen 
atoms at the bridge are the key magnet factors that determine 
their magnetic behavior [31]. The magneto-structural study 
of binuclear copper(II) benzoates shows the dominance of 
antiferromagnetic spin interaction between metallic centers 
through bridging carboxylates over direct Cu···Cu interac-
tion [32, 33]. These facts suggest the crucial structural influ-
ence of copper-ligand interactions within the coordination 
polyhedra of the central and terminal metallic centers. Here 
we report the crystal structure and magnetic properties of 
a novel compound consisting of trinuclear copper entities 
containing the alkaloid derived from papaverine.

Experimental Section

Preparation of Crystals

The light green product of the entitled compound was 
prepared by heating papaverine (0.01  mol) with Cu(2-
HOC6H4COO)2·2H2O (0.01 mol) in hot water and metha-
nol. The mixture was stirred, filtered, and then left at room 
temperature. The solid product of the reaction was collected 
and recrystallized from hot methanol to give air-stable pale 

blue-turquoise crystals. The analytical data found/calculated 
are 12.42/12.54% (Cu), 53.40/53.74% (C), 4.40/4.6% (H), 
and 1.93/1.84% (N).

Crystal Structure Solution and Refinement

Single crystal data collection was performed on a STOE 
diffractometer at 100 K. Crystal data and structure refine-
ment details are summarized in Table 1. The structure of1 
was solved by the program SHELXS [34]. The structure was 
drawn by OLEX2 [35]. The refinements were carried out by 
SHELXL [36]. OMe group and water molecules disordered 
in two positions were refined under the constraint of their 
occupancy sums to unity. Positions of all hydrogen atoms 
were optimized under the constraint to ride on their par-
ent atoms, with C–H bond length of 0.93 Å and O–H bond 
length of 0.82 Å.

Magnetic Measurements

Magnetic measurements were performed by a SQUID mag-
netometer MPMS-XL7 from Quantum Design in the RSO 
mode of detection. The temperature dependence of magnetic 
moment was recorded at 0.1 T as an external magnetic field 
and the temperature sweeping rate was set to 1 K/min. The 
magnetic susceptibility of the polycrystalline sample was 

Table 1   The crystal data and details of crystal structure determina-
tion of 1 

Chemical formula C68H64Cu3N2O24·2(H2O)
Mr 1519.89
Crystal system, space group Triclinic, P¯1
a, b, c (Å) 10.3322(1), 13.4417(2), 

13.6606(2)
α, β, γ (°) 104.349(1), 111.855(1), 96.685(1)
V (Å3) 1659.36(4)
Z 1
Radiation type Cu Kα
µ (mm−1) 1.857
Crystal size (mm) 0.48 × 0.16 × 0.15
Absorption correction Numerical
Tmin, Tmax 0.469, 0.768
No. of measured, independent, 

and observed [I > 2σ(I)] reflec-
tions

64,315, 6353, 6328

Rint 0.022
(sin Θ/λ)max (Å−1) 0.654
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.131, 1.160
No. of reflections 6356
No. of parameters 510
No. of restraints 28
∆ρmax, ∆ρmin (eÅ−3) 1.44, − 0.82



	 Journal of Chemical Crystallography

measured by the Faraday method in the temperature range 
of 77–300 K. The mercury tetracyanato cobalt(II) was used 
as a calibrant [37].

Calculation Details

Bond Valence Calculations

….For idealized copper hexacoordination of four equidistant 
equatorial in-plane Cu–N, O3 bonds and two equidistant out-
of-plane Cu–O′2 bonds (chromophore CuNO3O′2) the quan-
tities rL, rS were defined. rS is the length of in-plane (equato-
rial) bonds and rL is the length of out-of-plane (axial) bonds. 
The bond valence sum (BVS) distribution was calculated as 
the sum of equatorial and axial contributions:

where sCu–O and sCu–N are the bond valence functions for 
Cu–O and Cu–N bonds [38]:

