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Abstract
The new compound 4-hydroxy-1-[(4-nitrophenyl)sulfonyl]pyrrolidine-2-carboxyllic acid was obtained by the reaction of 
4-hydroxyproline with 4-nitrobenzenesulfonyl chloride. The compound was characterized using single crystal X-ray diffrac-
tion studies. Spectroscopic methods including NMR, FTIR, ES-MS, and UV were employed for further structural analysis 
of the synthesized compound. The title compound was found to have crystallized in an orthorhombic crystal system with 
space group  P212121. The S1-N1 bond length of 1.628 (2) Å was a strong indication of the formation of the title compound. 
The absence of characteristic downfield 1H NMR peak of pyrrolidine ring and the presence of S–N stretching vibration at 
857.82  cm−1 on the FTIR are strong indications for the formation of the sulfonamide. The experimental study was com-
plemented with computations at the B3LYP/6-311G +  + (d,p) level of theory to gain more understanding of interactions in 
the compound at the molecular level. Noncovalent interaction, Hirsfeld surface analysis and interaction energy calculations 
were employed in the analysis of the supramolecular architecture of the compound. Predicted ADMET parameters, awarded 
suitable bioavailability credentials, while the molecular docking study indicated that the compound enchants promising 
inhibition prospects against dihydropteroate synthase, DNA topoisomerase, and SARS-CoV-2 spike.

Graphical Abstract
Herein we present the solid state structure, noncovalent interaction and spectroscopic analysis of a prospective bioactive 
compound 4-hydroxy-1-[(4-nitrophenyl)sulphonyl]pyrrolidine-2-carboxyllic acid.
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Introduction

The relevance of sulfonamides or sulfa drugs in medicine 
can never be overemphasized [1] They have played sig-
nificant roles in the medical revolution as they are very 
effective over a wide range of bacterial infections and thus 
were the first real success in the fight against bacteria [2, 
3]. In asymmetric synthesis, the aryl sulfonyl group of 
aryl sulfonamides has been applied to protect nitrogen 
and oxygen functional groups as well as amino acids dur-
ing conditions that involve the reaction of the carbonyl 
group with organometallic reagents [4, 5]. In addition, the 
presence of sulfonamide moiety in azo dyes has improved 
light stability, fixation to fiber, and water solubility [6, 
7]. A lot of research on the activities of sulfonamides has 
uncovered their pharmacological applications not only as 
antibacterial [8, 9] but also as potent anticancer [10, 11], 
anti-influenza [12], anti-inflammatory[13], antitrypanoso-
mal [14], antimalarial [15], anti-HIV [16], and antitumor 
[17] agents. The versatility of sulfonamides has led to the 
search for more active derivatives while applying differ-
ent synthetic methodologies. Conventionally, sulfonamides 
are prepared by reacting either a primary or secondary 
amine with sulfonyl chloride in the presence of a base 
that assists to scavenge the HCl produced in the reaction 
[18]. Other methods also exist, some of which involve the 
use of transition metals as catalysts [19], N-chlorosul-
fonyl carbamate as a sulfonating agent at 0 °C [20–22], 
conversion of methyl sulfinates into sulfinamides, and 
subsequent oxidation to sulfonamides [23]. Milder syn-
thetic conditions including the use of water as solvents 
for sulfonation of amines have been explored [24]. Recent 
reports on the beneficial properties of ionic liquids have 
also led to their use as an alternative solvent for sulfona-
mide synthesis [25–27]. These methods do however suffer 
some setbacks ranging from low reactivity, use of more 
catalysts to increase yield, metal contamination, and dif-
ficulty in catalyst recovery to complex purification steps. 
The use of amine as a nitrogen source and sulfonyl chlo-
ride to create the N–S bond is still preferred [28] due to 
its simplicity, good reactivity even at room temperature, 
and simple filtration process to obtain pure compounds 
[29]. Recently our group has been working on the syn-
thesis and characterization of a number of sulfonyl and 

sulfonamide derivatives for various applications [30–36]. 
In continuation of this project, we report herein the syn-
thesis and structural characterization of a novel sulfona-
mide derivative 4-hydroxy-1-[(4-nitrophenyl)sulfonyl]pyr-
rolidine-2-carboxyllic acid (HNPCA) from the coupling 
of 4-nitrobenzene sulfony chloride with the amino acid 
4-hydroxyproline at room temperature using sodium car-
bonate in the presence of water, in-silico studies were used 
to understand the drug-likeness of the title compound.

