Skip to main content
Log in

On the Crystal Structures of the Polymorphs of Manganese(II) Chloride Tetrahydrate: α-MnCl2·4H2O and β-MnCl2·4H2O

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The manganese(II) chloride tetrahydrate MnCl2·4H2O (α-form) crystallizes in the space group P21/n with a = 6.1918(4) Å, b = 9.5230(6) Å, c = 11.1918(6) Å, β = 99.757(3)°, and V = 650.37(7) Å3 (Z = 4). A second polymorph of MnCl2·4H2O (β-form) is mentioned in the literature to be isomorphous with FeCl2·4H2O but its crystal structure was never confirmed. In this study, we report for the first time on the crystal structure of this second polymorph of manganese(II) chloride tetrahydrate, β-MnCl2·4H2O, using room temperature single-crystal X-ray diffraction. The β-form crystallizes in space group P21/c with a = 5.9893(5) Å, b = 7.2877(6) Å, c = 8.5838(7) Å, β = 110.952(4)°, and V = 349.89(5) Å3 (Z = 2), confirming that β-MnCl2·4H2O is isotype to Fe(II)Cl2·4H2O. To the best of our knowledge this is the first compound reported to crystallize in both MnCl2·4H2O-type (α-form) and FeCl2·4H2O-type (β-form) structures. The crystal structure of both α-form and β-form of MnCl2·4H2O consists of discrete octahedra complexes [MnCl2(H2O)4] linked by O–H⋅⋅⋅Cl hydrogen bonds. However, chlorine atoms are in trans-configuration in the β-form (trans-[MnCl2(H2O)4] complexes) and in cis-configuration in the α-form (cis-[MnCl2(H2O)4] complexes). Moreover, the coordination polyhedra of the manganese(II) atoms are less distorted in the β-form. This leads to two different hydrogen bond networks and to a slightly more compact [MnCl2(H2O)4] complexes arrangement in the α-form.

Graphic Abstract

The title compound is the first representative among divalent metal tetrahydrate halogenides to present both the MnCl2·4H2O-type (α-form) and FeCl2·4H2O-type (β-form) structures, leading to different configuration of complexes [MnCl2(H2O)4], crystal packing, hydrogen bond networks, and possibly magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhao F, Cai T, Liu M, Zheng G, Luo W, Chen J (2009) Toxicol Sci 107:156–164

    Article  CAS  PubMed  Google Scholar 

  2. Kula E, Martinek P, Chromcová L, Hedbávný J (2014) Environ Sci Pollut Res 21:11987–11997

    Article  CAS  Google Scholar 

  3. Abe H, Ohishi T, Nakane F, Shiraki A, Tanaka T, Yoshida T, Shibutani M (2015) J Appl Toxicol 35:529–535

    Article  CAS  PubMed  Google Scholar 

  4. Li SJ, Qin WX, Peng DJ, Yuan ZX, He SN, Luo YN, Aschner M, Jiang YM, Liang DY, Xie BY, Xu F (2018) Neurotoxicology 64:219–229

    Article  CAS  PubMed  Google Scholar 

  5. Martinek P, Kula E, Hedbávný J (2018) Ecotoxicol Environ Saf 148:37–43

    Article  CAS  PubMed  Google Scholar 

  6. Ghosh P, Mukherji S (2018) J Environ Chem Eng 6:2881–2891

    Article  CAS  Google Scholar 

  7. Bock NA, Paiva FF, Silva AC (2008) NMR Biomed 21:473–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grünecker B, Kaltwasser SF, Peterse Y, Sämann PG, Schmidt MV, Wotjak C, Czisch T M (2010) NMR Biomed 23:913–921

    Article  PubMed  Google Scholar 

  9. Chen Z, Li F, Hao L, Chen A, Kong Y (2011) Appl Surf Sci 258:1395–1398

    Article  CAS  Google Scholar 

  10. Li M (2012) Ionics 18:507–512

    Article  CAS  Google Scholar 

  11. Dong W, Wang D, Jiang L, Zhu H, Huang H, Li J, Zhao H, Li C, Chen B, Deng G (2013) Mater Lett 98:265–268

    Article  CAS  Google Scholar 

  12. Setiadi EA, Rahmat SS, Yunus M, Kurniawan C, Tetuko AP, Zelviani S, Rahmaniah Sebayang P (2018) J Phys Conf Series 979:012064

