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Abstract The interactions between dendrimers and different types of drugs are nowadays

one of the most actively investigated areas of the pharmaceutical sciences. The interac-

tions between dendrimers and drugs can be divided into: internal encapsulation, external

electrostatic interaction, and covalent conjugation. In the present study, we investigated the

potential of poly(amidoamine) (PAMAM) dendrimers for solubility of four iminodiacetic

acid derivatives. We reported that PAMAM dendrimers contribute to significant solubility

enhancement of iminodiacetic acid analogues. The nature of the dendrimer–drug complexes

was investigated by
1
H NMR and 2D-NOESY spectroscopy. The

1
H NMR analysis proved

that the water-soluble supramolecular structure of the complex was formed on the basis

of ionic interactions between terminal amine groups of dendrimers and carboxyl groups

of drug molecules, as well as internal encapsulation. The 2D-NOESY analysis revealed

interactions between the primary amine groups of PAMAM dendrimers and the analogues of

iminodiacetic acid. The results of solubility studies together with
1
H NMR and 2D-NOESY

experiments suggest that the interactions between PAMAM dendrimers of generation 1–4

and derivatives of iminodiacetic acid are based on electrostatic interactions and internal

encapsulation.

Keywords PAMAM dendrimers · Iminodiacetic acid · Solubility studies ·
Electrostatic interactions · MRI contrast agents

Electronic supplementary material The online version of this article

(doi:10.1007/s10867-012-9277-5) contains supplementary material,

which is available to authorized users.
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1 Introduction

Dendrimers, a relatively new class of chemical compounds, are large, complex molecules,

which possess, in comparison to traditional linear polymers, well-defined chemical struc-

ture. Dendrimers are multi-branched, three-dimensional polymers with low polydispersity

and high functionality [1]. A typical dendrimer is composed of three elements: an initiator

core, interior layers known as generations that are built of repeating units, attached to the

initiator core, and multiple peripheral functional groups that are attached to the outermost

interior generation [1–5]. Polyamidoamine (PAMAM) dendrimers were the first dendrimers

that were synthesized [6, 7]. These molecules and their modifications have received

widespread attention throughout the world and are under the most active investigation.

Over the past decade, interest in utilization of dendrimers as drug delivery systems

has increased. PAMAM dendrimers, which are the most precisely examined dendrimer

family, appear to be safe for potential use in a wide variety of therapeutic applications

for human diseases [8]. The utilization of dendrimers as molecular containers was proposed

for the first time by Maciejewski in 1982 [9]. Nowadays host-guest properties of dendritic

polymers are under scientific investigation and have gained a crucial position in the field

of supramolecular chemistry. Encapsulation of guest molecules into dendritic structures

might be based on hydrogen bonding interaction. Fox and co-workers conducted research in

which they showed that lower generation PAMAM dendrimers incorporate guest molecules

at external (surface amino groups) and internal (interior amide groups) coordination sites

[10, 11]. Interaction between biologically active compounds and dendrimers may also be

a consequence of electrostatic interactions which may occur between PAMAM dendrimers

and acidic, water insoluble molecules such as benzoic acid and salicylic acid. Non-polar

groups at the ends of dendrimer branches enable dendrimers to act as micelles which may

be utilized as molecular vehicles to transport guest molecules between organic and inorganic

phases [3, 11].

There are numerous studies confirming that water soluble dendrimers are capable of

binding and solubilizing small acidic molecules with low water solubility [12, 13]. PAMAM

dendrimers with amine-terminated surface groups might be potential carriers for NSAIDs

(non-steroidal anti-inflammatory drugs) which possess carboxyl groups. There are several

NSAIDs which have been successfully encapsulated into or complexed with PAMAM (e.g.,

aspirin, indomethacin, flurbiprofen, ketoprofen, ibuprofen, diclofenac and naproxen) [14–

16]. Apart from non-steroidal anti-inflammatory drugs, dendrimers may be conjugated with

anticancer drugs, such as cisplatin, camptothecin, paclitaxel and doxorubicin [17]. There has

been much research describing the possibility of enclosing within the dendrimer structure

not only drug molecules, but also genetic materials, targeting agents, and dyes either by

encapsulation, complexation, or conjugation.

Magnetic resonance imaging (MRI), based on the knowledge gained in the study of

nuclear magnetic resonance (NMR), is a non-invasive way of monitoring the internal

organs and tissues of humans. Nowadays, it is a widely used diagnostic tool, which allows

visualizing detailed internal structure (three-dimensional images) and limited function of

the body. MRI is a standard method of cancer diagnosis. Furthermore, it is also used in

oncology to locate, stage, plan treatment and, potentially, find recurrence.

MRI contrast agents such as Magnevist (Gd(III)-diethylenetriaminepentaacetic acid

(Gd(III)-DTPA)) or Dotaren (Gd(III)-N,N′
,N′′

,N′′′
-tetracarboxymethyl-1,4,7,10-tetraaza-

cyclododecane (Gd(III)-DOTA)), commercially available, are characterized by short

circulation times and inefficient differentiation between normal and diseased tissues.