Experimental

Materials

Na2CO3, NaCl, and 20% HCl were obtained from Fluka, 
while 4-nitrobenzene sulfonyl chloride and 4-hydroxypro-
line were obtained from Sigma Aldrich (Bristol Scientific 
Nigeria). IR spectra were recorded on Bruker FT-IR spec-
trophotometer. The NMR peaks were recorded on Bruker 
DPX 300 spectrophotometer with 1H at 400 MHz and 13 ℃ 
at 100 MHz. Chemical shifts δ are given in ppm and refer-
enced to tetramethylsilane. Methanol was used as a solvent 
for crystallization. X-ray data of the single crystal were col-
lected on an XtaLAB Synergy, Dualflex, Pilatus 200 K dif-
fractometer using CuKα radiation at 105.4 (7)K. The phar-
macokinetic properties were studied using SwissADME free 
online tool (https:// www. swiss adme. ch), while the Molecu-
lar docking was carried out using the Molecular operating 
environment (MOE) (AutoDock Vina, BIOVIA).

Synthesis of 4‑Hydroxy‑1‑[(4‑Nitrophenyl)Sulfonyl]
Pyrrolidine‑2‑Carboxyllic Acid

Sodium carbonate  (Na2CO3, 5 mmol) was added to a solu-
tion of 4-hydroxyproline (5 mmol) in water (15 mL) with 
continuous stirring until all the solutes dissolved. The solu-
tion was cooled to − 5 °C and 4-nitrobenzenesulfonyl chlo-
ride (5 mmol) was added in four portions over a period of 
1 h. The reaction mixture was further stirred at room tem-
perature for 4 h(Scheme 1). The mixture was acidified using 
20% HCl until a pH of 2 was obtained. The white product 

Scheme 1  Synthesis of 
4-hydroxy-1-((4-nitrophenyl)
sulfonyl)pyrrolidine-2-carbox-
ylic acid
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obtained was filtered, washed, and dried in the open air. 
Yield (1.12 g, 71.34%), MP = 190–192 °(O), 1004 (C–N), 
685 (S–N). 1H-NMR (DMSO, 400 MHz) δ: 8.40 (m, 2H, 
ArH), 8.10 (m, 2H, ArH), 4.87 (s, 1H, OH exchangeable 
with HDO), 4.31 (m, 2H, CH-CO2H and CH-OH), 3.59 (dd, 
1H,  CHa of  CH2-CH-CO2H, J = 8.00, 4.00 Hz) 3.41 (dt, 1H, 
 CHb of  CH2-CH-CO2H, J = 8.00, 4.00 Hz), 2.19 (ddt, 1H, 
CH of CH2-N, J = 12.00, 8.00, 4.00 Hz), 2.06 (ddd, 1H, 
 CHb of  CH2-N, J = 12.00, 8.00,4.00 Hz).13C NMR (DMSO, 
100 MHz) δ: 174.19 (C = O), 150.28, 143.40, 128.81, 123.79 
(4 aromatic carbons), 69.21, 59.94, 56.51, 39.00 (4 aliphatic 
carbon). DEPT (100 MHz) δ: 174.19, 150.28, 143. 40 (ter-
tiary C), 128.81, 123.79, 69.21, 59.94 (CH carbons), 56.51 
and 39.00  (CH2 carbons).

X‑Ray Determination of HNPCA

Dark green crystals of the titled compound were obtained 
from methanol under slow evaporation at room temperature. 
A single crystal suitable for X-ray diffraction measurement 
was mounted on a goniometer of an XtaLabSnergy, Dualflex 
Pilatus 200 K diffractometer. The crystal data were collected 
at 105.4 (7) K using graphite monochromated CuKα radia-
tion (λ = 1,54,184) Table 1. Data reduction and empirical 
absorption correction were implemented in Crysallispro 
[37]. The structure was solved, with ShelXT [38], struc-
ture solution program using the intrinsic phasing solution 
method and Olex2 as the graphical interface. The structure 
was refined in ShelXL by full-matrix least-squares analysis 
of F2 against all reflections [39]. All non-hydrogen atoms 
were refined with anisotropic atomic displacement param-
eters. Unless otherwise noted, hydrogens were included in 
calculated positions. Atomic displacement parameters for 
the hydrogens were tied to the Ueq parameter of the atom 
to which they are bonded (1.5), for methyl, 1.2. for all oth-
ers). N–H protons refined freely without any restraints. The 
molecular structural diagram was drawn in Olex2 Software 
Package [40]

