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Abstract
Synchronization is a widespread phenomenon in the brain. Despite numerous studies, the 
specific parameter configurations of the synaptic network structure and learning rules 
needed to achieve robust and enduring synchronization in neurons driven by spike-timing- 
dependent plasticity (STDP) and temporal networks subject to homeostatic structural 
plasticity (HSP) rules remain unclear. Here, we bridge this gap by determining the con-
figurations required to achieve high and stable degrees of complete synchronization (CS) 
and phase synchronization (PS) in time-varying small-world and random neural networks 
driven by STDP and HSP. In particular, we found that decreasing P (which enhances the 
strengthening effect of STDP on the average synaptic weight) and increasing F (which 
speeds up the swapping rate of synapses between neurons) always lead to higher and more 
stable degrees of CS and PS in small-world and random networks, provided that the net-
work parameters such as the synaptic time delay �

c
 , the average degree ⟨k⟩ , and the rewir-

ing probability � have some appropriate values. When �
c
 , ⟨k⟩ , and � are not fixed at these 

appropriate values, the degree and stability of CS and PS may increase or decrease when 
F increases, depending on the network topology. It is also found that the time delay �

c
 can 

induce intermittent CS and PS whose occurrence is independent F. Our results could have 
applications in designing neuromorphic circuits for optimal information processing and 
transmission via synchronization phenomena.
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1 Introduction

Synchronization phenomena are processes wherein many dynamical systems adjust a given 
property (e.g., amplitude, phase, frequency, and even membrane potential in coupled neu-
rons) of their motion due to suitable coupling configurations. In the brain, they can emerge 
from the collaboration between neurons or neural networks and significantly affect all neu-
rons and network functioning. It is well-established that synchronization of neural activity 
within and across brain regions promotes normal physiological functioning, such as the 
precise temporal coordination of processes underlying cognition, memory, and perception 
[1]. However, synchronization of neural activity is also well known to be responsible for 
some pathological behaviors such as epilepsy [2]. It has been shown that changes in the 
strength of the synaptic coupling and the connectivity of the neurons could lead to epilep-
tic-like synchronization behaviors. Furthermore, changes in neural connectivity can lead to 
hyper-synchronized states related to epileptic seizures that occur intermittently with asyn-
chronous states [3]. It has been demonstrated in [4] that by manipulating synaptic coupling 
and creating a hysteresis loop, square current pulses can induce abnormal synchronization 
similar to epileptic seizures. Synchronization may present various forms (see [5, 6] for a 
comprehensive review), and the behavior of each form of synchronization may depend on 
the nature of the interacting systems, the type of coupling, the distances between the inter-
acting systems, the time delays between the components of the systems, and also the net-
work topology.

In this paper, we focus on two common forms of synchronization for reasons given 
alongside their descriptions: (i) Complete synchronization (CS) is the simplest (and prob-
ably the most intuitive) form of synchronization. A system made up of, e.g., two coupled 
sub-systems, say x1(t) and x2(t) , is said to be completely synchronized when there is a set 
of initial conditions so that the coupled systems eventually evolve identically in time (i.e., 
|x1(t) − x2(t)| = 0 , as t → ∞ ) [6–9]. Because of the intuitiveness and simplicity of CS, it 
will be one of the main phenomena investigated in this paper. (ii) Phase synchronization 
(PS) was introduced by Rosenblum et al. [10], Pikovsky et al. [11] and experimentally con-
firmed in [12]. It involves sub-system properties called phases [13] and is characterized 
by 2� phase locking of two or more oscillators with uncorrelated amplitudes. It has been 
shown that the phase synchronization between different brain regions supports both work-
ing memory and long-term memory and facilitates neural communication by promoting 
neural plasticity [14], making PS a good candidate for investigation in this paper.

In recent years, extensive research (see, e.g., the reviews in [15–17]) has been conducted 
on synchronization dynamics in non-adaptive neural systems with varying degrees of com-
plexity. In particular, in the study [18], it was discovered that excitatory and inhibitory con-
nections between brain areas are crucial for phase and anti-phase synchronization. It was 
found that the phase angles of neurons in the receiving area could be influenced by unidi-
rectional non-adaptive synapses from the sender area. When the neurons in the sender area 
synchronize, the variability of phase angles in the receiver area can be reduced with certain 
conductance values. Additionally, the study observed both phase and anti-phase synchroni-
zation in the case of non-adaptive bidirectional interactions. It has also been demonstrated 
in [19] that the coupling strength and the probability of connections in a random network 
of adaptive exponential integrate-and-fire neurons can induce spike and bursting synchro-
nization, with bursting synchronization being more robust than spike synchronization.

Furthermore, it has been shown that axonal time delays can play crucial roles in syn-
chronization dynamics in neural networks [20–24]. For example, in [23], the authors used 
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phase oscillator and conductance-based neuron models to study synchronization and cou-
pling between two bidirectionally coupled neurons in the presence of transmission delays 
and STDP, which influence emergent pairwise activity-connectivity patterns. Their results 
showed that depending on the range of transmission delays, the two-neuron motif could 
achieve in-phase/anti-phase synchronization and symmetric/asymmetric coupling. The co-
evolutionary dynamics of the neuronal system and synaptic weights, governed by STDP, 
stabilize the motif in these states through transitions at specific transmission delays. They 
further showed that these transitions are sensitive to the phase response curve of the neu-
rons but are robust to heterogeneity in transmission delays and STDP imbalance. Motivated 
by such rich time-delay-induced dynamical behavior in synchronization dynamics, in the 
current paper, we shall investigate the effects of axonal time delays on CS and PS in neural 
networks driven by two forms of adaptive rules.

It is essential to consider the effects of the inherently adaptive nature of neural networks 
on information processing via synchronization. Besides the colossal efforts to study syn-
chronization in neuronal networks with synaptic plasticity (see, e.g., [22, 25–29]), it is 
essential to be mindful of the need to explore more dynamic scenarios in order to fully 
comprehend the emergence of synchronous patterns in adaptive networks. Synaptic plas-
ticity in neural networks refers to the ability to modify the strength of synaptic couplings 
over time and/or the architecture of neural network topology through specific rules. Two 
significant mechanisms associated with adaptive rules in neural networks are spike-timing-
dependent plasticity (STDP) and homeostatic structural plasticity (HSP). STDP-induced 
synaptic modification relies on the repeated pairing of pre- and postsynaptic membrane 
potentials. The degree and direction of the modification depend on the relative timing of 
neuron firing. Depending on the precise timing of pre- and and postsynaptic spikes, the 
synaptic weights can either exhibit long-term depression (LTD) or long-term potentiation 
(LTP), which represent persistent weakening or strengthening of synapses, respectively. 
This concept has been extensively discussed in [30, 31].