Moreover, they do not target specific organs or regions of the body [18]. Improved contrast
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enhancement might be achieved by conjugation of gadolinium-based contrast agents with

polymers such as poly(amino)acids, polysaccharides and proteins [19–22]. Nevertheless,

better contrast properties of contrast agents attached to polymers are often associated with

longer residence time in the body, which increases the risk of gadolinium ion toxicity. As

a consequence, there have been attempts to conjugate gadolinium-based contrast agents

with dendrimers. Such conjugates enable specific targeting and imaging of internal organs

or tumors [23]. Mebrofenin, and the other three iminodiacetic acid analogues complexed

with gadolinium, are contrasting compounds, which show high affinity to liver cells and

enable high-resolution (MRI) imaging of this organ, which has become an important tool in

a routine clinical liver imaging.

Approved for clinical use, gadolinium-based MRI contrast agents such as Gd-DTPA

(gadopentetate dimeglumine, Magnevist, Schering AG) are not sufficiently specific and

selective. Thus, in liver and biliary duct diseases, hepatotropic contrast agents enabling

identification and differentiation of focal changes in liver and determination of reasons

for cholestasia are still in demand [24]. Furthermore, iminodiacetic acid derivatives might

be radiolabeled with technetium (
99m

Tc), and, as a result, form complexes such as
99m

Tc-

diosopropyl-IDA (DISIDA) and
99m

Tc-bromotriethyl-IDA (mebrofenin), which are utilized

in cholescintigraphy. Unlike some radiopharmaceuticals that have fallen into disuse with

time or whose indications are severely reduced,
99m

Tc-IDA imaging agents have shown

remarkable staying power and, in fact, their clinical indications have increased over the

years. The analogues of iminodiacetic acid (IDA) labeled with technetium-99m are used in

nuclear hepatology for non-invasive and quantitative evaluation of numerous hepatobiliary

diseases related to bile formation and excretion [25, 26].

During the past decade, dendrimers have proved to be promising candidates in the

design of new drug delivery systems. Thus, it is of vital importance to develop the theme

of utilization of iminodiacetic acid derivatives in MRI of the hepatobiliary tract. In this

study, we examined the effect of PAMAM dendrimers on solubility of iminodiacetic

acid derivatives. The interactions between dendrimers and iminodiacetic acid analogues

were further characterized by
1
H NMR and two-dimensional nuclear Overhauser effect

spectroscopy (2D-NOESY). Development of noninvasive delivery systems of MRI contrast

agents is still a burning question for effective diagnosis of hepatobiliary tract diseases

and attracts increasing attention from scientists today. To the best of our knowledge, little

information concerning interactions between dendrimers and drugs of different biological

activity which possess two carboxylic groups is available. Furthermore, there is no reference

devoted to the use of PAMAM dendrimers as drug carriers of iminodiacetic acid derivatives

at current stage, and 2D-NOESY was firstly employed to study the interaction mechanisms

between dendrimers and these drug molecules.

2 Experimental methods

2.1 Materials and synthesis of derivatives of N-(2-phenylamine- 2 oxoethyl)-iminodiacetic

acid

PAMAM dendrimers generation 1–4 were purchased from Sigma-Aldrich (St. Louis,

MO, USA). Substrates for synthesis of iminodiacetic acid derivatives such as nitrilotri-

acetic acid, 4-methylaniline, 2,4-dimethylaniline, 2,4,6-trimethylaniline and 3-bromo-2,4,6-

trimethyloaniline were purchased from Sigma-Aldrich. Acetic anhydride was obtained from
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PHPU Eurochem BGD Sp z o.o. (Poland). Pyridine was bought from Sigma-Aldrich.

Methyl alcohol, ethyl alcohol, dichloromethane, sodium hydroxide, and hydrochloric acid

were purchased from POCh S.A (Poland). All the chemicals were used without further

purification. In the aqueous solubility studies, double-distilled water was used.

For synthesis of iminodiacetic acid derivatives, we applied method described by A.

Nunn [27]. This method was previously used to synthesize N-(3-bromo-2,4,6-trimethyl-

acetanilide)iminodiacetic acid (mebrofenin), but we also prepared other compounds by

means of this method (Scheme 1).

Briefly, the first step of synthesis of N-(4-methylacetanilide)iminodiacetic acid leads to

acquirement of nitrilotriacetic acid anhydride. In the second step in situ obtained anhydride

reacts with 4-methylaniline in the environment of pyridine. The mixture was heated at

100
◦
C for 2 h. After this time the mixture was cooled, the solvent was evaporated, and the

residue was alkalized. It was then extracted with dichloromethane, followed by acidification

with hydrochloric acid. The crude product was purified thanks to the crystallization from

a mixture of ethanol and water. N-(4-methylacetanilide)iminodiacetic acid was synthesized

and described for the first time by Burns et al. [28].

N-(2,4-dimethylacetanilide)iminodiacetic acid and N-(2,4,6-trimethylacetanilide)imino-

diacetic acid were synthesized by the same procedure using 2,4-dimethylaniline and 2,4,6-

trimethylaniline as substrates, respectively.

