
RESEARCH

Journal of Bioenergetics and Biomembranes
https://doi.org/10.1007/s10863-024-10010-5

Blanca Delgado-Coello and Ismael Luna-Reyes contributed equally 
to this work.

	
 Blanca Delgado-Coello
bdelgado@ifc.unam.mx

	
 Jaime Mas-Oliva
jmas@ifc.unam.mx

1	 Departamento de Bioquímica y Biología Estructural, Instituto 
de Fisiología Celular, Universidad Nacional Autónoma de 
México, Apdo. Postal 70-243, Ciudad de México  
C.P. 04510, México

2	 Departamento de Fisiología, Facultad de Medicina, 
Universidad Nacional Autónoma de México, Ciudad de 
México, México

3	 Departamento de Química de Biomacromoléculas, Instituto 
de Química, Universidad Nacional Autónoma de México, 
Ciudad de México, México

4	 Present address: University of Cambridge Metabolic 
Research Laboratories and NIHR Cambridge Biomedical 
Research Centre, Wellcome-MRC Institute of Metabolic 
Science, Addenbrooke’s Hospital, Cambridge, UK

Abstract
The plasma membrane Ca2+-ATPase (PMCA) is crucial for the fine tuning of intracellular calcium levels in eukaryotic 
cells. In this study, we show the presence of CARC sequences in all human and rat PMCA isoforms and we performed 
further analysis by molecular dynamics simulations. This analysis focuses on PMCA1, containing three CARC motifs, 
and PMCA4, with four CARC domains. In PMCA1, two CARC motifs reside within transmembrane domains, while the 
third is situated at the intracellular interface. The simulations depict more stable RMSD values and lower RMSF fluc-
tuations in the presence of cholesterol, emphasizing its potential stabilizing effect. In PMCA4, a distinct dynamic was 
found. Notably, the total energy differences between simulations with cholesterol and phospholipids are pronounced in 
PMCA4 compared to PMCA1. RMSD values for PMCA4 indicate a more energetically favorable conformation in the 
presence of cholesterol, suggesting a robust interaction between CARCs and this lipid in the membranes. Furthermore, 
RMSF analysis for CARCs in both PMCA isoforms exhibit lower values in the presence of cholesterol compared to POPC 
alone. The analysis of H-bond occupancy and total energy values strongly suggests the potential interaction of CARCs 
with cholesterol. Given the crucial role of PMCAs in physiological calcium regulation and their involvement in diverse 
pathological processes, this study underscores the significance of CARC motifs and their interaction with cholesterol in 
elucidating PMCA function. These insights into the energetic preferences associated with CARC-cholesterol interactions 
offer valuable implications for understanding PMCA function in maintaining calcium homeostasis and addressing potential 
associated pathologies.

Keywords  CRAC/CARC motifs · Cholesterol · Plasma membrane Ca2+-ATPase · PMCA regulation · Molecular 
dynamics simulations · Lipid rafts
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Introduction

Eukaryotic cells possess specialized proteins to maintain 
intracellular calcium concentration at nanomolar levels, 
with the plasma membrane Ca2+-ATPase (PMCA) play-
ing a crucial role in calcium extrusion and fine-tuning. The 
topological model of PMCA originally based on that pro-
posed for the sarco/endoplasmic calcium ATPase (SERCA), 
and confirmed later using cryo-EM of PMCA1 (Toyoshima 
et al. 2000; Gong et al. 2018), depicts a protein contain-
ing ten transmembrane domains (TM) connected by short 
extracellular loops. On the intracellular side, two loops har-
bor important sites; the first loop contains a site recognizing 
phospholipids and one of two sites recognizing the autoin-
hibitory calmodulin-binding domain (CBD), which, in rest-
ing conditions, maintains the ATPase in an autoinhibited 
state. The second loop has another site recognizing CBD 
and the catalytic site where the enzyme is phosphorylated 
at high intracellular Ca2+ concentrations. The C-terminus 
harbors the regulatory region where the calmodulin-binding 
site is located.

The four basic PMCA isoforms (PMCA1-PMCA4) are 
encoded by four different genes (ATP2B1-ATPB2B4) that by 
alternative splicing at their sites A and C produces over 20 
splice variants (Shull and Greeb 1988; Strehler et al. 1989). 
As the site C encodes the calmodulin-binding site, variants 
edited at this site show different affinities for calmodulin 
and calcium being distributed differentially according to the 
tissue type (Caride et al. 1999). PMCA1 and PMCA4 are 
ubiquitously expressed, whereas PMCA 2 and PMCA3 are 
more abundant in the excitable tissues (Stauffer et al. 1993, 
1995). The PMCA isoforms expressed in non-excitable and 
excitable tissues display low (slow isoforms) and high cal-
cium affinities (fast isoforms), respectively (Caride et al. 
2001; Zylinska and Soszynski 2000; Strehler et al. 2007).