HSP-induced synaptic modification involves altering the connectivity between neurons 
by creating, pruning, or swapping synaptic connections. This results in changes to the net-
work’s architecture while maintaining its functional structure, which maximizes specific 
functions of interconnected groups of neurons and improves sensory processing efficiency 
[32]. Early evidence of structural plasticity was observed through histological studies of 
spine density following new sensory experiences or training  [33]. Further research has 
shown that the micro-connectome, which describes the connectome at the level of individ-
ual synapses, undergoes rewiring [34–36]. While brain networks adhere to specific topolo-
gies, such as small-world and random networks [37, 38], despite their time-varying dynam-
ics, recent studies suggest that these networks can benefit from homeostasis by increasing 
the efficiency of information processing [39]. Motivated by these studies, the current paper 
focuses on time-varying small-world and random networks adhering to their respective 
topologies through HSP.

Previous studies [40–43] on synchronization in adaptive neural networks have focused 
on either time-invariant neural networks with STDP or time-varying neural networks 
without STDP. Research on time-invariant neural networks has shown that good synchro-
nization improves via LTD of the averaged synaptic weight, while bad synchronization 
deteriorates via LTP [42]. This effect is due to inhibitory STDP [42], which contrasts the 
findings on excitatory STDP [44], where good synchronization gets better and bad syn-
chronization gets worse via LTP and LTD, respectively. The article [45] demonstrated that 
STDP enhances synchronization in inhibitory networks even when there is heterogeneity. 
Similarly, [46] revealed that noise can facilitate synchronization in spiking neural networks 



486 M. E. Yamakou et al.

1 3

driven by STDP. It is shown that the average synaptic coupling of the network increases 
with an increase in the noise intensity, with an optimal noise level where the strength of 
average synaptic coupling reaches its maximum in a resonance-like fashion that maximizes 
synchronization. The research in [40] demonstrated the crucial combined effect of the 
uni-directional chemical synapses and STDP on the synchronization in random neural net-
works. The study also reveals that synchronization increases as the connection probability 
of the network grow in the presence of STDP and no external input current.

However, introducing a non-zero external input current results in spiking resynchroniza-
tion. The study in [47] explores the behavior of an adaptive array of phase oscillators and 
highlights that a specially designed adaptive law can amplify the coupling between pairs 
of oscillators with greater phase incoherence, leading to improved synchronization. This 
approach yields more realistic coupling dynamics in networks of oscillators with varying 
intrinsic frequencies. Additionally, adjusting the parameters of the adaptive law can accel-
erate synchronization. The paper also demonstrated the method’s versatility by examining 
nearest-neighbor ring coupling in addition to global coupling.

The research in [48–50] has shown that in networks with a time-varying topology but 
without STDP, a faster rewiring of the topology always leads to a higher degree of syn-
chronization. However, in our current work, we challenge this notion and demonstrate that 
more rapid switching of synapses can actually also decrease the degree of synchronization 
in certain situations. The issues of synchronization phenomena in networks undergoing two 
adaptive processes have not received sufficient research attention. In one study, published 
in [51], the authors examined this problem by analyzing Kuramoto oscillator networks that 
undergo two adaptation processes: one that modifies coupling strengths and another that 
changes the network structure by pruning existing synaptic contacts and adding new ones. 
By comparing networks with only STDP to those with both STDP and structural plasticity, 
the authors assessed the effects of structural plasticity and found that it enhances the syn-
chronized state of a network.

The current study aims to narrow the gap in the research on synchronization in time-
varying neural networks driven by STDP and HSP rules in small-world and random 
networks. Specifically, we focus on determining the following: (i) the joint effect of the 
adjusting potentiation rate of the STDP rule and the characteristic rewiring frequency of 
the HSP rule on the degree of CS and PS; (ii) the joint effect of the synaptic time delay, the 
rewiring frequency of the HSP rule, and the adjusting potentiation rate of the STDP rule 
on the degree of CS and PS; (iii) the joint effect of the average degree of the network, the 
rewiring frequency of the HSP rule, and the adjusting potentiation rate of the STDP rule on 
the degree of CS and PS; and (iv) the joint effect of the rewiring probability of the Watts-
Strogatz small-world network, the rewiring frequency of the HSP rule, and the adjusting 
potentiation rate of the STDP rule on the degree of CS and PS. The study employs exten-
sive numerical simulations to investigate these issues.

Based on our numerical results, the stability of degrees of CS and PS are influenced 
by parameters governing STDP and HSP, as well as network topology parameters. For 
instance, decreasing the STDP potentiation rate parameter (P) and increasing the HSP 
characteristic frequency parameter (F) leads to more stable and higher levels of CS and PS 
in small-world and random networks, provided that average degree ( ⟨k⟩ ), rewiring prob-
ability ( � ), and synaptic time delay ( �c ) are at appropriate values. Furthermore, we found 
that PS can be achieved more reliably and at a higher degree than CS in both small-world 
and random networks. Additionally, the random network generates more stable and higher 
levels of CS and PS than the small-world network. Our findings on the variations in the 
degree of CS and PS are summarized in Table 1.
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Table 1  Summary of the relevant combined effects of P, F, and network parameters on the degree of CS 
and PS. The inclined arrow ↗ or ↘ represents an increase or a decrease, respectively, in the parameter value 
in the interval indicated and the degree of synchronization. The vertical arrow ↑ or ↓ indicates, respectively, 
that the high or low degree of synchronization stays high or low as the parameters are varied

Topology STDP parameter Network parameters HSP parameter Degree of CS Degree of PS

Small-world P ↘ (10−6, 10−3] �c = 3 , ⟨k⟩ = 10 , 
� = 0.25

F ∈ [0, 100] E ↗ R ↗

P ↗ (10−6, 10−3] �c = 3 , ⟨k⟩ = 10 , 
� = 0.25

F ∈ [0, 100] E ↘ R ↘

P = 10−6 �c = 3 , ⟨k⟩ = 10 , 
� = 0.25

F ↘ [0, 100] E ↘ R ↑

P = 10−6 ⟨k⟩ = 10 , � = 0.25 , 
�c ↘ [0, 20)

F ∈ [0, 100] E ↗ R ↗

P = 10−6 ⟨k⟩ = 10 , � = 0.25 , 
�c ∈ [20, 60)

F ∈ [0, 100] E ↓ R ↓

P = 10−6 ⟨k⟩ = 10 , � = 0.25 , 
�c ↘ [60, 80]

F ∈ [0, 100] E ↗ R ↗

P = 10−6 �c = 3 , � = 0.25 , 
⟨k⟩ ↗ [2, 20]

F ∈ [0, 100] E ↗ R ↗

P = 10−6 �c = 3 , � = 0.25 , 
⟨k⟩ ↘ [2, 20]