If BVS is kept constant, the contour of the function 
expressed by Eq. (1) with inserted Eq. (2) gives the depend-
ence of rL vs. rS. For the idealized copper coordination of 
the chromophore Cun+NO3O′2 this dependence is

where parameter n is the formal charge of a copper cation, 
Ro,Cu(n)–O is the bond valence parameter of a copper-oxygen 
bond, and sCu–N, sCu(n)–O are the functions [39]:

The empirical bond-valence parameters Ro and b were 
used from the latest version of http://​www.​iucr.​org/​resou​
rces/​data/​datas​ets/​bond-​valen​ce-​param​eters. Equation (4) 
is appropriate for ionic, covalent, and intermediate ionic-
covalent bonding, respectively [40]. The predicted axial 
Cu–O′(2×) bond length of the copper coordination of 
Cu2+O4O′2 chromophore was calculated as a numerical solu-
tion of the Eqs. [41, 42]:

where BVSeq is the bond valance sum of equatorial Cu–O 
bonds calculated by Eq. (2). αi are the parameters of the 
function (2) for Cu–O bonds.
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Magnetic Measurements

The correction for the diamagnetism of the constituent atoms 
was calculated by Pascal’s constants [43]. The effective mag-
netic moments were calculated using the equation:

To assess the values of magnetic exchange parameters 
the broken-symmetry DFT approach was employed. Major 
–O–CH3 (OMe) groups were used in calculations. The mag-
netic parameters were used in the form −JijŜiŜj. The final val-
ues of magnetic parameters were extracted using the adapted 
Eq. (7) of Yamaguchi and co-workers, for broken symmetry 
(BS) and high spin (HS) states [44, 46]:

The fitting of the magnetic susceptibility and magnetization 
in 1 was performed with the program.

PHI 3.1.1 [47]. Before the quantum-chemistry calculations, 
the positions of all hydrogen atoms were optimized using the 
method PBEh-3c [48]. All other atoms were kept in their 
positions as obtained from the crystal structure investigation. 
Calculation of magnetic exchange parameters was carried out 
within the program ORCA 4.2.0 [49, 50]. The second-order 
Douglass–Kroll–Hess correction (DKH2) [51] and the chain-
of-spheres approximation (RIJCOSX) [52] were set on. For all 
atoms, accounting for scalar relativistic effects Ahlrichs’s basis 
set DKH-def2-TZVP [53] was used with an auxiliary basis set 
def2/J [54]. The magnetic exchange parameters were obtained 
from DFT calculation utilizing the hybrid functional B3LYP 
[55–58]. In all calculations, the increased integration and fit-
ting grids were used (grid6 and gridx6 in ORCA convention).

Results and Discussion

Crystal Structure

The crystal structure of compound 1 is composed of the tri 
copper units [Cu3(C7H5O3)4(C20H20NO5)2(H2O)2] (2) pre-
sented in Fig. 1 and noncoordinated water molecules.

Selected bond lengths and angles are collected in 
Table 2. N, O -bonded(6,7-dimethoxyisoquinolin-1-yl)-(3,4-
dimethoxyphenyl)-methanolato ligand in this work is named 
papaverinyloxy ligand. The trinuclear unit shows chiral-
ity at C16. One OMe group attached to the phenyl ring 
is disordered in two positions of an occupancies ratio of 
0.777(3)/0.223(3). The second OMe group is partially sta-
bilized by the hydrogen bond.

OW2–HW4‧‧‧O10, while its relative free methyl group 
is split in two positions of an occupancies ratio 0.500(3) 
/0.500(3). The noncoordinated water molecules of oxygens 

(6)�eff = 2.83(�corr
M

⋅ T)0.5

(7)J =
(

EBS − EHS

)

∕
(

< Ŝ2 >HS − < Ŝ2 >BS
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OW2, and OW3 are disordered in two crystal sites with an 
occupancy ratio of 0.730(6) /0.270(6). The isoquinoline and 
phenyl rings of the papaverinyloxy ligand are significantly 
deviated from planarity. The angle between the least-squares 
planes of isoquinoline ring and the phenyl ring is 87.19(7)°. 
In papaverine hydrochloride, the corresponding angle is 
80.13(8)°.