The complexity of PMCAs regulation is further increased 
by various mechanisms influencing their activity. Most 
PMCAs are regulated by calmodulin, except in the liver, 
where hormones inhibit it by mechanisms mediated by het-
erotrimeric G proteins (Kessler et al. 1990; Lotersztajn et al. 
1992; Delgado-Coello et al. 2006). Alternatively, calcium 
ATPases can be modulated by acidic phospholipids and 
cholesterol (Ansah et al. 1984; Brodin et al. 1992; Lopreiato 
et al. 2014).

As a whole, cholesterol influences in an indirect fash-
ion, the fluidity, thickness, and permeability of the plasma 
membrane or it can directly regulate the activity and loca-
tion of membrane proteins (Yeagle 1991; Jafurulla and 
Chattopadhyay 2017; Conrard and Tyteca 2019; Rivel et al. 
2019; Garcia et al. 2019; Zakany et al. 2020). Our research 
group has previously studied the thermal stabilizing effect 
of cholesterol on the PMCA located in erythrocytes and 

cardiac muscle (Santiago-García et al. 2000; Mas-Oliva 
and Delgado-Coello 2007; Mas-Oliva and Santiago-García 
1990; Ortega et al. 1996). These phenomena might be fur-
ther associated with cholesterol-rich domains, such as lipid 
rafts, where PMCA has been identified in several tissues 
(Sepúlveda et al. 2006; Jiang et al. 2007, 2012; Fujimoto 
1993; Xiong et al. 2009; Delgado-Coello et al. 2017). How-
ever, the mechanism governing the interaction between cho-
lesterol and the different PMCA isoforms remains unclear.

In this study, we aimed to identify cholesterol recogni-
tion/interaction amino acid consensus (CRAC) sequences or 
the inverse sequence (CARC) in human and rat PMCAs, and 
to determine whether there is a direct interaction between 
cholesterol and these motifs. CRAC/CARC sequences are 
two of at least three possible domains present in membrane 
proteins capable of interacting with cholesterol (Fantini et 
al. 2016). So far, only one report has referred to the pos-
sible presence of these motifs in the PMCA, however, it was 
attributed to palmitoylation signals which determine the 
association between cholesterol and the PMCA4 isoform, 
due it was the only isoform identified in lipid raft domains 
(Epand 2006; Sepúlveda et al. 2006).

In silico techniques based on computational methods 
have emerged as valuable tools for investigating into mem-
brane structure and its potential protein-protein interactions. 
This approach offers insights regarding specific residue 
contributions to cellular function in healthy states, as well 
as changes resulting from mutants and polymorphisms, and 
the identification of sites involved with therapeutic capabil-
ity (Rajasekaran et al. 2008; Bhardwaj and Purohit 2020a, 
b). In the context of our research, the in silico approach is 
tailored towards probing protein-lipid interactions therefore, 
facilitating not only the exploration of various cholesterol-
recognition motifs but also, the unveiling of the presence, 
exclusive to vertebrates, of CARC motifs within the tyro-
sine kinase receptor family (Cannarozzo et al. 2021).

CRAC motifs were first described in a peripheral-type 
benzodiazepine receptor containing the typical sequence: 
L/V-X(1−5)-Y-X(1−5)-R/K. Later they were also detected in 
proteins, such as caveolin and apolipoprotein A-I expressed 
in mice (Li et al. 1998). CRAC sites show a wide distribu-
tion in G-coupled receptors (Hanson et al. 2008; Jafurulla 
et al. 2011), in ABCG1/ABCG2 transporters (Sharpe et 
al. 2015; Gál et al. 2015), and in ion channels involved in 
store-operated Ca2+ entry mechanisms (Picazo-Juárez et al. 
2011; Pacheco et al. 2016). They have also been identified 
in viral coat proteins, where a role in the membrane fusion 
with target host cells has been suggested (Luz-Madrigal et 
al. 2013). CRAC sequences are located in or close to trans-
membrane domains, or in the interface of the plasma mem-
brane. Li et al. showed that L/V residues interact with the 
hydrophobic side chain of cholesterol, Y interacts with the 
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3’-OH group of cholesterol, while K/R amino acids con-
tribute to form a binding site (Li et al. 1998). Moreover, 
there is evidence suggesting that CRAC motifs inside TM 
comply with features to properly fit the cholesterol mole-
cule (Barrantes 2013). The interaction between cholesterol 
and proteins containing CRAC motifs has been shown using 
a minimal synthetic CRAC peptide -LWYIK- containing a 
cysteine in N- or C-ends to achieve the coupling to different 
lipids through disulfide bonds, showed that cholesterol is 
the preferred molecule in the neighborhood of liquid-disor-
dered bilayers (Mukai et al. 2016).