The structure of these compounds was confirmed by
1
H NMR,

13
C NMR, elemental

analysis and IR spectra. Melting points were estimated by means of an electrothermal

apparatus. A Mattson Infinity Series FT-IR spectrophotometer was used to obtain IR spectra

(recorded in KBr). The structure and basic properties of compounds are presented in Table 1.
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Scheme 1 Synthesis of derivatives of N-(2-phenylamine- 2-oxoethyl)iminodiacetic acid
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Table 1 Characteristics of the synthesized iminodiacetic acid derivatives

Compound Molecular structure Chemical Molecular

no. formula weight

(g/mol)

1

CH3

NH

O

N

O

OH

O OH 
N-(4-methylacetanilide)iminodiacetic acid

C13H16N2O5 280,28

2

CH3

NH

O

N

O

OH

O OH
CH3

 
N-(2,4-dimethylacetanilide)iminodiacetic acid

C14H18N2O5 294,30

3

CH3

NH

O

N

O

OH

O OH
CH3

CH3

 
N-(2,4,6-trimethylacetanilide)iminodiacetic acid

C15H20N2O5 308,33

4

CH3CH3

CH3

Br NH

O

N

O

OH

O OH 
N-(3-bromo-2,4,6-trimethylacetanilide)iminodiacetic acid

C15H19BrN2O5 387,23

2.2 Aqueous solubility studies

The influence of PAMAM dendrimers on aqueous solubility of the four derivatives of

iminodiacetic acid was determined with the equilibrium solubility method. Diluted solutions

of PAMAM dendrimers (generation 1–4) in concentration from 0 to 10 mg/ml were

prepared. The final volume of the test solution was 500 μl. The excess of compounds was

then added to each of the test solutions and the obtained suspensions were subjected to

ultrasonic effects. The solutions were mechanically shaken for 24 h at 25
◦
C, and then the

solutions were centrifuged at 15,000 rpm for 20 min. The saturated solutions were diluted

to a proper concentration with double-distilled water, followed by spectrophotometric

measurements of absorbance using a Perkin-Elmer UV-Vis spectrophotometer.
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Calibration curves were obtained by dissolving a certain amount of every drug in a 0.1:1

(v/v) methanol/water mixture. It was checked that the presence of methanol did not modify

the absorbance and the specific wavelength of each drug. The solubility of iminodiacetic

acid derivatives in the presence of dendrimers can be calculated according to the measured

absorbance and the calibration curve.

Double-distilled water was also used as a blank. Three repeats of each sample were

conducted. Furthermore, UV-Vis spectra (range of 190–400 nm) of each sample were

prepared.

2.3 Preparation of PAMAM dendrimer—iminodiacetic acid derivative complexes and

NMR studies

Complexes of PAMAM dendrimers generation 1–4 with four iminodiacetic acid derivatives

were obtained by adding a certain excess of drug to the aqueous solution of PAMAM

dendrimer (generation 1–4). Reactions were conducted with 10, 20, 40, and 80 molar excess

of compounds 1–4 for complexes with PAMAM dendrimers generation 1–4, respectively.

In Table 2, molar ratios for all complexes are presented.

The reaction mixture was stirred for 24 h at room temperature, and then dried under

vacuum in order to remove water. The residue was dissolved in deionized water (1 ml)

and the solution was centrifuged by means of centrifugal filter devices with 3000 NMWL

Ultracel YM membranes (Centricon, Millipore) until the equilibrium point was reached.

Then, the residue was dried under vacuum. In this way, we obtained 16 complexes, four for

every PAMAM dendrimer generation.

NMR spectra were recorded on Bruker Avance III 600 MHz for
1
H; the spectrometer was

equipped with a standard NMR TBI probe for
1
H and 2D experiments. The samples were

prepared in DMSO-d
6
. All spectra were recorded at 25

◦
C with temperature stabilization.

Spectra were calibrated on “rest” DMSO signal at 2.50 ppm.

1
H NMR spectra of dendrimers, drugs, and mixtures of drugs and dendrimers were

obtained. Furthermore,
13

C,
1
H-

1
H COSY,

1
H-

13
C HSQC, and

1
H-

13
C HMBC spectra were

prepared so as to assign properly all signals of drugs and dendrimers.

1
H-

1
H NOESY spectra were recorded without gradients using standard mixing time

300 ms and 9.95 μs
1
H 90

◦
pulse width. The experiments were done with a 2.03-s relaxation

delay and 133-ms acquisition time. Sixteen transients were averaged for each 256 × 2048

complex t1 increments. The data were processed with Lorentz-to-Gauss window function

and zero filling in both dimensions to display data on a 8192 × 8192 2D-matrix. All data

were processed with Bruker Topspin NMR software. All experiments were carried out at

300.0 K with high level of stabilization.

Table 2 Molar ratios for complexes between compounds 1–4 and PAMAM dendrimers. Generation 1 and 2

Complex Substrates (number of moles)

Compounds 1–4 Dendrimer

Compound 1–4 with PAMAM dendrimer generation 1.0 10 1

Compound 1–4 with PAMAM dendrimer generation 2.0 20 1

Compound 1–4 with PAMAM dendrimer generation 3.0 40 1

Compound 1–4 with PAMAM dendrimer generation 4.0 80 1
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3 Results and discussion

3.1 Solubility studies

Solubility enhancement of newly developed drugs has always been a challenge to scientists

because the hydrophobicity of these compounds contributes to difficulties during product

development and unsatisfactory bioavailability.

Utilization of dendrimers as solubility enhancers has been studied extensively during the

last decade. There have been numerous studies that evaluated the effect of various types of

dendrimers on solubility of drugs such as nifedipine [29], salicylic acid [30], indomethacin

[31, 32], paclitaxel [33], methotrexate [34], flurbiprofen [35], diclofenac, mefenamic acid

[36], piroxicam [37], naproxen, ibuprofen, ketoprofen, diflunisal [38, 39], phenylbutazone

[40], and nicotinic acid [41].