F ∈ [0, 100] E ↘ R ↘

P = 10−6 �c = 3 , � = 0.25 , 
⟨k⟩ ∈ [2, 5]

F ↘ [0, 100] E ↘ R ↘

P = 10−6 �c = 3 , � = 0.25 , 
⟨k⟩ ∈ [2, 5]

F ↗ [0, 100] E ↗ R ↗

P = 10−6 �c = 3 , ⟨k⟩ = 5 , � ↗ 
[0.05, 1)

F ∈ [0, 1] E ↗ R ↗

P = 10−6 �c = 3 , ⟨k⟩ = 5 , � ↗ 
[0.05, 1)

F ∈ [1, 100] E ↘ R ↘

Random P ↘ (10−6, 10−3] �c = 3 , ⟨k⟩ = 10 , 
� = 0.25

F ∈ [0, 100] E ↗ R ↗

P ↗ (10−6, 10−3] �c = 3 , ⟨k⟩ = 10 , 
� = 0.25

F ∈ [0, 100] E ↘ R ↘

P = 10−6 �c = 3 , ⟨k⟩ = 10 , 
� = 0.25

F ↘ [0, 100] E ↘ R ↗

P = 10−6 ⟨k⟩ = 10 , � = 0.25 , 
�c ↘ [0, 20)

F ∈ [0, 100] E ↗ R ↗

P = 10−6 ⟨k⟩ = 10 , � = 0.25 , 
�c ∈ [20, 60)

F ∈ [0, 100] E ↓ R ↓

P = 10−6 ⟨k⟩ = 10 , � = 0.25 , 
�c ↘ [60, 80]

F ∈ [0, 100] E ↗ R ↗

P = 10−6 �c = 3 , � = 0.25 , 
⟨k⟩ ↗ [2, 20]

F ∈ [0, 100] E ↗ R ↗

P = 10−6 �c = 3 , � = 0.25 , 
⟨k⟩ ↘ [2, 20]

F ∈ [0, 100] E ↘ R ↘

P = 10−6 �c = 3 , � = 0.25 , 
⟨k⟩ ∈ [2, 5]

F ↘ [0, 100] E ↗ R ↗

P = 10−6 �c = 3 , � = 0.25 , 
⟨k⟩ ∈ [2, 5]

F ↗ [0, 100] E ↘ R ↘

P = 10−6 �c = 3 , ⟨k⟩ = 5 , � = 1 F ∈ [0, 100] E ↑ R ↑



488 M. E. Yamakou et al.

1 3

The paper is structured as follows: Sect.  2 describes the mathematical model, the 
STDP learning rule, and the HSP rewiring rules, which facilitate the adherence of 
time-varying small-world and random networks to their respective architecture. Sec-
tion 3 outlines the computational methods utilized, while Sect. 4 presents and analyzes 
the numerical findings. In Sect. 5, we have conclusions.

2  Model description

2.1  Neural network model

The presence of intracellular and extracellular ions leads to the development of an 
electromagnetic field in biological neurons, which affects their membrane potential 
and, consequently, their firing modes. To incorporate these effects in a memristive 
neuron model, Lv et al. [52] proposed improved neuron models that include a variable 
for magnetic flux. The influence of this electromagnetic field is well-established [53]. 
Thus, in the current work, we study the joint effects of HSP and STDP on synchroni-
zation in a memristive neural network. The FitzHugh-Nagumo (FHN) model [54, 55], 
initially proposed to describe the spiking activity of neurons, now serves as a funda-
mental model for excitable systems. Its applications have expanded beyond neurosci-
ence and biological processes [56] to include optoelectronics [57], chemical oscilla-
tors [58], and nonlinear electronic circuits [59]. Although the FHN model lacks the 
same level of biophysical relevance as the Hodgkin-Huxley (HH) neuron model [60], it 
nevertheless does capture some essential aspects of the HH model’s behavior. Moreo-
ver, the computational cost is reduced due to the lower dimensionality of the 2D FHN 
model compared to the 4D HH model, which is particularly advantageous when ana-
lyzing large networks. Our study considers the memristive FHN model, incorporating 
the memristive aspect via an additional equation as per [61]:

where the variables vi , wi , and �i correspond to the voltage, slow current variable, and 
magnetic flux, respectively. To maintain electrophysiological relevance, the parameter a is 
typically set within the (0, 1) range, with 0.5 chosen for our purposes [62]. The values of � 
and d are fixed at 0.025 and 1, respectively, representing a specific set of values at which 
the non-memristive FHN model (i.e., Eq. (1) with k1 = K2 = k3 = 0 ) is in the quiescent 
state. The flux-controlled memristor term �(�i) is modeled using �(�) = � + 3��2 , where 
� and � are fixed at 0.1 and 0.02, respectively [63]. The memristor parameters k1 = 0.5 , 
k2 = 0.9 , k3 = 1.0 , and �ext = 2.4 are also fixed. With these parameter values, the model in 
Eq. (1) can only produce regular spiking [61]—the regime in which we are interested.

(1)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

dvi

dt
= vi

�
vi − a

��
1 − vi

�
− wi + k3vi�(�i) − I

syn

i
(t),

dwi

dt
= �

�
vi − dwi

�
,

d�i

dt
= k1vi − k2�i + �ext,
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2.2  Synapses and STDP rule

The term Isyn
i

(t) in Eq. (1) represents the uni-directional excitatory chemical synapses 
between neurons and governs the STDP learning rule between coupled neurons. The 
synaptic current Isyn

i
(t) of the ith neuron at time t is defined in Eq. (2):

where the synaptic connectivity matrix L(= {�ij(t)}) has �ij(t) = 1 if neuron j is connected 
to neuron i and disconnected when �ij(t) = 0 . We model the synaptic connections as either 
a time-varying small-world network or a time-varying random network. Starting with a 
regular ring network with ⟨k⟩ nearest neighbors, we use the Watts-Strogatz algorithm [64] 
to generate small-world and random networks with parameters � and ⟨k⟩ , where � repre-
sents the rewiring probability and ranges from 0 to 1, and ⟨k⟩ , the average degree con-
nectivity (i.e., the average number of synaptic inputs per neuron), which is calculated as 
⟨k⟩ =

1

N

∑N

i=1
ki , where ki is the in-degree of the ith neuron (i.e., the number of synaptic 

inputs to neuron i) and is given by ki =
∑N

j=1(≠i) �ij(t) . In the algorithm, � ∈ [0, 1] plays 
a crucial role in determining the type of network generated. If � falls between 0 and 1, 
a small-world network is created, while a completely random network is generated when 
� is 1. This work does not consider regular networks (when � is 0). The average degree 
connectivity ⟨k⟩ and the rewiring probability � serve as control parameters for the network 
topology.