Computational Method

The compound HNPCA was fully optimized in the gas phase 
using the DFT method. The functional used was B3LYP [41, 
42] with the 6–311 +  + G(d,p) basis set. HNPCA was also 
optimized in methanol using the same theoretical method 
within the PCM solvation model [43, 44] The ground-state 
structure was confirmed by frequency computations with the 
absence of imaginary frequency in both the gas phase and 
methanol. The optimized structure of HNPCA in methanol 
was used for computing chemical shifts with the Gauge-
Including Atomic Orbital method [45] using isotropic 
shieldings of tetramethylsilane (TMS) computed using the 

same method. The non-covalent interaction (NCI), based on 
the reports of Johnson et al. [46], was explored by the non-
covalent interaction-reduced density gradient (NCI-RDG) 
analysis using the Multiwfn program [47]. The isosurfaces 
were plotted using the Visual Molecular Dynamic (VMD) 
software [48] and The Gnuplot 4.2 program [49] and Ghost-
script interpreter were employed to generate the 2D plots. 
All computations were carried out at 1 atm and 298.15 K 
using Gaussian 16 [50]. Visualization of the output files 
was done using GaussView 6 [51] and Chemcraft [52]. The 
coordinates of the optimized structure of HNPCA in the gas 
phase and methanol are provided in Table S1 of the supple-
mentary information.

The interactions in the crystal structure of HNPCA were 
investigated by the Hirshfeld surface analysis [53] along 
with their 2D fingerprint plots [54] which were generated 
using the CrystalExplorer17.5 software [55]. Hirshfeld 
surface is represented by de and di, denoting the distance 
from the nearest atom outside and inside of the surface, 
respectively, and both are used to define the normalized 

Table 1  Crystal data and structure refinement for HNPCA

Identification code HNPCA
Empirical formula C11H13N2O7S
Formula weight 317.29
Temperature/K 105.4(7)
Crystal system Orthorhombic
Space group P212121

a/Å 7.5390(3)
b/Å 10.5933(4)
c/Å 15.7850(6)
α/° 90
β/° 90
γ/° 90
Volume/Å3 1260.64(8)
Z 4
ρcalcg/cm3 1.666
μ/mm−1 2.678
F(000) 656.0
Crystal size/mm3 0.1 × 0.05 × 0.05
Radiation CuKα (λ = 1.54184)
2Θ range for data collection/° 10.056 to 149.192
Index ranges − 9 ≤ h ≤ 9, − 12 ≤ k ≤ 9, − 19 ≤ l ≤ 18
Reflections collected 5075
Independent reflections 2216  [Rint = 0.0324,  Rsigma = 0.0407]
Data/restraints/parameters 2216/0/192
Goodness-of-fit on  F2 0.978
Final R indexes [I >  = 2σ (I)] R1 = 0.0301,  wR2 = 0.0776
Final R indexes [all data] R1 = 0.0332,  wR2 = 0.0793
Largest diff. peak/hole/e Å−3 0.31/− 0.31
Flack parameter − 0.006(13)
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contact distance (dnorm) with respect to the Van der Waals 
(vdW) radii as per Eq. 1.

For the visualization of dnorm, a red-blue-white color 
scale was selected. The red color denotes a negative value 
of the dnorm whereas the blue color denotes a positive value 
of the dnorm. The positive and negative values of the dnorm 
denote whether intermolecular interactions are larger or 
smaller than the vdW separation respectively. Therefore, 
the mapping of dnorm on the Hirshfeld surface illustrates 
the donor and acceptor properties and helps in the analysis 
of the intermolecular interactions.

ADMET Prediction

The drug-likeness of HNPCA was predicted using Swiss 
free online ADMET tool (SwissADME; https:// www. 
swiss adme. ch). Calculated parameters include molecular 
weight, H-bond donor, H-bond acceptor, number of rotat-
able bonds, water partition coefficient (MlogP), and total 
polar surface area (TPSA).