The use of dendrimers as solubilizing agents has attracted the attention of many scientists

due to their characteristic properties, which are different from those of conventional

polymers. It has been proven that various types of dendrimers in both original and modified

forms contribute to the enhancement of solubility of hydrophobes and that generation

number, pH of the solvent, temperature, and dendritic architecture are the factors that

influence the efficiency of dendrimers as solubilizing agents. There are a number of studies

investigating the effect of generation, pH, and concentration on solubility enhancement;

however, the effect of core and temperature remains uninvestigated. It can be concluded

that ionic interaction, hydrogen bonding, and hydrophobic interactions contribute to the

solubility enhancement.

The effect of G1 PAMAM dendrimer concentration on solubility of four analogues

of iminodiacetic acid was measured at 25
◦
C by means of UV-Vis spectroscopy, and the

results are presented in Fig. 1. It might be observed that the extremely low water solubility

of compound 1 has been significantly improved by G1 PAMAM dendrimers (a 75-fold

increase in solubility in 10 mg/ml PAMAM dendrimer solutions compared with that

in double-distilled water). Dendrimers contributed to 29-, 10-, and 16-fold increases in

solubility of compounds 2, 3, and 4, respectively. However, on the basis of the result of

Drug solubility in the presence of 10 mg/ml PAMAM dendrimers
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Fig. 1 Drug solubility in the presence of 10 mg/ml PAMAM dendrimers, generation 1.0
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this study, we cannot confirm that PAMAM 1.0 dendrimers contribute to greater solubility

enhancement of those compounds which are less soluble in water than those better soluble.

Most researchers have observed that the solubility of a tested drug increased with

higher generation number. For example, Cheng and Xu reported that solubility of four

NSAIDs (naproxen, ketoprofen, ibuprofen, and diflunisal) was higher in the presence of

G4 PAMAM dendrimers than in the presence of dendrimer generation 2 and 3 [38]. On

the basis of published studies, there is a tendency to select dendrimers up to generation 4

because they are less immunogenic than dendrimers of higher generations. Experiments

evaluating the influence of dendrimers of five and higher generations on the solubility

of the drug molecules are described relatively rarely. One example might be an article

where researchers estimated that G6 PAMAM dendrimer generation contributed to higher

solubility of phenylbutazone [40].

In our study, the effect of G2–G4 PAMAM dendrimers on the process of solubilization

was also investigated. Obtained results are shown in Figs. 2, 3, 4, and 5, from which it is

clear that the solubility of iminodiacetic acid derivatives was affected by concentration and

generation of PAMAM dendrimers. The solubility of all compounds was the highest in the

presence of G4 PAMAM dendrimers, presumably due to the fact that the number of primary

and tertiary amines in the dendrimer increases with generation size. Thus, a dendrimer of a

higher generation has a tendency to interact with more particles of a hydrophobic compound

more than do lower generation dendrimers. Tables S1–S4 (see supporting information)

present the mean concentrations of drugs 1–4 in the presence of PAMAM dendrimers as

well as standard deviations (SD) for all the data.

It is shown that the solubility of all compounds increased significantly with PAMAM

dendrimer concentrations. As shown in Figs. 2–5, the apparent solubility of all derivatives

of iminodiacetic acid increased in an approximately linear manner as a function of PAMAM

dendrimer solution over the whole concentration range. These results might be related

to the increase in the number of surface amines and internal cavities that might interact

with iminodiacetic acid derivatives. On the surface of PAMAM dendrimers, there are large

Solubility of compound 1 at different concentrations and generations of
PAMAM dendrimers 
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Fig. 2 Solubility of compound 1 at different concentrations and generations of PAMAM dendrimers
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Solubility of compound 2 at different concentrations and 
generations of PAMAM dendrimers 
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Fig. 3 Solubility of compound 2 at different concentrations and generations of PAMAM dendrimers

numbers of primary amines that interact electrostatically with the carboxyl groups of the

tested compounds.

The significant solubility enhancement of various drug molecules in the presence of

PAMAM dendrimers might be assigned to: (i) the nonpolar cavities in the interior of

dendrimers that can entrap hydrophobic drugs by hydrophobic interactions [29, 42, 43];

(ii) cationic functional groups on the surface of dendrimers that can interact with negatively

charged drugs by electrostatic interactions [35, 44, 45]; (iii) nitrogen and oxygen atoms in

interior cavities of dendrimers that can interact with guests by hydrogen bond interactions

[29, 46].

Solubility of compound 3 at different concentrations and
generations of PAMAM dendrimers 
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Solubility of compound 4 at different concentrations and 
generations of PAMAM dendrimers
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Fig. 5 Solubility of compound 4 at different concentrations and generations of PAMAM dendrimers

Furthermore, Cheng and coworkers made an attempt to evaluate the role of external

electrostatic interaction and internal encapsulation between dendrimers and negatively

charged drugs in solubility enhancement of the drugs. They reported that solubility of

phenobarbital and sulfamethoxazole increased with the help of PAMAM dendrimers;

however, solubility of trimethoprim and primidone (drugs that do not have negatively

charged groups) did not increase. Thus, it might be concluded that electrostatic interaction

between the negatively charged drugs and dendrimers contributes more to the solubility

enhancement than internal encapsulation [47].