The time-dependent behavior of the open synaptic ion channels in the jth neuron is 
denoted by sj(t) in Eq. (2). The rate of change of sj(t) is determined by

Chemical synapses involve the release and diffusion of neurotransmitters across the syn-
aptic cleft, which takes a finite amount of time. Including time delays allows for a more 
accurate representation of the temporal dynamics and signal transmission between neu-
rons. Thus, we incorporate a time delay parameter, �c , which will be utilized to control the 
chemical synapses. With a time delay �c , the action potential of the pre-synaptic neuron j 
fired at the earlier time given by t − �c is represented by vj(t − �c) [23, 65]. The threshold of 
the membrane potential, denoted by vshp = 0.05 , determines the threshold above which the 
pre-synaptic neuron j has an impact on post-synaptic neuron i. Additionally, the reversal 
potential, set at vsyn = 2.0 , ensures that all synapses are excitatory.

In Eq. (2), the strength of the synaptic connection between the jth pre-synaptic neu-
ron and the ith post-synaptic neuron is denoted by gij(t) . The STDP mechanism states 
that the synaptic strength of each synapse is updated using a nearest-spike pair-based 
STDP rule [66] as time t increases. There are two commonly used forms of STDP (see, 
e.g., [25, 67, 68] and [69–71]) for each of the forms. In our study, the update of the 
synaptic coupling strength gij(t) is determined by the synaptic modification function M, 
which is defined based on the current value of gij(t) [69–71]:

(2)I
syn

i
(t) =

1

ki

N∑

j=1(≠i)
�ij(t)gij(t)sj(t)

[
vi(t) − vsyn

]
,

(3)

dsj

dt
=

2(1 − sj)

1 + exp

[

−
vj(t − �c)

vshp

] − sj.
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where Δt = ti − tj , with ti and tj representing the spiking times of the post-synaptic neuron i 
and the pre-synaptic neuron j, respectively. We determine the spike occurrence times from 
the instant t when a membrane potential variable crosses the threshold value of vth = 0.5 . It 
is worth noting that only the excitatory-to-excitatory synapses are modified by this learn-
ing rule [69, 72], making it an ideal learning rule for our study since all the synapses in 
our network are excitatory—thanks to the value of the reversal potential, vsyn = 2.0 , which 
ensures that all synapses are excitatory. The extent of synaptic modification is regulated 
by two parameters, namely the potentiation and depression rate represented by P and D, 
respectively. The temporal window for synaptic modification is determined by two addi-
tional parameters, �p and �d . Experimental results [69, 73, 74] suggest that D𝜏d > P𝜏p , 
which ensures the overall weakening of synapses. Furthermore, experimental studies 
show that the temporal window for synaptic weakening is roughly the same as that for 
synaptic strengthening [69, 75]. Hence, to be consistent with experimental results, we 
chose the STDP parameters such that the STDP rule in Eq. (4) is typically depression-
dominated, i.e., we set �p = �d = 2.0 , D∕P = 1.05 , and chose P as the control parameter 
of this STDP rule. In order to prevent unbounded growth, negative coupling strength, and 
elimination of synapses (i.e., gij = 0 ), we set a range with the lower and upper bounds: 
gij ∈ [gmin, gmax] = [0.001, 0.5].

2.3  Time‑varying networks and HSP rule

To investigate the impact of the time-varying nature of the network architectures on the 
synchronization dynamics of the coupled neurons, we consider a small-world and random 
structure [76–79] constructed using a Watts-Strogatz network algorithm [64]. The net-
work’s Laplacian matrix is a zero-row-sum matrix with an average degree connectivity of 
⟨k⟩ and a rewiring probability � ∈ (0, 1] . To generate a time-varying small-world network 
(with � ∈ (0, 1) ) that adheres to its small-worldness at all times, we implement the follow-
ing process during the rewiring of synapses:

– During each integration time step dt, a synapse between two distant neurons is rewired 
to a nearest neighbor of one of the neurons with probability (1 − �)Fdt . If the synapse 
is between two nearest neighbors, it is replaced by a synapse to a randomly chosen dis-
tant neuron with probability �Fdt . A neuron i is considered a distant node to neuron j 
if �i − j� > ⟨k⟩, where ⟨k⟩ is the average degree of the original ring network used in the 
Watts-Strogatz algorithm.

To generate a time-varying random network (also generated with the Watts-Strogatz algo-
rithm when � = 1 ) that adheres to its randomness at all times, we implement the following 
process during the rewiring of synapses:

(4)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

gij(t + Δt) = gij(t) + Δgij,

Δgij = gij(t)M(Δt),

M(Δt) =

⎧
⎪
⎨
⎪
⎩

P exp (−�Δt�∕𝜏p) if Δt > 0

−D exp (−�Δt�∕𝜏d) if Δt < 0

0 if Δt = 0,



491Synchronization in STDP‑driven memristive neural networks…

1 3

– During each integration time step dt, if there is a synapse between neuron i and j, it will 
be rewired such that neuron i (j) connects to any other neuron except for neuron j (i) 
with a probability of 

�
1 −

⟨k⟩

N−1

�
Fdt.

Note that the rewiring algorithms described above always maintain the small-worldness or 
randomness of the networks, even though the connectivity matrix changes over time—these 
are precisely the HSP rules we will use in this study. However, it is essential also to acknowl-
edge that real neural networks may employ different rewiring processes to achieve such time-
varying network structures, which may not necessarily align with the HSP rules described 
here. Nonetheless, for the purpose of our study, it is relevant that both small-world and ran-
dom networks exhibit changing connections over time while preserving their respective small-
worldness or randomness, similar to what is observed in real neural networks.

Here, we will use the characteristic rewiring frequency F as the control parameter for 
HSP. This parameter reflects the synapse changes over time, specifically during each inte-
gration time step dt. Notably, synapses in actual neural networks may change at varying 
rates, depending on factors such as the network’s developmental stage or environmental 
stimuli. Therefore, this study aims to investigate a broad range of rewiring frequencies, 
ranging from 0.0 to 1.0 × 102.