In the structure of salicylic acid [60] the corresponding 
deviation is 0.0012(1) Å. The phenyl rings of 2-hydroxy-
benzoates do not deviate from planarity. But the atoms O6 
of hydroxyl groups deviate from the least-squares planes 

of phenyl rings by 0.054(2) Å. The complex units 2 are 
connected via hydrogen bonds of OW2 water molecules 
connected into the infinite chains along [101] direction 
(Fig. 2). The phenyl rings of adjacent symmetry-related 
2-hydroxybenzoates assemble the complex units via π···π 
stack interactions [61, 62] into the chains along the [010] 
direction (Fig. 3). The hydrogen bond lengths are presented 
in Table 3. 

The inter-centroid distance and parallel shifts of phenyl 
rings are 3.7379(1) Å and 1.66901(5) Å. Slightly distorted 
trans-square coordination of Cu1 is created by two in-plane 
carboxylic O atoms and two oxygens of papaverinyloxy 
ligands. The five-membered ring containing Cu2 is slightly 
deviated from the planar geometry. The torsion angle 
N1–C1–C16–O7 is 18.3(3)°. The Cu2–O3 bond stabilizes 
the copper coordination of the 2-hydroxybenzoato ligand 
while the atom O2 remains free.

The coordination polyhedron around Cu2 can be 
described as a distorted tetragonal bipyramid. The equa-
torial bonds of its inner coordination are Cu2–N1i, O1, 
O4, and O7i. The greatest deviation from the least-squares 
plane defined by the donor atoms is shown by atom N1i 
[0.079(2) Å]. Atom Cu2 is displaced from the basal plane 
toward the atom OW1 by 1.1406(1) Å. The hexacoordina-
tion of atom Cu2 is completed by the axial bonds Cu2–OW1 

Fig. 1   The structure of complex 2 with the numbering of nonhydro-
gen atoms. The displacement ellipsoids are drawn at the 50% prob-
ability level. The equatorial mean planes of copper coordination poly-
hedra are shaded. The relative configuration at the C16 centers [59] is 
mentioned

Table 2   Selected geometric parameters (Å, °) of the complex 2 

Symmetry code: (i) − x + 1, − y + 1, − z + 2.

Cu1-O5 1.940(2) Cu2–O4 1.945(2)
Cu1–O7 1.959(2) Cu2–N1i 1.970(2)
Cu1–OW1 2.496(2) Cu2–OW1 2.442(2)
Cu2–O1 1.925(2) Cu2–O3 2.873(2)
Cu2–O7i 1.930(2) O5–Cu1–O7 91.43(1)
OW1–Cu1–O5 102.61(1) O1–Cu2–O4 91.10(1)
N1–Cu2–O7 83.48(1) O1–Cu2–O3 64.43(1)
N1–Cu2i–O3 92.65(1) Cu1–O7–Cu2i–O3i 147.6(8)
Cu1–O7–Cu2i–O1i − 74.8(1) Cu1–OW1i–Cu2i–

O3i
− 152.3(6)

Cu1–OW1i–Cu2i–
O1i

160.0(6)

Fig. 2   Schematical drawing of intermolecular hydrogen bonding in 
the crystal structure of 1 
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and Cu2–O3 of 2.445(2) Å and 2.872(2) Å, respectively. 
The angle formed by the Cu2–O3 bond and the basal least-
squares plane of the coordination polyhedron around Cu2 
is 83.56(5)°.