In another study, Cheng et al. investigated generation-dependent encapsulation or

electrostatic attachment of phenobarbital by PAMAM dendrimers. Dendrimers of lower

generation were found to increase the solubility of the drug to a higher degree than higher

ones at a fixed mass concentration (2 mg/ml), which is characterized by a similar number

of primary and ternary amine groups. It was suggested that solubility enhancement of the

drug is caused by electrostatic interactions (the negatively charged form of phenobarbital

can be attached to the positively charged PAMAM dendrimers) and internal encapsulation.

It was also concluded that dendrimers of lower generation were much more susceptible to

electrostatic interaction with a negatively charged drug than the higher generation at a fixed

mass concentration. This fact might be explained by much more congested primary amine

groups on the surface of dendrimers of a higher generation [48].

Since the tested compounds are weakly acidic, we performed all studies at constant pH

conditions (pH = 7). In neutral conditions, these compounds are in ionized form and freely

interact electrostatically with the surface amine groups of dendrimers. At this pH, most of

the surface amine groups of PAMAM dendrimers are protonated because the reported pKa

values of the primary amines are 7.0–9.0 [49].

It was reported that solubility of weakly acidic nicotinic acid was the highest at pH 7,

and the lowest at pH 3. This is probably due to the fact that at low pH, nicotinic acid
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exists in unionized form and that the tertiary amine groups are protonated and, thus, the

polarity of the environment inside the dendrimer is increased [41]. Furthermore, in the

case of furosemide, it was estimated that better results were obtained at pH 4.0–6.0 than

at pH = 2. Solubility enhancement was assigned to the electrostatic interaction between the

furosemide carboxylic group and the positively charged tertiary amines of the dendrimers

[50]. However, Beezer et al. observed that drug–dendrimer complexes were unstable at a pH

less than pH 7. It was shown that tertiary amine groups within the dendrimer are important

for the binding of guest molecules. Because the pKa of tertiary amines in aqueous solution

of PAMAM dendrimers is 9.5, tertiary nitrogens are capable of deprotonating the acidic

guest molecules and, as a result, create a drug–dendrimer complex. When these groups

are protonated (pH = 6 and lower), dendrimers do not possess the ability to bind their

guest [30].

3.2 NMR studies

3.2.1 1H NMR
1
H NMR spectroscopy is a powerful, widely used tool that gives information on the

presence and types of intermolecular and intramolecular interactions in a host-guest system

such as interaction mechanisms, binding sites, and binding affinities [12, 51].

This technique is based on the fact that each nucleus has a unique chemical shift in

the NMR spectrum because of its distinct electronic magnetic field. The usefulness of
1
H

NMR stems from the fact that the change in the electronic environment around the target

nucleus induces a shield/deshield effect for the nucleus. The downfield or upfield shift of a

proton is consistent with the decrease or increase in the electronic cloud intensity around the

proton. The decrease of electron density around a nucleus leads to the increase of chemical

shift (high-frequency shift), and, vice versa, the increase of electron density around the

nucleus causes the decrease of chemical shift (low-frequency shift). Such changes indicate

the presence of intermolecular interactions around related protons such as formation of

novel inclusion or ion pairs.
1
H NMR has been extensively employed to investigate the

molecular interactions and host-guest chemistry between dendrimers and various drug

molecules [52, 53].

The chemical shift assignment of each proton of compounds 1–4, dendrimer generations

1–4, and dendrimer–drug complexes is critical because the shift of each signal is helpful to

define the zone of interaction between the dendrimers and iminodiacetic acid derivatives. A

specific or nonspecific recognition between a host and a guest can be detected by analyzing

the chemical shift variation of a signal from the guest before and after mixing them together.

In order to detect the type of interaction between drugs and dendrimers,
1
H NMR

spectroscopy was applied. The experiments were performed in anhydrous DMSO and were

carried out on free dendrimers, compounds 1–4, and their complexes. The encapsulation of

guest molecules (compounds 1–4) into the dendrimer structure causes the displacement of

the chemical shift of guest protons. This might be evidence of inclusion [45].

The
1
H NMR spectrum of compound 2 in DMSO shows several kinds of protons: a

broad signal of carboxyl groups (δH 12.55 ppm, 2H, 2xCOOH), a singlet of amide group

(δH 9.68 ppm, 1H, NH), two doublets and one singlet coming from protons in aromatic

ring (δH 7.71 ppm, Ar-1H, δH 7.02 ppm, Ar-1H, δH 6.97 ppm, Ar-1H), two singlets of

methylene protons (δH 3.55 ppm, 4H, 2xCH2 and δH 3.42 ppm, 2H, CH2) and two singlets

of methyl group in an aromatic ring (δH 2.23 ppm, and δH 2.20 ppm, 6H, 2xCH3).
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Having assigned the chemical shifts of compound 2 in DMSO, we analyzed the

complexation of the dendrimer and compound 2 by
1
H NMR. Chemical shifts of compound

2 in complex with G2 PAMAM dendrimer do not differ significantly from the free drug.