3  Computational methods

As we need to quantify the degree of complete synchronization (CS) and phase synchroni-
zation (PS) of neural activity in the networks, we use the error for variable traces E for CS 
and the Kuramoto order parameter R for PS [80, 81], respectively given by
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below. The norm of this complex exponential function is represented by | ⋅ | . The time at 
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CS corresponds to when all neurons follow the same trajectory and yields zero synchro-
nization error E = 0 . The Kuramoto order parameter R ranges from 0 to 1, corresponding 
to the absence of PS to complete PS (i.e., all neurons fire at precisely the same times), 
respectively. It is worth noting that the error E, which measures the degree of CS, uses 
the actual and all the values of the membrane variable v

k
(t) (including subthreshold oscil-

lations), while the Kuramoto order parameter uses only the spike times of v
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us about the synchronization of spiking times. Thus, the synchronization behavior of the 
neurons during CS can be very different from what happens during PS.
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For N neurons, we numerically integrate Eqs. (1)–(3) with the STDP learning rule 
of Eq. (4) and the HSP rewiring models described above using a standard fourth-order 
Runge–Kutta algorithm with a time step dt = 0.01 and for a total integration time of 
T = 3.0 × 103 units. The results shown in Sect. 4 below were averaged over 25 independent 
realizations for each set of parameter values and random initial conditions to warrant reli-
able statistical accuracy with respect to the small-world and random network generations 
and the global stability of CS and PS. For each realization, we choose random initial points 
[vk(0),wk(0),�k(0)] for the kth ( k = 1, ...,N ) neuron with uniform probability distribution 
in the range of vk(0) ∈ [−0.5, 1.6] , wk(0) ∈ [0.1, 1] , �k(0) = [2.45, 3.5] . It is worth point-
ing out that we have carefully excluded the transient behavior from simulations as with 
all the quantities calculated. After an initial transient time of T0 = 2.4 × 103 units, we start 
recording the values of the variables (vk,wk,�k) and the spiking times t�

k
 ( � ∈ ℕ counts the 

spiking times). Furthermore, the initial weights of all excitable synapses are normally dis-
tributed in the interval [gmin, gmax] = [0.001, 0.5] , with mean g0 = 0.35 and standard devia-
tion �0 = 0.01.

The flow of control in the simulations is presented in Table  2 and the algorithm in 
Appendix. The two outermost loops in the pseudo-code are on the parameters P and F, 
resulting in Fig. 1. Other parameters replace the parameter in the outermost loop (i.e., P) to 
get results presented in the rest of the figures.

The global stability of CS and PS is analyzed using basin stability measure B, defined as

where Ω represents the set of all possible random perturbations � and h(�) equals unity if 
the neural network converges to synchronized states after a perturbation � and zero oth-
erwise. The density of the perturbed states, represented by g(�) , satisfies the condition 
∫
Ω
g(�)d� = 1.
In our computation, we integrate the system for a sufficiently large number Q of reali-

zations. Each realization is executed with random initial conditions drawn uniformly from 
a prescribed region of phase space. If q is the number of initial conditions that eventually 
arrive at the synchronous state, then the basin stability B for the synchronous state is esti-
mated as q/Q. Thus, B is bounded in the unit interval [0,1], whereby B = 0 indicates that 
the synchronized state is completely unstable and has the size of its basin of attraction 

(6)B = ∫Ω

h(�)g(�)d�,

Fig. 1  Variation of the average synaptic weight G as a function of P and F in a small-world ( � = 0.25 ) and 
b random ( � = 1 ) network. In both topologies, decreasing P strengthens the average synaptic weight after 
STDP learning, while F has no significant effect on G, especially at larger P. Parameter values: ⟨k⟩ = 10 , 
�
c
= 0.0 , N = 100
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tending to zero, and when B = 1 , all sampled initial conditions are pulled to the synchro-
nized state, implying a globally stable synchronized state; and when 0 < B < 1 , the prob-
ability (in the classical sense) of getting the synchronous states for random initial condi-
tions located in the prescribed region of the phase space. We can also interpret 0 < B < 1 
as the coexistence of synchronized and desynchronized states within a given region of 
phase space.

As we indicated earlier, a full level synchronization is hardly attained in many real-
world systems [82], including biological neurons, where we can have heterogeneous initial 
conditions and coupling strengths (which are controlled by STDP) and/or the presence of 
uncorrelated random perturbations. Even though their degree of synchronization could be 
very high (i.e., E ≤ � , 0 < 𝛿 ≪ 1 or R ≤ �0 , 0 ≪ 𝛿0 < 1 , as t → ∞ ), it is hardly full (i.e., it 
is hard to get exactly E = 0 and R = 1 , as t → ∞ ). Thus, in our computations, we sample 
the phase space volume prescribed above and consider E < 10−1 and R > 0.9 a satisfactory 
precision for CS and PS, respectively. In the rest of this paper, we use the notations BE and 
BR to distinguish between the basin stability measure of CS and PS, respectively.

4  Results

The purpose of our study is to examine the impact of the HSP, which is governed by the 
rewiring frequency parameter F, in conjunction with (i) the STDP, which is influenced by 
the adjusting rate parameter P, (ii) the time delay �c , (iii) the average degree connectivity 
⟨k⟩ , and (iv) the rewiring probability � , on the degree of CS and PS in small-world and ran-
dom networks. Our findings on the alterations of the degree of CS and PS are summarized 
in Table 1.

4.1  Combined effects of F and P

From many previous research works, it is well established that the strength of the coupling 
between oscillators (neurons included) is crucial for their synchronization. Essentially, if 
the coupling strength is zero or below a non-zero threshold, the oscillators cannot synchro-
nize or achieve a certain degree of synchronization. Thus, for a better understanding of 
synchronization as a function of the STDP parameter P, which controls the modification 
of the synaptic coupling strengths and F, it is necessary to first investigate how the average 
synaptic weight G given in Eq. (7) varies with P and F.

where ⟨⋅⟩t is the average over time, gij(t) ∈ [0.001, 0.5] , and gij(t = 0) ∼ N(0.35, 0.01).
In Fig. 1a and b, we present the variation of G as a function of P and F in Watts-Strogatz 

small-world ( � = 0.25 ) and completely random ( � = 1 ) networks, respectively. We observe 
that increasing P weakens the average synaptic weight in both small-world and random net-
works, and at the same time, for a given value of P, increasing F has no significant effect 
on the average synaptic weight. One major difference between the two topologies is that the 
weakening of synapses after STDP is significantly stronger in the random network, with 
average synaptic weight reaching a value as low as G = 0.0718 compared to G = 0.102 in 
the small-world network.

(7)G =

⟨
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The fact that the synapses strengthen with decreasing P leads to the dominant depres-
sion of the synaptic weights (as D/P increases and G never exceeds the mean value of the 
initial synaptic weights distribution N(0.35, 0.01) ) is in agreement with experimental stud-
ies [73, 74]. Hence, we expect that decreasing P would favor synchronization.