    Article  CAS  Google Scholar 

  13. Chen C, Ding G, Zhang D, Jiao Z, Wu M, Shek CH, Lawrence Wu CM, Lai JKL, Chen Z (2012) Nanoscale 4:2590–2596

    Article  CAS  PubMed  Google Scholar 

  14. Li L, Cai X, Lu Y, Ding Y, Cheng Y (2013) J Lumin 143:436–441

    Article  CAS  Google Scholar 

  15. Liu Y, Dou J, Wang D, Zhang X, Li D, Jia Y (2011) J Chem Crystallogr 41:186–191

    Article  CAS  Google Scholar 

  16. Dincã M, Dailly A, Tsay C, Long JR (2008) Inorg Chem 47:11–13

    Article  PubMed  CAS  Google Scholar 

  17. Murugesu M, Habrych M, Wernsdorfer W, Abboud KA, Christou G (2004) J Am Chem Soc 126:4766–4767

    Article  CAS  PubMed  Google Scholar 

  18. Li W, Jia HP, Ju ZF, Zhang J (2008) Dalton Trans 39:5350–5357

    Article  CAS  Google Scholar 

  19. Che GB, Wang J, Liu CB, Li XY, Liu B (2008) Acta Cryst C 64:m362–m364

    Article  CAS  Google Scholar 

  20. Sun Y, Wang Y, Li Z, Zhao J, Zhang S (2014) J Mol Struct 1074:416–421

    Article  CAS  Google Scholar 

  21. Ako AM, Burger B, Lan Y, Mereacre V, Clérac R, Buth G, Gómez-Coca S, Ruiz E, Anson CE, Powell AK (2013) Inorg Chem 52:5764–5774

    Article  CAS  PubMed  Google Scholar 

  22. Daigre G, Lemoine P, Pham TD, Demange V, Gautier R, Naumov NG, Ledneva A, Amela-Cortes M, Dumait N, Audebrand N, Cordier S (2018) CrystEngComm 20:3396–3408

    Article  CAS  Google Scholar 

  23. Phukan B, Patel AB, Mukherjee C (2015) Dalton Trans 44:12990

    Article  CAS  PubMed  Google Scholar 

  24. Friedberg SA, Wasscher JD (1953) Physica 19:1072–1078

    Article  CAS  Google Scholar 

  25. Lasheen MA, Van den Broek J, Gorter CJ (1958) Physica 24:1061–1075

    Article  CAS  Google Scholar 

  26. Lasheen MA, Van den Broek J, Gorter CJ (1958) Physica 24:1076–1084

    Article  CAS  Google Scholar 

  27. Gijsman HM, Poulis NJ, Van den Handel J (1959) Physica 25:954–968

    Article  CAS  Google Scholar 

  28. Miedema AR, Wielinga RF, Huiskamp WJ (1965) Physica 31:835–844

    Article  CAS  Google Scholar 

  29. Spence RD, Nagarajan V (1966) Phys Rev 149:191–198

    Article  CAS  Google Scholar 

  30. Rives JE (1967) Phys Rev 162:491–496

    Article  CAS  Google Scholar 

  31. Reichert TA, Butera RA, Schiller EJ (1970) Phys Rev B 1:4446–4455

    Article  Google Scholar 

  32. Giauque WF, Fisher RA, Hornung EW, Brodale GE (1970) J Chem Phys 53:1474–1490

    Article  CAS  Google Scholar 

  33. Altamn RF, Spooner S, Landau DP, Rives JE (1975) Phys Rev B 11:458–461

    Article  Google Scholar 

  34. Rives JE, Benedict V (1975) Phys Rev B 12:1908–1919

    Article  CAS  Google Scholar 

  35. Butera RA, Rutter DR (1978) J Appl Phys 49:1344–1346

    Article  CAS  Google Scholar 

  36. Butera RA, Moskaitis RJ, Rutter DR, Obermyer RT (1979) J Appl Phys 50:1847–1849

    Article  CAS  Google Scholar 

  37. Steijger JJM, Frikkee E, de Jongh LJ, Huiskamp WJ (1983) J Magn Magn Mater 31–34:1091–1092

    Article  Google Scholar 

  38. Zalkin A, Forrester JD, Templeton DH (1964) Inorg Chem 3:529–533

    Article  CAS  Google Scholar 

  39. Dawson HM, Williams P (1899) Z Physik Chem 31:59–68

    Article  Google Scholar 

  40. Marignac C (1857) Ann des Mines, série 5 12:1–74

    Google Scholar 

  41. Sheldrick GM (2014) APEX 2 program suite V2014.11–0. Bruker AXS Inc., Madison

    Google Scholar 

  42. Sheldrick GM (2013) SAINT version 8.37A. Bruker AXS Inc., Madison

    Google Scholar 

  43. Sheldrick GM (2014) SADABS version 2014/5. Bruker AXS Inc., Madison

    Google Scholar 

  44. Altomare A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AG, Polidorib G, Spagnac G R (1999) J Appl Crystallogr 32:115–119