However, in complex, there is no signal of the carboxyl groups, which gives evidence

of electrostatic interaction between carboxyl groups of the drug and amine groups of

dendrimer. Furthermore, a slight upfield shift (from 3.55 to 3.47 ppm) of the methylene

protons (4H, 2xCH2) adjacent to the carboxyl groups of compound 2 is observed. This

slight upfield shift is caused by increased electron density around atoms adjacent to carboxyl

groups as a consequence of electrostatic interactions with amine groups.

The same alterations of chemical shifts are observed for complexes between compound

2 and PAMAM dendrimers G1, G3, and G4.

In the
1
H NMR spectrum of a G2 PAMAM dendrimer, there are six kinds of

1
H peaks

in DMSO, corresponding to the four CH2 protons in the interior of the dendrimer (protons

a, b, c, and d; δH 2.21 ppm for a, δH 2.45 ppm for b, δH 2.65 ppm for c, and δH 3.07 ppm

for d) and two groups of CH2 protons in the outermost layer (δH 2.56 ppm for b
′

and δH

3.07 ppm for d
′
; Scheme 2). Spectra of G1, G3, G4 PAMAM dendrimers present similar

chemical shifts for all CH2 groups.

In complexes between compound 2 and the G2 PAMAM dendrimer, significant changes

in chemical shifts of CH2 protons (b
′

and d
′) of the G2 dendrimer are observed. These

downfield changes of chemical shift of methylene protons are localized at the outermost

layer of the G2 dendrimer (from 2.56 to 2.86 ppm and from 3.07 to 3.29 ppm, respectively)
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and provide evidence of ionic interactions between terminal protonated amine groups of the

dendrimer and carboxylic acid groups of compound 1. This may be explained by the fact

that electron density around the cation (protonated amine group) decreases. The interior

methylene protons a, b, c, and d also exhibit downfield shifts. However, this type of change

should not be assigned to the electrostatic interaction because these protons are too far away

from the surface of the dendrimer. It seems to be due to the quaternization of amine groups

in the interior of the G2 dendrimer. This observation suggests that the internal electrostatic

interactions may also contribute to the encapsulation of guests with low pKa values into the

dendrimer structure. Figure 6 presents
1
H NMR spectra of compound 2, PAMAM dendrimer

G2 and the complex of compound 2 with PAMAM G2 dendrimer.

Similar changes in chemical shifts in methylene protons of dendrimers are also observed

in the spectra of complexes between compound 2 and G1, G3, and G4 PAMAM dendrimers.

In the case of drugs 2, 3, and 4 and their complexes with PAMAM dendrimers of 1–

4 generation similar changes in chemical shifts of methylene protons of the drugs and

methylene protons of dendrimers are observed as well, suggesting that both electrostatic

interaction between terminal amine groups of PAMAM dendrimers and carboxylic groups

of iminodiacetic acid analogues and internal encapsulation of these drugs into the dendrimer

structure are the mechanisms of complex formation.

In case of another anionic drug, mycophenolic acid, significant changes in chemical

shifts of methylene protons (b
′

and d
′) of the G5 PAMAM dendrimer were also observed.

The downfield chemical shift of these methylene protons localized at the outermost layer

of the G5 PAMAM dendrimer is evidence of ionic interactions between primary protonated

amine groups of the dendrimer and the deprotonated carboxylic acid group of mycophenolic

acid. In contrast to our studies, the interior methylene protons (a–d) of the G5 dendrimer

in complex with mycophenolic acid exhibit an upfield shift. It was demonstrated that the

distinct shift behavior of protons b
′
and d

′
and protons a–d in complexes should be assigned

to different interaction mechanisms between PAMAM dendrimer and mycophenolic acid.

Apart from electrostatic interactions, PAMAM dendrimers may react with mycophenolic

Fig. 6 1H NMR spectra of compound 2, G2 PAMAM dendrimer and the complex of compound 2 with G2

PAMAM dendrimer
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acid through hydrophobic interactions and, thus, encapsulate the model drug into the

nonpolar interior pockets of dendrimer. Furthermore, there are large numbers of amide

groups in PAMAM dendrimers that can act as hydrogen-bond donors in these interior

pockets. Therefore, the upfield shift of interior methylene groups (a–d) of the dendrimer

might be due to encapsulation of mycophenolic acid in the interior of the dendrimer by

hydrophobic interactions or hydrogen–bond interactions [12].

Interactions between G5 PAMAM dendrimers and phenylbutazone were also investi-

gated. In this study, significant downfield shifts of methylene protons b
′

and protons d
′

in

the outermost layer of the G5 dendrimer were observed when phenylbutazone was titrated

into the G5 dendrimer solution.

In comparison to mycophenolic acid, many more phenylbutazone molecules were incor-

porated in the interior dendrimers’ pockets, while more mycophenolic acid molecules were

bound on the surface of the dendrimer by electrostatic interactions. This observation might

be explained by the fact that phenylbutazone with two aromatic rings and an aliphatic chain

is more hydrophobic than mycophenolic acid and that interaction between the carboxylic

group of mycophenolic acid with the amine groups of the dendrimer is stronger than the

interaction of the carbonyl group of phenylbutazone with the amine groups of the dendrimer

[52].