The variation of G in Fig. 1 is robust, as extensive numerical simulations (not shown) 
indicate that G displays the same qualitative behavior with respect to P and F and for other 
values of the synaptic time delay �c ∈ [0, 80] , average degree connectivity ⟨k⟩ ∈ [2, 30] , 
rewiring probability � ∈ (0, 1] , and network size N ∈ [80, 120] . Thus, even though G is not 
a variable of main interest in our study, it is worth pointing out that the way the dynamics 
of G relate to the degree of CS and PS can be inferred from its inverse and monotonic vari-
ation with P. In the next subsections, we will investigate the combined effect of F and a 
network parameter ( �c , ⟨k⟩ , � ) on synchronization at the smallest value of P (= 1.0 × 10−6) , 
i.e., the largest value of average synaptic strength G(= 0.35) in the network.

In Fig. 2a and b, we show, respectively, the time series of a few spiking neurons and 
the spatiotemporal pattern of all the spiking neurons in a small world network of Fig. 1a, 
when the STDP parameter is relatively large, i.e., P = 1.0 × 10−3 , leading to a weak aver-
age synaptic strength G ≈ 0.1 . In these figures, it can be seen the neurons exhibit a poor 
degree of CS (see the red curve in Fig. 3b) and a poor degree of PS at early times of the 
time-series (see the red curve in Fig. 3c) due to the weak average synaptic strength (see the 
red curve in Fig. 3a). Figure 2c and d display the time series of a few spiking neurons and 

Fig. 2  Time series of some neurons’ membrane potential in a and corresponding spatiotemporal pattern 
in b of a small-world network ( � = 0.25 ) with P = 1.0 × 10−3 exhibiting poor degree CS and PS. Time 
series of some neurons’ membrane potential in c and corresponding spatiotemporal pattern in d of the ran-
dom network ( � = 1 ) with P = 1.0 × 10−6 exhibiting good degree CS and PS. Parameter values: F = 100 , 
⟨k⟩ = 10 , �

c
= 0.0 , N = 100
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the spatiotemporal pattern of all spiking neurons in the random network of Fig. 1b, when 
the STDP parameter is relatively small, i.e., P = 1.0 × 10−6 , leading to a stronger average 
synaptic strength G ≈ 0.35 . In this case, the neurons exhibit good degree of CS (see the 
blue curve in Fig. 3b) and a good degree of PS (see the blue curve in Fig. 3c) due to the 
stronger average synaptic strength (see the blue curve in Fig. 3a).

The red curve in Fig.  3a represents the time series of the averaged synaptic weight 
G of the small-world network ( � = 0.25 ) when the STDP parameter is relatively large 
P = 1.0 × 10−3—just as in Fig. 2a and b. In this case, we can see that G saturates at a rela-
tively low value. Hence, the poor degree of CS, as indicated in Fig. 2a and b, and the rela-
tively high synchronization error E represented by the red curve in Fig. 3b. Furthermore, 
for this same value of P(= 1.0 × 10−3) , we also observe a poor degree of PS measured by 
the relatively low Kuramoto order parameter R represented by the red curve in Fig. 3c.

However, towards the end of the time series in Fig. 3b, the red curve increases from a 
relatively low value to higher values near 1, indicating a better degree of PS. This explains 
why in Fig. 2a, some neurons towards the end of the time series turn to synchronize their 
spiking times, leading to a higher degree of PS. Nevertheless, it is worth noting that CS 
is still very poor as most neurons have synchronized only their spiking times and not the 
traces of their membrane potentials.

Furthermore, we observe that towards the end of the time series in Fig. 3a, there is no 
growth in the average synaptic strength G. Hence, the synaptic strength is not responsible 

Fig. 3  Time series of average synaptic weight G in a for small-world ( � = 0.25 , red curve) and random 
( � = 1.0 , blue curve) networks at various STDP parameter P values. Time series of average error of mem-
brane potential traces in b for small-world ( � = 0.25 , red curve) and random ( � = 1.0 , blue curve) networks 
at different P. Time series of average error for Kuramoto order parameter R in a for small-world ( � = 0.25 , 
red) and random ( � = 1.0 , blue) networks at different P. Parameter values: F = 100 , ⟨k⟩ = 10 , �

c
= 0.0 , 

N = 100
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for this improvement in the degree of PS towards the end of the time series in Fig. 2a and 
the red curve in Fig. 3c. This behavior is explained by the fact that our oscillators (FHN 
neurons in Eq. (1)) are identical. Thus, with a sufficiently long transient time, identical 
oscillators with weak coupling can still synchronize because of the similarity of their 
attractors in phase space. In this case, the oscillators adjust their phases to align in a spe-
cific relationship, while their amplitudes may differ (hence the poor degree of CS). This PS 
occurs due to the shared properties of the oscillators, such as having identical parameter 
values, natural frequencies, and similar dynamical behaviors. When the coupling between 
the identical oscillators weakens, their interaction is not strong enough to force CS. How-
ever, some or most oscillators may occasionally achieve a state of PS where their phases 
become correlated—like at the end of the time series in Fig. 2a (where the last spiking time 
of some neuron coincide), leading to a higher degree of PS as indicated by the higher val-
ues of R towards the end of the time series in Fig. 3c.

On the other hand, the blue curve in Fig. 3a represents the time series of the averaged 
synaptic weight G of the random network ( � = 1 ) when the STDP parameter is relatively 
small P = 1.0 × 10−6—just as in Fig. 2c and d. In this case, we can see that G saturates 
at a relatively high value. Hence, the high degree of CS, as indicated in Fig.  2c and d, 
and the relatively low synchronization error E represented by the blue curve in Fig.  3b. 
Furthermore, for this same value of P(= 1.0 × 10−6) , we also observe a high degree of PS 
measured by the relatively high Kuramoto order parameter R represented by the blue curve 
in Fig. 3c.

In the rest of the paper, we present the behaviors of CS and PS in the small-world and 
random networks as a function of each network parameter and the network rewriting fre-
quency F, at the best STDP parameter value (i.e., P = 1.0 × 10−6 ) for both types of syn-
chronization. In Fig. 4a and b, we depict the variations in the degree of CS and PS as a 
function of P and F in a small-world network ( � = 0.25 ), respectively. It is evident from 
these two figures that decreasing the value of P (i.e., strengthening the average synaptic 
weights in the network after STDP, as shown in Fig. 1) enhances the degree of CS (i.e., 
E → 0 ) and the degree of PS (i.e., R → 1 ). At the same time, for any given value of P, 
increasing the value of F has no significant effect on the degree of CS and PS, except in the 
case of CS for very small values of P (≈ 10−6) , where increasing F occasionally enhances 
the degree of CS to almost full synchrony ( E ≈ 0 ). This implies that when the average 
synaptic weight is strong, a more rapidly changing small-world network can achieve larger 
windows of CS. Comparing the degree of CS and PS, we observe that a relatively weaker 
average synaptic weight (controlled by P) is required to achieve a high degree of PS (shown 
in light yellow) as opposed to CS, which requires a much stronger average synaptic weight 
to attain a high degree.