Ligand and Protein Preparation

The compound was designed using ChembioDraw Pro-
fessional 13.0 [56] and was converted to 2D by using 
BIOVIA Discover Studio Visualizer 17.2.0.16349 [57]. 
Structure optimization was achieved by applying the Hahn 
forcefield [58]. Optimized structures were used for the 
docking study. Crystal structure of dihydropteroate syn-
thase, 5uoy [59], DNA topoisomerase II gyrase; 5mmn 
[60], and SARS-CoV-2 spike; 6vsb [61] were retrieved 
from protein data bank with resolutions 1.82 Å, 1.90 Å 
and 3.46 Å respectively. Protein editing was done by 
means of Discovery Studio[57] which included the dele-
tion of co-crystallized ligands, multiple chains, hetero 
atoms, the water of crystallization, the addition of polar 
hydrogens, energy minimization, and structure optimi-
zation [58]. Enhanced proteins were used for molecular 
docking.

Ligand–Protein Docking Protocol Validation

The reliability of the docking protocol was corroborated by 
re-docking. Initially, the native ligand was withdrawn from 
protein binding site cavity and the binding site was defined 
by applying current ligand selection to obtain the ligand 
attributes; X = − 26.1303, Y = 11.7748, Z = − 17.6060, 

(1)d
norm

=
(d

i
− r

vdW

i
)

r
vdW

i

+
(d

e
− r

vdW

e
)

rvdW
e

radius = 9.1985 for 5uoy, X = −  47.8198, Y = 3.2066, 
Z = 4.8274, radius = 8.6011 for 5mmn, and X = 190.2069, 
Y = 233.0658, Z = 210.6196, radius = 5.2447 for 6vsb. 
Docking was performed using Autodock Vina PyRx [62]. 
The native ligand was re-docked into the defined binding 
site and desired site attributes were carefully adjusted to fit 
the obtained Grid center. PyRx nonspecific algorithm was 
used to generate protein–ligand docked pose by applying 
Vina Wizard script. The lowest binding energy was used 
to select the best-docked model, while a comparison of 
H-bond and other key interactions selected the best-docked 
pose. The lower the binding energy, the higher the binding 
affinity. The RMSD of > 2 Å obtained for the superimpos-
ing of native crystal with the best-docked pose confirms 
the acceptability of the docking.

Results and Discussions

X‑Ray Crystallography

The molecular structure of the titled compound is shown 
in Fig. 1 The compound consists of a sulfonamide moi-
ety sandwiched between a para-nitro phenyl moiety and 
hydroxy pyrrolidone carboxylic acid in a slightly distorted 
tetrahedral. The S1-N1 [1.628 (2) Å] bond length indicates 
the formation of the titled compound. This is similar to the 
reported value of 1.636 in the work of Murthy et al. [63]. 
The phenyl ring is planar to a rmsd 0.013 Å and disubsti-
tuted at para positions with nitro and sulfonyl groups. The 
N2-C4 and S1–C1 bonds are 1.472 (4) and 1.774 (3) Å 
respectively. These values are similar to the values reported 
for a related sulfonyl compound [64]. The pyrrolidine ring 
on the other hand is puckered to a rmsd of 0.182 Å and 
trisubstituted by carboxylic acid, hydroxyl, and sulfonyl 
groups. The dihedral angles between the sulfonyl groups 

Fig. 1  The ORTEP structure of 4-hydroxy-1-((4-nitrophenyl)sulfonyl)
pyrrolidine-2-carboxylic acid

https://www.swissadme.ch
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and the paranitrophenyl and the five membered pyrrolidone 
rings respectively are 47.16 and 27.90°. The bond lengths 
of O4-C11 and O3-C11 are 1.331 and 1.200 Å respectively. 
The sulfonyl bonds S1-O1 and S1-O2 with lenghts 1.431(5) 
and 1.427(3) are similar to the values reported for related 
benzene sulfonyl compounds.[64, 65] As expected, the 
length of C = O (O3-C11) is shorter than that of C–OH 
(O4-C11). The angles around the slightly distorted tetra-
hedron range from a narrower O1-S1-N1 (106.21 (13)) 
to a slightly larger O1-S1-C1 [107.57 (13)]. The sulfona-
mide is stabilized by the torsion angles of O2-S1-N1-C10 
[− 51.5 (2)˚] and O1-S1-NI-C7 [39.9 (2)˚]. The molecular 

aggregation structure of the solid-state structure of the 
compound in Fig. 2 consists of a 9-molecule aggregate 
synthon linked by a chain of O–H ⋯ O hydrogen bond-
ing interactions and stabilized by both intramolecular and 
bifurcated intermolecular C-H ⋯ H short contacts in a 2-D 
supramolecular architecture. There are predominantly two 
types of O–H ⋯ O intermolecular hydrogen bonding inter-
actions, the carboxyl-O4-H4-O5(hydroxyl) and hydroxyl-
O5-H5-O7(nitrophenyl). The hydrogen bond geometries 
are presented in Table 2.