Further analysis of the nicotinic acetylcholine recep-
tor, led to the discovery of the inverted sequence or CARC 
motif: K/R-X(1−5)-Y/F-(1−5)-X-L/V, where the central amino 
acid can be Y or F (Baier et al. 2011; Di Scala et al. 2017). 
They are located in TM domains that interact with lipids. 
Upon comparison with other proteins, it appears that CARC 
sequences are indeed involved in interactions with choles-
terol and it is suggested that the CRAC/CARC and tilted 
domains present in various membrane proteins share com-
mon molecular mechanisms for binding cholesterol (Baier 
et al. 2011).

In type I membrane proteins, whose N-terminus is located 
on the extracellular face, it is possible the coexistence in the 
same TM domain, of CARC motifs in the outer leaflet and 
CRAC motifs in the inner leaflet. In type 2 proteins, where 
the C-end is on the extracellular side, CARC and CRAC 
arrange in the opposite sense. These coexistent sequences 
participate in a type of interaction named “mirror code”, 
which would involve two symmetric cholesterol molecules 
(Fantini et al. 2016).

Although CRAC/CARC sequences show an affinity 
to stay at the membrane-water interface, it seems that the 
recognition of cholesterol occurs at the surface, but partial 
penetration into the bilayer is also required. In fact, the cho-
lesterol molecule has a thermodynamic constraint that is 
related to the best orientation within a lipid bilayer, fitting 
well with its polar side oriented to the polar/apolar interface 
(Di Scala and Fantini 2017). Moreover, it has been dem-
onstrated that CRAC motifs located in domains outside the 
lipid bilayer are not able to bind cholesterol or other sterols 
(Méndez-Acevedo et al. 2017).

In this study, we demonstrate only the presence of CARC 
motifs in human and rat PMCA isoforms. Based on our 
previous findings about the thermostability provided by 
cholesterol to PMCAs expressed in cardiac muscle and 
erythrocytes (Santiago-García et al. 2000; Mas-Oliva and 
Delgado-Coello 2007), and considering that PMCA1 the 
most abundant isoform in all tissues, except human erythro-
cytes where PMCA4 shows the highest expression (Stauffer 
et al. 1995; Strehler et al. 1990; Pászty et al. 1998; Zámbó 
et al. 2017), we conducted molecular dynamics simulations 

of both housekeeping isoforms. Thus, the discussion is 
focused on the possible relevance of the interaction between 
cholesterol and CARC sequences present in PMCA1 and 
PMCA4 isoforms.

Materials and methods

Analysis of CRAC/CARC sequences present in rat and 
human PMCA isoforms

The presence of CRAC and CARC motifs was deter-
mined using the ScanProsite database (Sigrist et al. 2013), 
using the UniProt IDs for human (hPMCA) and rat PMCA 
(rPMCA) isoforms, as indicated in Table 1. The alignment 
of the CRAC/CARC domains present in the four human 
PMCA isoforms and the comparison with rat PMCAs were 
performed using the UniProt (The Uniprot Consortium 
2023) database tools (https://www.uniprot.org).

Molecular dynamics simulations of human 
housekeeping PMCA isoforms

The model of human PMCA1 that not includes its C-end, 
was retrieved from the cryo-EM structure associated with 
neuroplastin, a novel obligatory subunit described for this 
isoform (PDB ID 6A69) (Gong et al. 2018). Human PMCA4 
was predicted and modeled without restrictions and the tem-
plate-based protein structure analysis was performed with 
the I-Tasser tools (UniProt IDs: P23634) (Yang and Zhang 
2015). For further simulations, the model with the highest 
quality structure indicators was used.