In Fig. 4c and d, we present the basin stability of CS and PS corresponding to Fig. 4a 
and b, respectively. Figure  4c indicates the highest degrees of CS (i.e., the dark blue 
regions in Fig. 4a, with P ≈ 10−6 and E < 10−1 ) that are not globally stable (i.e., BE < 1 ) 
in the prescribed region of phase space. Instead, we have the co-existence of a desynchro-
nized state and a synchronized state (the latter being more probable than the former since 
0.7 < BE < 1 ). Furthermore, it can be observed in Fig.  4c that when P ≈ 10−6 , increas-
ing F leads to an increase in BE , indicating that small-world network with more rapidly 
switching synapses and a strong average synaptic weight after STDP will yield a globally 
stable CS. Figure 4d indicates that the highest degree PS achieved in Fig. 4b (light yel-
low regions) is globally stable (i.e., BR ≈ 1 ) for slightly lower values of P. It can also be 
seen that for 10−6 < P < 10−5 , increasing F yields an increase in BR from 0.6 to almost 1, 
indicating that, just like with CS, rapidly switching synapses increases the basin stability 
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of PS. Moreover, comparing the basins stability of CS and PS, it is clear that PS is more 
stable than CS in the above-prescribed region of phase space. Qualitatively similar results 
(not shown) are obtained for the random network ( � = 1 ). In the following sections, when 
we refer to the optimal value of P, we specifically indicate P = 1.0 × 10−6 . The results in 
Fig. 4 indicate that this value of P yields the highest degrees of CS and PS.

In summary, in the P − F parameter plane, decreasing P (which increases the weaken-
ing effect of STDP on the synaptic weights) and increasing F (which speeds up the swap-
ping rate of synapses between neurons) leads to a more stable and higher degree of CS and 
PS in both the small-world and random networks, provided that �c , � , and ⟨k⟩ are fixed at 
suitable values.

4.2  Combined effect of F and �
c
 at the optimal P

In Fig. 5a and b, we present the variations in the degree of CS and PS as a function of the 
synaptic time delay �c ∈ [0, 160] and F at the optimal value of P in a small-world network. 
The results indicate that the small-world network exhibits intermittent CS and PS, irrespec-
tive of the switching frequency of synapses F. Next, we provide a mathematical explanation 
for intermittent CS and PS as �c increases. First, we recall that if a deterministic delayed 
differential equation is generally given as ẋ = f (x(t), x(t − 𝜏c)) , where �c is the time delay, 
possesses a solution x(t) with period � , then x(t) also solves ẋ = f (x(t), x(t − 𝜏c − n𝜏)) , for 
all positive integers n ∈ ℕ . It suffices to check if the distance between the horizontal bands 
of the maximum degree of CS and PS in Fig. 5a and b, compares to the average (over the 

Fig. 4  Variation in the degree of synchronization and the corresponding global stability w.r.t. P and F in a 
small-world network. a and c Degree of CS and the corresponding basin stability measure. b and d Degree 
of PS and the corresponding basin stability measure. Parameter values: ⟨k⟩ = 10 , � = 0.25 , �

c
= 0.0 , 

N = 100
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total number of neurons) interspike interval (ISI), alias period of the neural activity which 
is computed and given by ISI ≈ 80 . It is observed from Fig. 5a that three deep blue hori-
zontal bands where the network exhibits the highest degree of CS are equidistant, and the 
distance between each is given � ≈ 80 ≈ ISI . Hence, the synchronization pattern for CS 
repeats itself n times after n� , n = 0, 1, 2, ..., waiting time. This explanation applies to the 
case of PS in Fig. 5b.

Figure 5c and d display the basin stability measure of CS and PS presented in Fig. 5a 
and b, respectively. It can be observed from Fig.  5c that higher rewiring frequencies 
increase the basin stability of CS, especially at intermediate time delays, i.e., at �c ≈ 80 . 
Furthermore, we can again see that the highest degree of CS is less stable than that of PS. 
In the case of the random network ( � = 1 ), we have obtained qualitatively similar results 
(not shown).

In summary, in the �c − F parameter plane, both small-world and random networks dis-
play intermittent CS and PS as �c increases, with the highest degrees of CS and PS occur-
ring when the synaptic time delay �c is multiple of the average inter-spike interval of the 
networks.

4.3  Combined effect of F and ⟨k⟩ at the optimal P

In Fig. 6a and b, we depict the variations in the degree of CS and PS, respectively, as a 
function of ⟨k⟩ and F in a small-world network ( � = 0.25 ) at the optimal value of P indi-
cated. The results suggest that higher values of the average degree connectivity ( ⟨k⟩ > 8 

Fig. 5  Variation in the degree of synchronization and the corresponding global stability w.r.t. �
c
 and F at the 

optimal value of P indicated. For a small-world network. a and c Degree of CS and the corresponding basin 
stability measure. b and d Degree of PS and the corresponding basin stability measure. Parameter values: 
⟨k⟩ = 10 , � = 0.25 , �

c
= 0.0 , N = 100
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for CS and ⟨k⟩ > 5 for PS) yield a high degree of CS and PS, irrespective of the rewiring 
frequency F. This behavior can be explained by the fact that with higher values of ⟨k⟩ , 
the network becomes denser, leading to more interactions between the connected neu-
rons which facilitate their global synchronization. As the small-world network becomes 
sparser ( ⟨k⟩ < 8 for CS and ⟨k⟩ < 5 for PS), the degree of both forms of synchronization 
decreases, especially when the synapses switch more rapidly ( F ≥ 10−1).

In Fig. 6c and d, we present the basin stability measures of CS and PS correspond-
ing to Fig.  6a and b, respectively. Figure  6c indicates that the highest degree of CS 
( E ⪅ 0.1 ) obtained at higher values of F ≥ 10−1 and ⟨k⟩ > 8 is more stable than in the 
rest of the F − ⟨k⟩ plane for above-prescribed phase space region. Meanwhile, Fig. 6d 
indicates that (i) PS is fully stable for all values of F and average degree connectivity 
⟨k⟩ > 8 (ii) PS is more stable than CS, since max BR(= 1) > max BE(= 0.8).

In the case of the random network ( � = 1.0 ) shown in Fig.  7, firstly, we observe in 
Fig. 7a that higher values of F (≥ 10−2) increases the degree of CS irrespective of the value 
of ⟨k⟩ , while lower values of F (< 10−2) deteriorate the degree CS for lower values of ⟨k 
⟩(< 8) . This is in contrast with a small-world network in Fig. 6a, where lower values of F 
(< 10−2) enhance the degree of CS, especially at higher values of ⟨k ⟩(> 8) . In Fig. 7b, we 
observe that for lower ⟨k ⟩(< 8) lower values of F(< 1) , the degree of PS deteriorates. But 
unlike with degree of PS in Fig. 6b, which decreases for ⟨k ⟩(< 5) and F (> 1) , the degree 
of PS in Fig. 7b slightly increases for these same ranges of parameter values.