Non Covalent Index NCI

The stability of HNPCA can be determined based on its 
molecular interactions which can be analyzed using the RDG 
based on NCI. The NCI isosurface was generated using the 
B3LYP optimized geometry and this is illustrated in Fig. 3. 
The blue-green–red isosurfaces color are classified accord-
ing to the strength and type of interaction whereby blue indi-
cates strong attractive interactions, green indicates Van der 
Waals interaction and red indicates a strong repulsion[66]. 
Therefore, the presence of the green and red isosurfaces in 
Fig. 3 indicates the presence of Van der Waals interaction 
as well as steric interactions [67]. In addition to the NCI 

Fig. 2  Molecular aggregation in 
the crystal structure of the title 
compound showing O4-H4 ⋯ 
O5 and O7-H4 ⋯ O3 hydrogen 
bonding interactions

Table 2  Hydrogen bond geometry of the title compound (Å, °)

Symmetry codes: (i) 1-x, 1-y, -z (ii) -1 + x, y, z (iii) 1-x, -y, 1-z (iv) 
1-x, 1-y, 1-z (v)

D − H⋯A D − H H⋯A D⋯A D − H⋯A

O4 − H4 ⋯  05a 0.80 (5) 1.88 (5) 2.668 (3) 168 (5)
O5 − H5 ⋯  O7a 0.88 (5) 2.03 (5) 2.888 (3) 163 (5)

Fig. 3  The three-dimensional NCI surface of HNPCA. The sur-
faces are coloured according to the blue-green–red scale based on 
the sign(λ2)ρ(r) values ranging from − 0.05 to 0.05 a.u (Color figure 
online)

Fig. 4  Plots of reduced density gradient (RDG) against sign(λ2)ρ(r) of 
HNPCA
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isosurface, the 2D NCI scatter plot is displayed in Fig. 4. The 
spikes in the RDG region where λ2 ≈ 0 and ρ ≈ 0, suggest 
that HPNCA consists of Van der Waals interactions (− 0.02 
to 0 a. u.) mainly corresponding to the intramolecular O⋯H 
interactions. Spikes are also observed in the positive region 
(0 to 0.04 a. u.) indicating steric hindrance arising from the 
aromatic ring as well as the pyrrolidine ring. The absence of 
blue coloured spikes confirms that HNPCA does not exhibit 
any conventional intramolecular hydrogen bond within the 
structure but engages in intermolecular hydrogen bond.

Hirshfeld Surface Analysis

The Hirshfeld surface contacts were mapped over dnorm using 
the method described in [68–70] and presented in Fig. 5a. 
The red regions are located mainly on the oxygen atoms and 
one of the H atoms of the aromatic ring of the compound, 
indicating stronger intermolecular hydrogen bonds with 
neighboring atoms. However, the light-colored regions indi-
cate weaker and longer contacts other than hydrogen bonds 
[34, 71, 72]. Some of the significant intermolecular interac-
tions within the crystal structure of HNPCA are shown in 
Fig. 5b and these include phenyl-C-H⋯O(sulfonyl) in green 
dotted lines, pyrrolidone-C-H⋯O(nitro) in red dotted lines 
and phenyl-C⋯O interactions in magenta[73]. The finger-
print plots in Fig. 6, have been decomposed to analyze indi-
vidual contributions and corroborate the results of the Hirsh-
feld surface analysis [54, 74]. The fingerprint plots indicate 
that the most dominant interaction is the O⋯H interactions 
(58.9%). The two sharp spikes correspond to the -OH group 
(O4-H) of the carboxylic group and the hydroxyl group 
(O5–H) of the pyrrolidone ring. The H⋯H interaction con-
tributes to 19.9% of the surface area of the fingerprint plot. 
All other interactions observed are less than 8.0% [C⋯H 
(7.1%) > S⋯H (0.2%) > O⋯C (5.6%) > O⋯O (4.1%) > O⋯N 
(2.1%) > N⋯H (2.0%) > C⋯C (0.1%)].