In another study, Cheng et al. [47] evaluated the mechanism of interaction between

PAMAM dendrimers and negatively charged drugs: phenobarbital, primidone, sulfamethox-

azole, and trimetoprim. In case of phenobarbital, significant shifts of the drug in the pres-

ence of G3 or G6 PAMAM were not observed. Thus, it was concluded that the hydrophobic

encapsulation is not a predominant interaction type between dendrimers and phenobarbital

and that the electrostatic interactions between cationic PAMAM dendrimers and negatively

charged drugs are the major force driving the formation of dendrimer–drug complexes

and contribute more to the solubility enhancement of hydrophobic drugs than interior

encapsulations by hydrogen–bond interactions and hydrophobic interactions. However, it

was reported that primidone, despite the fact that it shows similar molecular size to phe-

nobarbital, and similar hydrophobicity, does not interact with PAMAM dendrimers. This is

due to the fact that phenobarbital with a low pKa value of 7.4 has a weak binding ability with

the G5 dendrimer, whereas primidone with a pKa value around 13 is not soluble in cationic

dendrimer solutions, suggesting no ionic binding between the cationic dendrimer and

primidone molecules. This is because phenobarbital generates a negatively charged form

in dendrimer solution with a pH value around 10, but primidone is in a noncharged form.

To the best of our knowledge, methotrexate is the only example of a drug containing two

carboxylic groups whose interactions with dendrimers have been investigated. Solubility of

this drug in the presence of PAMAM dendrimers was not, surprisingly, increased. It was

found that two carboxylic acid groups of methotrexate may form cross-linking structures

and large aggregates with the multivalent surface of the dendrimers, which form solid

precipitates in aqueous solutions during complex formation. This explains well why amine-

terminated dendrimers are not able to solubilize the drug molecules [53]. In 2012, Fang

et al. evaluated interactions between drugs bearing multiple charges, such as Congo Red

and indocyanine green, and PAMAM dendrimers. The authors reported that drug molecules

bearing two negative charges form precipitates with cationic PAMAM dendrimers, which

lead to complications during the preparation of dendrimer inclusions of these drugs. Fang

et al. confirmed by means of NMR techniques that utilization of acetylated PAMAM den-

drimers made it possible to obtain stable inclusion complexes with the examined drugs [54].
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3.2.2 2D-NOESY analysis

2D-NOESY is a technique that provides information on the distance between protons in

close spatial proximity within a given molecule, which is also used to detect host-guest

interactions in complexes. If the host and guest are bound, they should be in close proximity

to each other. NOE cross peaks should be seen in the corresponding spectral region. The

absence of a NOE cross-peak in the region can be used to exclude the interaction between

related nuclei [52, 53].

This technique uses the NOE interaction of spins for correlation of protons. The NOE

intensity of a cross-peak in the NOESY spectrum is proportional to the number of related

protons and the distance between them. In the spectrum, a cross-peak is only observed if

the distance between the protons is less than 5 Å [55].

If the dendrimer and guest are bound, they should be close to each other, which can be

shown with NOE cross-peaks in the NOESY spectrum. On the other hand, the absence of

NOE cross-peak means that there is no interaction between host and guest. The presence

and absence of crosspeaks and their intensities in the spectrum enable the determination of

the structure of a dendrimer–drug complex.

In our study, the 2D-NOESY technique was utilized to give evidence of the localization

of guest molecules within the dendrimer. We obtained
1
H-

1
H NOESY spectra for every

compound 1–4 and their complexes with PAMAM dendrimers.

The NOESY spectrum of compound 2 in DMSO solution at a standard mixing time

of 300 ms is shown in Fig. 7a. Strong NOE cross-peaks are observed between the carboxyl

protons and methylene groups. Weaker interactions are also observed, such as those between

the amide group and methylene group, the methyl in the aromatic ring, protons of the

aromatic ring, protons of aromatic ring, and carboxyl groups. NOESY spectra of free

compounds were prepared in order to properly assign NOE cross-peaks between the drug

and dendrimer.

Generally, the mechanism of drug–dendrimer complex formation is based on three

types of interactions: (1) external electrostatic interactions between amine groups of the

dendrimer and the negatively charged groups of the drug, (2) hydrophobic interactions

between the relatively nonpolar pockets of the dendrimer and the drug in the interior of

the dendrimer, and (3) hydrogen-bond interactions between ternary amine or amide groups

of the dendrimer and functional groups of the drug in the interior of the dendrimer.

In the
1
H-

1
H NOESY spectrum of the G2 dendrimer-compound 2 complex in Fig. 6b,

there are six
1
H peaks that correspond to the four CH2 protons (a–d) in the interior of

the dendrimer and two CH2 protons (b
′

and d
′) in the outermost layer of dendrimer. In

the spectrum, strong interactions between the terminal amine groups of the dendrimer and

methylene protons of compound 2 are observed.

NOE cross-peaks between protons b
′

and d
′

of the dendrimers and protons of the guest

cannot be observed in Fig. 7b, indicating that compound 2 is not localized in the outermost

cavities of the dendrimers. Furthermore, no intermolecular NOE interaction between other

protons of compound 2 and the backbone protons of the dendrimer can be found in the

spectrum presented in Fig. 7b. This spectrum shows that compound 2 is not localized in the

interior cavities, but on the outermost layer of the dendrimer. Similar observations might be

made for other complexes of compound 2 and G1, G3, and G4 PAMAM dendrimers.