    Article  CAS  Google Scholar 

  45. Sheldrick GM (2015) Acta Crystallogr, Sect C Struct Chem 71:3–8

    Article  CAS  Google Scholar 

  46. Farrugia LJ (2012) J Appl Crystallogr 45:849–854

    Article  CAS  Google Scholar 

  47. Penfold BR, Grigor JA (1959) Acta Cryst 12:850–854

    Article  CAS  Google Scholar 

  48. Meunier-Piret J, Van Meerssche M (1971) Acta Cryst B 27:2329–2331

    Article  CAS  Google Scholar 

  49. Verbist JJ, Hamilton WC, Koetzle TF, Lehmann MS (1972) J Chem Phys 56:3257–3264

    Article  CAS  Google Scholar 

  50. El Saffar ZM, Brown GM (1971) Acta Cryst B 27:66–73

    Article  Google Scholar 

  51. Hwang IC, Ha K (2009) Z Kristallogr NCS 224:517–518

    CAS  Google Scholar 

  52. Massa W, Dehnicke K (2007) Z Anorg Allg Chem 633:1366–1370

    Article  CAS  Google Scholar 

  53. Leclaire A, Borel MM, Monier JC (1980) Acta Cryst B 36:2757–2759

    Article  Google Scholar 

  54. Thiele G, Putzas D (1984) Z Anorg Allg Chem 519:217–224

    Article  CAS  Google Scholar 

  55. Von Schnering HG, Brand BH (1973) Z Anorg Allg Chem 402:159–168

    Article  Google Scholar 

  56. Sudarsanan K (1975) Acta Cryst B 31:2720–2721

    Article  Google Scholar 

  57. Moore JE, Abola JE, Butera RA (1985) Acta Cryst C 41:1284–1286

    Article  Google Scholar 

  58. Waizumi K, Masuda H, Ohtaki H (1992) Inorg Chim Acta 192:173–181

    Article  CAS  Google Scholar 

  59. Waizumi K, Masuda H, Ohtaki H, Tsukamoto K, Sunagawa I (1990) Bull Chem Soc Jpn 63:3426–3433

    Article  CAS  Google Scholar 

  60. Ptasiewicz Bak H, Olovsson I, McIntyre GJ (1999) Acta Cryst B 55:830–840

    Article  CAS  Google Scholar 

  61. Falkowski V, Zeugner A, Isaeva A, Wurst K, Ruck M, Huppertz H (2019) Z Anorg Allg Chem 645:919–926

    Article  CAS  Google Scholar 

  62. Pierce RD, Friedberg SA (1961) J Appl Phys 32:66S–67S

    Article  Google Scholar 

  63. Spence RD, Van Dalen PA (1964) Physica 30:1612–1616

    Article  CAS  Google Scholar 

  64. Schriempf JT, Friedberg SA (1964) Phys Rev 136:518–526

    Article  Google Scholar 

  65. Johnson CE, Ridout MS (1967) J Appl Phys 38:1272–1273

    Article  CAS  Google Scholar 

  66. Ono K, Shinohara M, Ito A, Fujita T, Ishigaki A (1968) J Appl Phys 39:1126–1127

    Article  CAS  Google Scholar 

  67. Raquet CA, Friedberg SA (1972) Phys Rev B 6:4301–4309

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank G. Guélou for his technical proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierric Lemoine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

10870_2020_856_MOESM1_ESM.pdf

The crystallographic data were deposited with the Cambridge Crystallographic Data Centre (CCDC-1,941,799 and CCDC-1,941,800 for MnCl2·4H2O in its β-form and α-form, respectively). Supplementary material 1 (PDF 151.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouteiller, H., Pasturel, M. & Lemoine, P. On the Crystal Structures of the Polymorphs of Manganese(II) Chloride Tetrahydrate: α-MnCl2·4H2O and β-MnCl2·4H2O. J Chem Crystallogr 51, 311–316 (2021). https://doi.org/10.1007/s10870-020-00856-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-020-00856-z

Keywords

Navigation