Interaction Energy Calculations

The strength of intermolecular interactions can be esti-
mated by calculating the interaction energies between pairs 
of molecules within the crystal of HNPCA and adding up 
the resulting four energy components comprising of the 
electrostatic  (Eele), polarization  (Epol), dispersion(Edis), and 
exchange repulsion  (Erep) energies [75]. The energies were 
obtained by calculating the wave function of each pair of 
molecules or atoms at the B3LYP/6-31G(d,p) level of theory 
[69, 75]. Quantitative estimation of the strength and nature 
of the intermolecular interactions in HNPCA crystal with 
individual energy components  (Eele,  Epol,  Edis, and  Erep) as 
well as the sum of the energy components,  Etot are presented 
in Table 3. The energy values show that the electrostatic 
component of the energy makes the most significant con-
tribution to the total interaction energy profile in the crystal 
structure probably due to the intermolecular Van der Waals 
interactions resulting from the high level of H ⋯ O/H ⋯ O 
and H ⋯ H intermolecular interactions. The dispersive inter-
action energy component of the total interaction energy is 
the second highest contributor to the total interaction energy 
and these probably result from the π ⋯ π interaction of suc-
cessive pairwise phenyl and pyrrolidone rings in the crystal 
lattice [70, 76]. A graphical representation of the magni-
tude of the interaction energies is presented in Fig. 7a–d in 
the form of energy frameworks to show the supramolecular 
architecture using cylindrical poles joining the centroids 
of molecular pairs. The red, green, and blue color-coded 
frameworks in 7a, 7b, and 7c respectively represent  Eele,  Edis, 
and  Etot, energy components for intermolecular interactions 
HNPCA crystal, while 7d is the annotated  Etot energy. The 
magnitude of the cylindrical poles corroborates the results 
from the fingerprint plots indicating that the  Eele energy 
component to the total interaction energy is significant and 

Fig. 5  Hirshfeld surface of HNPCA a mapped over dnorm in the range -0.7104 to 1.0921 Å. b Intermolecular interactions on the dnorm surface
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All int O-H/H-O 58.9% H-H 19.9%

C-H/H-C 7.1% O-C/C-O 5.6% O-O 4.1%

N-H/H-N 2.0% N-O/O-N 2.1% S-H/H-S 0.2%

Fig. 6  Fingerprint plots of HNPCA showing O⋯H and H⋯H interactions

Table 3  A summary of 
interaction energies  (kJmol−1) 
calculated for HNPCA

N Symop R Electron Density Eele E_pol E_dis E_rep E_tot

1 − x, y + 1/2, − z + 1/2 8.40 B3LYP/6-31G(d,p) − 21.9 − 5.7 − 22.8 17.9 − 36.2
1 x, y, z 7.54 B3LYP/6-31G(d,p) − 82.5 − 18.5 − 33.8 97.3 − 70.3
1 − x + 1/2, − y, z + 1/2 7.96 B3LYP/6-31G(d,p) 1.6 − 4.0 − 24.6 14.4 − 13.8
0 x + 1/2, − y + 1/2, − z 7.47 B3LYP/6-31G(d,p) − 36.8 − 8.3 − 24.0 49.9 − 35.1
1 x + 1/2, − y + 1/2, − z 7.24 B3LYP/6-31G(d,p) − 4.6 − 3.2 − 18.3 11.4 − 16.1
1 − x, y + 1/2, − z + 1/2 7.46 B3LYP/6-31G(d,p) 3.9 − 3.0 − 16.3 7.8 − 7.5
0 − x + 1/2, − y, z + 1/2 10.25 B3LYP/6-31G(d,p) − 5.5 − 1.3 − 7.7 4.5 − 10.6
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contributes substantially to the molecular packing in the 
crystal lattice.

Spectroscopic Studies

IR Spectra

The Infrared spectrum of the compound being investigated 
was recorded in the 4000–600 region using Bruker FT-IR 
spectrophotometer. The spectra of the compound (Figure 
S1) shows an S–N stretching prevalent for benzenesul-
fonamide derivatives at 857  cm−1(usually in the range of 
947–836  cm-1) [77], and the band at 1355  cm−1 was assigned 
to S = O indicating the formation of the benzenesulfonamide. 
Other characteristics bands present are; the C = O stretching 
of a carboxylic at 1745.19  cm−1, N–O stretching for a nitro 

compound at 1524.70  cm−1, O–H stretching at 3450 and 
2700  cm−1assigned to the OH of the alcohol and carboxylic 
acid respectively, C–H stretching at 2950 and 3100  cm−1 for 
the aliphatic and aromatic carbons respectively. The simu-
lated IR spectrum is provided in Figure S2 and describes 
a detailed vibrational analysis of HNPCA in the gas phase 
as performed based on potential energy distribution using 
VEDA 4 program.