Bond Valence Analysis

For copper atom valence 2+, the predicted lengths of 
Cu1–OW1 bonds calculated by Eq. (5) is 2.50(2) Å which 
does not deviate significantly from the experimental bond 
length of 2.497(2) Å. The coordination of Cu1 is com-
pleted by two out-of-plane water O atoms to an axially 
distorted tetragonal bipyramid of chromophore CuO4O′2. 
The bond valence sum of Cu1 calculated by formulae (2) 
is 2.05(2) v. u. Figure 4 shows the contour graph of the 
copper atom valence (BVS) for idealized copper coordi-
nation of CuNO3O′2 chromophore. The numeric labels of 
isolines are the BVS values which are kept constant for rel-
evant rL vs. rS dependence. The maximum bond lengths are 
rS(max) = 2.92(1) Å and rL(max) = 3.07(3) Å.

For those distances, the contributions of equatorial and 
axial bonds to BVS in Eq. (1) yield zero values. In the 
regions of distances, the rS > rS(max) and rL > rL(max) 
these contributions are negative. The bond lengths 
rS(max) and rL(max) are the supreme limits of bonding 

distances within the inner copper coordination. If the 
bond valence sum of a copper atom is kept constant, any 
increase in the distance rS causes a decrease of rL and 
vice versa, i.e. such distortion of the inner coordination 
is plastic. 293 independent rS, rL values of the structures 
retrieved in CSD [64, 65] were approximated by the 
means of equatorial bond lengths (RS) and axial bond 
lengths (RL) [66]. The model structures were identified 
by the connectivity shown in Scheme 2. The standard 
atomic radii and tolerances of CSD were used. Only the 
non-disordered structures with an R-factor less than 0.05 
were accepted. The structures were inspected by the pro-
gram ORTEP-3 for Windows [67]. REFCODES of model 
structures with RS and RL values are included in the Sup-
plementary Information. The best approach to the contour 
line and the graph of Eq. (3) for the copper oxidation state 
2.0 show points in the region rL ≥ rS. The weak bonds 
Cu2–O3 are included in the inner coordination of Cu2. 
The bond valences of these bonds calculated by Eq. (2) 

Fig. 3   Schematical drawing of interaromatic π···π interactions in the 
crystal structure of 1. Only the intramolecular hydrogen bonds and 
OMe groups of major occupancies are presented

Table 3   Hydrogen-bond geometry (Å, º) of 1 

Symmetry code: (i) − x + 1, − y + 1, − z + 2; (ii) − x, − y + 1, − z + 1

D–Ḣ̇‧‧‧A D–H H‧‧‧A D‧‧‧A D–H‧‧‧A

OW1–HW1‧‧‧O5i 0.771(3) 2.810(4) 2.430(2) 111.8(2)
OW1–HW2‧‧‧OW2 0.879(3) 1.827 (4) 2.698 (5) 170.8(2)
OW2–HW3‧‧‧O2 0.849(3) 2.018(3) 2.807(4) 154.2(2)
OW2–HW4‧‧‧O10ii 0.850(3) 2.077(2) 2.840(4) 159.8(2)

Fig. 4   Diagram RLvs. RS (in Å) for the copper complexes of chromo-
phore CuNO3O′2 compared with the calculated rLvs. rS dependences. 
Solid lines - contour graph of the function expressed by the Eqs. (1) 
and (2). Dashed lines – BVS functions expressed by the Eq. (3). ○ – 
model structures retrieved in CSD. ▲- the structure of 1. Spearman 
rank-order correlation coefficient [63] is − 0.844

Scheme 2   The inner coordina-
tion of the model structures
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are 0.14(1) and 0.030(7) v.u. The bond valence sum of 
Cu2 is 2.08(1) v. u.

Magnetic Properties

In the trinuclear complex unit, three magnetic exchange 
pathways are to be considered: Pathways between the 
metallic centers Cu2‧‧‧Cu1, Cu1‧‧‧Cu2i and the pathway 
between more distant terminal copper atoms Cu2‧‧‧Cu2i 
(Fig. 1). The resulting parameters of magnetic interaction 
are J12 = J23 = + 75.8 cm−1, and J13 = + 0.4 cm−1. The result-
ing Mullican spin densities are collected in Table 4.