In case of the previously discussed phenobarbital, 2D-NOESY studies revealed that

there are strong interactions between the protons of aromatic ring present in the
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Fig. 7 a The 1H-1H NOESY spectrum of compound 2. b The 1H-1H NOESY spectrum of complex between

compound 2 and G2 PAMAM dendrimer

phenobarbital molecule and those of PAMAM dendrimer of generations 5 and 6. However,

no cross-peaks between aromatic protons of phenobarbital and G3 and G4 PAMAM

dendrimers were observed, suggesting that few drug molecules were entrapped in the

cavities of the G3 or G4 dendrimer. On the basis of 2D-NOESY experiments and solubility

studies, Cheng et al. [48] concluded that higher-generation dendrimers are more capable of

encapsulating drug molecules into the interior cavities than dendrimers of lower generation.

Furthermore, it was stated that dendrimers of lower generation are much better for the

electrostatic attachment of phenobarbital molecules than dendrimers of higher generation

at a fixed mass concentration [48]. In another study performed by Cheng et al. [47], it

occurred that also in the case of sulfamethoxazole, the evidence of encapsulation of this

drug was confirmed in a 2D-NOESY experiment for the G6 PAMAM dendrimer, but not

for the G3 dendrimer. Thus, on the basis of NMR spectroscopy studies, it may be concluded
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that the electrostatic interaction contributes more to the solubility enhancement of drugs

than encapsulation, especially for low-generation dendrimers [47].

The NOESY spectrum of the G5 PAMAM dendrimer–mycophenolic acid complex has

demonstrated the encapsulation of drug molecules in the interior cavities of the dendrimer

and the absence of mycophenolic acid molecules localized in the outermost cavities of

the dendrimer. The methyl protons of mycophenolic acid showed close proximity with

the interior methylene protons a–d of the G5 dendrimer. Furthermore, 2D-NOESY studies

revealed that the interactions of the drug with G5 PAMAM dendrimers decrease the spatial

distance between the protons of drug molecules. Together with
1
H NMR spectroscopy, it

was confirmed that the mycophenolic acid molecules are bound both on the surface of

dendrimers by ionic interactions and in the interior pockets of dendrimers by hydrogen–

bond interactions and hydrophobic interactions. The drug-loading efficiency of dendrimers

depends on dendrimer concentration, generation, pH conditions, and surface functional

groups [12].

Also, in the case of phenylbutazone, the NOESY spectra gave clear evidence that the

encapsulation of the drug by the PAMAM dendrimer occurred. NOESY spectra showed the

presence of intense cross-peaks between the methyl and phenyl protons of phenylbutazone

and the cavity protons of the dendrimers for the G5-phenylbutazone complex [52].

The host-guest interaction is dependent on the deprotonation of the acidic groups

in the guest molecule as well as the guest size, hydrophobicity, and the generation of

dendrimers. Dendrimers of higher generation are found to be more capable of encapsulating

guest molecules in their interior pockets than the lower-generation ones, whereas lower-

generation dendrimers are found to be much easier for the electrostatic attachment of guest

molecules on the surface than the higher-generation ones. According to the NOESY spectra

of all synthesized complexes, where interactions between the terminal amine groups of

the dendrimer and methylene protons of compounds were observed, we assume that the

examined analogues of iminodiacetic acid were localized on the outermost layer of the

dendrimer. On the other hand, no intermolecular NOE interactions between other protons

of the compounds and methylene protons of the dendrimer suggest that encapsulation

into the interior cavities of PAMAM dendrimers is not a predominant type of interaction

between these polymers and iminodiacetic acid derivatives. This assumption might also be

explained by the fact that PAMAM dendrimers of lower generations might not be capable of

encapsulation of iminodiacetic acid analogues into their interior cavities in large quantities.

This statement is similar to the results of the study performed by Cheng et al. [47].

4 Conclusions

Herein we described the interaction between PAMAM dendrimers of generation 1–4 and

four analogues of iminodiacetic acid. Amine-terminated dendrimers significantly increase

the solubility of all synthesized compounds. This enhancement of solubility is linearly

connected with concentration of the dendrimer. Furthermore, we reported that the solubility

of iminodiacetic acid derivatives in dendrimer solutions likely depends on the dendrimer

generation. The order in which the dendrimers increased the solubility of all compounds at

a constant pH condition (pH = 7) is G4 > G3 > G2> G1.

To determine the mechanism of interaction between the drugs and PAMAM dendrimers,

we applied NMR spectroscopy.
1
H NMR experiments give evidence that complex for-

mation between the iminodiacetic acid derivatives and PAMAM dendrimers is based on



654 M. Markowicz et al.

electrostatic interaction between the surface amine groups of PAMAM dendrimer and the

carboxyl groups of iminodiacetic acid derivatives. Furthermore, on the basis of alteration

of dendrimer methylene protons shifts, we assume that hydrophobic interaction might

be the second mechanism of complex formation. 2D-NOESY measurements can provide

information on the distance between protons in close spatial proximity within a given

molecule and thus can also be utilized to detect the intermolecular interactions between two

different molecules. 2D-NOESY studies revealed strong interactions between the terminal

amine groups of the dendrimer and methylene protons of iminodiacetic acid derivatives,

however, cross-peaks between protons of the iminodiacetic acid derivatives and methylene

protons of PAMAM dendrimers were not observed.

The results of our study provide new insight into the host-guest chemistry of complexes

between PAMAM dendrimers and drugs containing two carboxylic groups, which might be

useful in the design and optimization of dendrimer-based drug delivery systems.
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