1H NMR,13C NMR, and DEPT

The 1H and 13C NMR of the named compound are pre-
sented in Figures S4 and S5 of the supplementary informa-
tion. 1H NMR chemical shift at 8.38–8.41 were assigned 
to the protons present in the aromatic ring. The chemi-
cal shift at 8.08–8.11 were assigned to the protons of the 

Fig. 7  Perspective views of the energy frameworks of the title com-
pound showing a electrostatic, b dispersion, c total energy, and d 
annotated total energy. The cylindrical radius is proportional to the 

relative strength of the corresponding energies and they were adjusted 
to the same scale factor of 100 with a cut-off value of 5  kJmol−1 
within a 2 × 2 × 2 unit cells
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pyrrolidine ring. Also, the absence of a chemical shift for 
N–H at the upper field confirms the formation of the desired 
compounds. The 13C NMR like the 1H NMR agrees with 
the crystal structure of the compound gotten via X-ray dif-
fraction studies of the compound’s crystal. The signal at 
174.19 was assigned to C = O, signals between 150.28 and 
123.79 were assigned to the six aromatic carbon atoms, 
while the signals from 69.21 to 39.00 were assigned to the 
four aliphatic carbons of the compound. The NMR values 
are corroborated by the calculated NMR values presented 
in Table S1 of the supplementary information. The DEPT 
analysis (Figure S6) showed that the compound had three 
tertiary carbons, six CH carbons, and two  CH2 carbons. 
Although only four carbons appeared among the CH car-
bons, this was expected due to chemical equivalence in the 
para-substituted benzene ring. There was also no appearance 
of methyl carbon in the DEPT results. These observations 
are in agreement with the structure obtained from XRD 
analysis.

ADMET

Due to poor bioavailability, most orally administered drugs 
are unable to reach the target therapeutic site, resulting in 
failed clinical trials despite promising in vitro and in vivo 
efficacy [78]. lipniski rule of five (MW ≤ 500, HBD ≤ 5, 
HBA ≤ 10, log p ≤ 5, RBC ≤ 10) is a valid assessment of the 
oral bioavailability of a drug candidate [79]. A molecule that 
violates more than two categories is adjudged to elicit poor 
bioavailability. HNPCA was studied for lipinski rule com-
pliance and other properties that influence drug absorption, 
and the result is presented in Table 4. HNPCA showed total 
compliance in all calculated parameters except for TPSA 
(Veber rule: TPSA ≤ 140 Å2)[80], signaling a good bioavail-
ability potential.

Molecular Docking Study

Molecular docking permits the prediction of molecu-
lar interaction between ligand–protein and has become 

a reliable tool in drug discovery. A docking study on 
HNPCA was done with selected protein targets; dihydrop-
teroate synthase (5uoy), topoisomerase II DNA gyrase 
(5mmn), and a 2019-nCoV spike (6vsb) Fig 8. Dihydrop-
teroate synthase (DHPS) catalyzes the transformation 
of 6-hydroxymethyl-7,8-dihydropterin pyrophosphate 
(DHPP) plus p-aminobenzoic acid (PABA) to 7,8-dihy-
dropteroate, important folate intermediate in the folate bio-
synthetic pathway [81]. As a result, DHPS is an important 
antibacterial drug target and research on new inhibitors 
has intensified in recent times [82–84]. DNA gyrase is a 
type II topoisomerase that functions in DNA supercoils and 
replication, hence is investigated as a drug target for many 
agents, including antitumor and antibacterial [85]. The 
CoV spike (S) glycoprotein is a vital target for vaccines, 
and therapeutic antibodies [61]. HNPCA was docked in the 
active site of augmented protein targets using the intrinsic 
PyRx algorithm and obtained ligand–protein docked poses 
were visualized with Discovery Studio.