Secondly, it can be seen that the degrees of CS and PS are significantly higher in 
the random network in Fig. 7 than in the small-world network in Fig. 6. In Fig. 7c and 

Fig. 6  Variation in the degree of synchronization and the corresponding global stability w.r.t. ⟨k⟩ and F in a 
small-world network with an optimal STDP parameter value P. a and c Degree of CS and the correspond-
ing basin stability measure. b and d Degree of PS and the corresponding basin stability measure. Parameter 
values: � = 0.25 , �

c
= 3.0 , N = 100
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d, we present the basin stability measures of CS and PS corresponding to Fig. 7a and 
b, respectively. It is evident that CS and PS are more stable in the random than in the 
small-world network depicted in Fig. 6c and d. These behaviors can be explained by the 
fact that in a random network, neurons interact, on average, with as many nearest and as 
distant neighbors, while in the small-world network (with � = 0.25 ), most of the neurons 
interact only with their nearest neighbors and a relatively few distant neighbors. These 
fewer interactions in the small-world network reduce the degree of synchronization.

In summary, in the ⟨k⟩ − F parameter plane, lower values of F and higher values of ⟨k⟩ 
yield higher and more stable degrees of CS and PS in small-world networks, while the 
higher values of F and higher values of ⟨k⟩ yield higher and more stable degrees of CS and 
PS in the random network.

4.4  Combined effect of F and ˇ at the optimal P

In Fig. 8a and b, we show the variations in the degree of CS and PS, respectively, as a 
function of � ∈ [0.05, 1] and F at the optimal value of P indicated. It can be seen that the 
degrees of CS and PS are relatively low for (i) small-world networks built with a low rewir-
ing probability (i.e., 𝛽 < 0.1 ) and have slowly switching synapses (i.e., F < 10−3 ) and (ii) 
for almost all small-world networks with rapidly switching synapses (i.e., F > 1 ). For the 
random network (i.e., when � = 1 ), the degrees of CS and PS stay relatively high irrespec-
tive of F.

Fig. 7  Variation in the degree of synchronization and the corresponding global stability w.r.t. ⟨k⟩ and F in 
the completely random network with an optimal STDP parameter value P. a and c Degree of CS and the 
corresponding basin stability measure. b and d Degree of PS and the corresponding basin stability measure. 
Parameter values: � = 1.0 , �

c
= 3.0 , N = 100
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In Fig. 8c and d, we present the basin stability measures of CS and PS corresponding to 
Fig. 8a and b, respectively. It can be observed that the CS is more stable for more small-
world networks with a higher number of random shortcuts (i.e., higher rewiring probabil-
ity 𝛽 > 0.4 ) and intermediate rewiring frequencies (i.e., 10−2 < F < 100 ). For the case of 
a completely random network (i.e., � = 1 ), we have more stable CS for a wider range of 
the rewiring frequency (i.e., 10−2 < F < 102 ). The degree of PS in Fig. 8b shows similar 
behavior. Comparing Fig. 8a and b, we see that PS is more stable than CS both in terms 
of the size of the region where BE and BR achieve their maximum values and of the actual 
maximum values of BE and BR.

In summary, in the � − F parameter plane, higher values of � ∈ [0.05, 1] and intermedi-
ate values of F yield a higher and more stable degree of CS and PS (i.e., random network 
yields better synchronization than small-world networks).

5  Conclusions

This paper investigated the properties of two important phenomena, complete synchroniza-
tion (CS) and phase synchronization (PS), in adaptive small-world and random neural net-
works. These networks were driven by two adaptive rules: spike-timing-dependent plastic-
ity (STDP) and homeostatic structural plasticity (HSP). Our study yielded valuable insights 
into the factors that significantly affect the degree and stability of CS and PS. We found 
that various parameters, including the potentiation rate parameter P for STDP, the rewir-
ing frequency parameter F for HSP, and the network topology parameters such as synaptic 

Fig. 8  Variation in the degree of synchronization and the corresponding global stability w.r.t. � and F with 
an optimal STDP parameter value P. a and c Degree of CS and the corresponding basin stability measure. 
b and d Degree of PS and the corresponding basin stability measure. Parameter values: ⟨k⟩ = 5 , �

c
= 3.0 , 

N = 100
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time delay �c , average degree connectivity ⟨k⟩ , and rewiring probability � , play a crucial 
role in shaping the dynamics and stability of CS and PS.

Our results consistently demonstrated that PS exhibits greater stability compared to CS. 
This observation is particularly significant because precise spike timing is known to be cru-
cial for information processing in neural systems [83]. The greater stability of PS, as indi-
cated by the basin stability measure, may explain why neurons rely on the precise timing of 
spikes to encode information rather than the trace of the voltage (represented by the actual 
values of the voltage v), which is used to evaluate the degree of CS through the error E.

Furthermore, recent experiments have shown that the modulation of STDP can be influ-
enced by signaling molecules such as acetylcholine [84]. Additionally, advances in neu-
roscience research have made it possible to manipulate synapse control in the brain using 
drugs that affect neurotransmitters [85] or optical fibers to stimulate genetically engineered 
neurons selectively [86]. Consequently, our findings hold practical implications for opti-
mizing neural information processing through synchronization in experimental settings and 
designing artificial neural circuits that enhance signal processing through synchronization.

Appendix

Table 2  Definition of notations 
used in the algorithm N Network size

t Time
T Total integration time
Xi(t) Set of variables {vi(t), wi(t), �i(t)} in Eq. (1)
Q Total number of realizations
F Rewiring frequency of synapses
Fmax Max rewiring frequency
P STDP control parameter
Pmin Min of P
Pmax Max of P
�ij(t) Adjacency matrix of synapses
gij(t) Synaptic weights
� Rewiring probability in Watts-Strogatz algorithm
tn
i nth spike time of the ith neuron
rq Order parameter of the qth realization
eq Synchronization error of the qth realization
gq Mean synaptic weight of the qth realization
BE
q

Basin stability of CS for the qth realization
BR
q

Basin stability of PS for the qth realization
TolE Tolerance value of eq for CS
TolR Tolerance value of rq for PS
CE # of initial conditions that finally arrive at TolE
CR # of initial conditions that finally arrive at TolR
E Average synchronization error over Q
R Average order parameter over Q
G Average of mean synaptic weights over Q
BE Basin stability measure for CS

BR Basin stability measure for PS
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Algorithm 1  Flow of control in the simulations
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