As apparent, the DFT calculation predicts strong ferro-
magnetic interaction between adjacent centers in contrast 
with negligible interaction between the terminal copper 
centers. The resulting values were used as input for the fol-
lowing analysis of experimental magnetic functions of 1. 
The temperature and field dependence of magnetic functions 
are presented in Fig. 5.

The increase of susceptibility product at low tempera-
tures indicates the presence of ferromagnetic exchange 
interaction, while the sudden decrease below 10 K can be 
ascribed to the intermolecular antiferromagnetic interaction 

(molecular field). The magnetic functions were analyzed 
according to the following spin Hamiltonian [68]:

where mB is the Bohr magneton, gi is the average value of the 
individual g-factors, Ŝiz is the projection of the spin operator 
of the i-th center, and zJ is the parameter of the molecular 
field. The two parameters of magnetic exchange interaction 
were fixed equal and the parameter between the terminal 
copper center Cu2 and Cu21 was completely omitted based 
on the DFT assessment (vide supra). The constraint g1 = g3 
is due to the symmetry of complex 2. As can be seen, the 
fitted and calculated values of magnetic exchange interaction 
are in very good agreement. The g-factors of the magnetic 
centers gain typical values for copper(II) centers.

Conclusions

The trinuclear 2-hydroxybenzoato copper(II) complex with 
(6,7-dimethoxy-isoquinolin-1-yl)-(3,4-dimethoxy-phenyl)-
methanol has been prepared and characterized. The copper 
atoms of the centrosymmetric trinuclear complex 2 are hexa-
coordinated. The novel N, O -bonded(6,7-dimethoxyisoquin-
olin-1-yl)-(3,4-dimethoxyphenyl)-methanolato (papaveriny-
loxy) ligands are bidentate. One-half of 2-hydroxybenzoates 
connect atoms Cu1 and Cu2 via bridging –COO groups. The 
remaining 2-hydroxybenzoates are bonded to the atoms Cu2 
by the oxygens of nonbridging carboxylate groups. The posi-
tions of their phenyl rings are stabilized by the weak bonding 
of Cu2 atoms with the hydroxyl groups. A significant dif-
ference in Cu1 and Cu2 coordination geometries is consist-
ent with the plasticity of the inner copper coordination of 

(8)Ĥ = −J12Ŝ1Ŝ2−J23Ŝ2Ŝ3 + mBgiŜiz−zJŜi

Table 4   Mullikan spin densities for individual broken symmetry spin 
states of 1 

Symmetry code: (i) -x + 1, -y + 1, -z + 2

BS state ρ(Cu2) ρ(Cu1) ρ(Cu2i)

βαα − 0.6550 0.6790 0.6570
αβα 0.6552 − 0.6786 0.6552
ααβ 0.6570 0.6790 − 0.6550

Fig. 5   The optimum fit of 
magnetic functions (solid lines) 
of compound 1. Experimental 
values are shown by circles
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CuO4O’2 and CuNO3O′2 chromophores. The supreme limit 
for the equidistant equatorial bonds of the last chromophore 
is 2.92(1) Å. For the equidistant axial bonds, the supreme 
limit is 3.07(3) Å. If RL≥RS, the dependence RL vs. RS of 
copper inner coordination of Cun+NO3O′2 chromophore can 
be approximated by Eq. (3). The magnetism of complex 2 
can be well explained by strong ferromagnetic interaction 
between the neighboring magnetic centers via the domi-
nant pathways Cu1–O5–C35–O4–Cu2, Cu1–O7–Cu2i, and 
Cu1–OW1–Cu2. The plasticity of inner copper coordination 
and the papaverinyloxy ligand facilitate the formation of the 
trinuclear copper complex 2. By the copper activation of a 
papaverine methyl C–H bond, the hydrogen atom is replaced 
with bridging oxygen.
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X-ray crystallographic data for the title compound (CCDC 
No.1999284) have been deposited with the Cambridge Crys-
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able from the corresponding author upon reasonable request.
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