Table 4  ADMET calculation 
for HNPCA

MW Molecular weight of the molecule, donorHB approximated number of hydrogen bonds that would be 
donated by the solute to water molecules in an aqueous solution, acceptHB approximated number of hydro-
gen bonds that would be accepted by the solute from water molecules in an aqueous solution, Rule of five 
Number of violations of Lipinski rule, Log P water partition coefficient, RBC approximated number of 
rotatable bonds, TPSA topological polar surface area

MW Donor HB Accept HB log P RBC Rule of five TPSA [Å2] Bioavail-
ability 
score

316.29 2 8 − 0.61 4 0 149.11 0.56
Recom-

mended 
values

 ≤ 500  ≤ 5  ≤ 10  ≤ 5  ≤ 10 Max 2  ≤ 140

Table 5  The binding energy of HNPCA with protein targets

Ligands Protein Binding 
energy (kcal/
mol)

HNPCA 6vsb − 5.90
 Dexamethasone − 6.90
 Remdesivir − 7.40
 Native ligand − 8.80

HNPCA 5uoy − 7.20
 Ciprofloxacin − 7.10
 Gentamicin − 6.80
 Native ligand − 7.60

HNPCA 5mmn − 7.30
 Ciprofloxacin − 7.40
 Gentamicin − 7.20
 Native ligand − 7.80



395Journal of Chemical Crystallography (2023) 53:386–399 

1 3

Fig. 8  Bonding model depicting interactions of HNPCA in the pocket site of a 5uoy b 5mmn c 6vsb
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Binding Affinity of HNPCA with the Protein Target

The binding energy of HNPCA with protein targets had been 
shown in Table 5. In the case of 5uoy and 5mmn, HNPCA 
interacted significantly with receptor site residues, thereby 
eliciting higher or comparable binding affinity with the 
native ligand, ciprofloxacin or gentamicin. This suggests 
that the compound could intercalate well with the studied 
antibacterial targets to demonstrate promising efficacy. A 
lower binding affinity was recorded with 6vsb, compared to 
the crystal ligand, remdesivir or dexamethasone, which have 
been indicated to reduce mortality in people with severe 
COVID-19 [86].

Bonding Model HNPCA with Protein Target

H-bond is an important interaction stabilizing ligands 
with receptors. In the binding pocket of 5uoy,  Fig 9, 
HNPCA demonstrated extensive H-bond between the 
COOH, OH,  NO2,  SO2-NR2 moieties and Thr62, Arg63, 
Glu60, Asn22, Arg255, His257, and Lys221 residues, 
Fig. 8. In addition, a closer look showed a pi-bonding 
between the O = S = O group with His257. The extensive 
H-bonding may have conferred a higher binding affinity, 
indicating a reliable stability with protein target active 
site residues to impact promising antibacterial activity.

In the case of 5mmn, the  NO2 group of HNPCA engaged 
in H-bond with Arg76, Gly77, Thr165, while the COOH 
group approached Asn46 in H-bond. Additional stability was 
supported by the phenyl ring, which had invested in Ile78 
and Glu50 via pi-alkyl and pi-anion interactions. These key 
interactions providing stability encourage potential strong 
inhibitory efficacy against microbial strains, Fig. 8.

On the other hand, the COOH,  SO2, and  NO2 groups 
established H-bond with Glu619, Thr618, Ser591, Thr553, 
and Asn536 amino acid residues in the binding cavity of 
6vsb, while the phenyl group added stability by engaging in 
hydrophobic interaction with Val558, Fig. 8.

Conclusion

A novel compound 4-hydroxy-1-[(4-nitrophenyl)sulfonyl]
pyrrolidine-2-carboxyllic has been synthesized and char-
acterized using XRD and spectroscopic techniques. Inter-
molecular O4-H4 ⋯ O5 interaction in the crystal structure 
of the compound connects different molecules of the com-
pound in a continuous chain and is stabilized by N4-H4 ⋯ 
O3 intermolecular hydrogen bonding interaction. Hirshfeld 
surface analysis of the intermolecular interactions suggests 
that O ⋯ H/H ⋯ O interactions contributed more than half 
of the total intermolecular contacts in the compound. The 
NCI analysis of the compound did not reveal any intermo-
lecular hydrogen bonding interactions in the compounds. 
There was however evidence of the presence of some Van 
der waals and steric interactions, corroborated by the results 
of the interaction energy calculations which showed higher 
electrostatic interactions than dispersive forces. The results 
of the molecular docking studies showed that the compound 
had a high binding affinity and is well stabilized in the active 
pocket of dihydropteroate synthase, DNAtopoisomerase II 
gyrase, and SARS-CoV-2 spike via extensive H-bond net-
work, which suggests that the compound may be a starting 
point for a rational drug design.
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