Lipid bilayers were generated using the CHARM-GUI 
server (Jo et al. 2008) and a bilayer builder module. Bilay-
ers were built using phosphatidylcholine (POPC) only for 
cholesterol-free systems, and POPC and 30% cholesterol 
of membrane area were included in cholesterol-containing 
systems, allowing an even distribution of cholesterol on 
both leaflets of the plasma membrane. Atomistic models 
were employed throughout all simulations, with the final 
system size ranging between 480,000 and 500,000 atoms. 
CHARMM36 force field (Huang and Mackerel 2013) 
and TIP3P water (Jorgensen et al. 1983) were utilized for 
molecular dynamics (MD) simulations. All systems were 
simulated in cubic boxes under periodic boundary condi-
tions and incorporating long-range electrostatic interactions 
via the particle mesh Ewald summation method. Prior to 
equilibrium, a two-step minimization was conducted; the 
steepest descent method followed by the conjugate gradi-
ent method. To balance the solvent molecules and relax 
the structures, we equilibrated all systems using NVT 
ensemble followed by an NPT ensemble, at 303.15 °K and 
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(hPMCA3 1220 aa vs. 1258 aa for rPMCA3) and PMCA4 
(hPMCA4 1241 aa vs. 1203 aa for rPMCA4) isoforms dif-
fer in about 38 amino acids on their C-end. However, the 
CARC sequences for both species show the same location 
along their respective sequences (Table  2). Furthermore, 
a perfect homology is observed among the corresponding 
CARCs of h/rat PMCA1 and PMCA4 isoforms (Table 3). 
Thus, for simplicity, from now on we only present data from 
human PMCAs; the alignment of CARC domains is shown 
in Fig. 2.

Molecular dynamics simulations of human PMCA1 
and PMCA4 isoforms

Once we identified only CARC motifs in the PMCAs, we 
performed MD simulations of the complete proteins and a 
further analysis to determine possible interactions of these 
sequences with the surrounding cholesterol molecules. The 
human PMCA1 isoform has three CARC motifs; the cor-
responding MD simulation is shown in Fig. 3. In a close-up 
view, it is possible to observe two CARC motifs partially 
included in the transmembrane domains and one more in 
the interface towards the intracellular side (Fig. 3B). For a 
better understanding of CARCs motifs in the context of the 
simulations, we rendered a general view of PMCA1 embed-
ded in the membrane with specific focus on each CARC 
motif (Fig.  4). These images show the location of CARC 
motifs in or close to TM in the inner leaflet where charged 
residues interact with the hydroxyl group of cholesterol and 
other lipids.

From MD simulations data, the total energy during simu-
lations was determined, being of -4.71×106 ± 919.9 kJ/mol 
and − 4.77×106 ± 36.5  kJ/mol in POPC and cholesterol-
containing systems, respectively (Fig.  5A). In addition, 
to obtain an estimation of the thickness of the membrane 
under different simulated conditions, we analyzed partial 
densities of lipids as a function of the Z-axis during the 
simulations (Fig. 5B). The RMSD and RMSF parameters, 
both based on the position of ∝-carbon atoms in the pro-
tein during the simulations were also determined. RMSD 

1  atm. The Bussi-Donadio-Parrinello thermostat and the 
C-rescale barostat were employed for system equilibration. 
MD simulations were performed in a semi-discontinuous 
fashion using 1.5 ns restart points with 2 fs time steps, data 
production was carried out using Nose-Hoover thermostat 
and Parrinello-Rahman barostat; the resulting trajectories 
were merged for further analysis. Final trajectories had a 
total duration of 150 ns, and at least three replicas were per-
formed for each system (Abraham et al. 2023). By means 
of GROMACS built-in tools the MD simulations analysis 
included: total energy determinations, partial lipid density 
profiles, the root mean square deviation (RMSD), and the 
root mean square fluctuation (RMSF) of the systems. All 
images of the PMCA simulations shown in this work were 
rendered using the Visual Molecular Dynamics (VMD) 
software (Humphrey et al. 1996).

Results

PMCA isoforms contain CARC motifs

PMCAs comprise proteins with an approximate mass of 135 
kD containing ten TM domains, and N- and C-ends located 
on the cytoplasmic side of the cell membrane (Table 1). Our 
analysis of consensus sequences for cholesterol recognition 
motifs shows that in all human/rat PMCA isoforms, only 
CARC sequences, that we named CARC1-CARC4, are 
present. The CARC1 motif of PMCA1 is close to the TM1; 
while the other CARCs present in both PMCA isoforms 
are partially or completely embedded in the inner mem-
brane leaflet, to note is that CARC3 and CARC4 motifs of 
PMCA4, are completely embedded in their respective TM 
domains (Fig. 1).

According to the preliminary alignments performed (not 
shown), the homology between human and rat PMCAs is 
high, reaching 99% for PMCA1, approximately 95% for 
PMCA2 and PMCA3, and 87% for PMCA4. The lengths 
of the sequences of h/r-PMCA1 (1220 amino acids) and h/
rPMCA2 (1243 amino acids) are equal, whereas PMCA3 

Table 1  Amino acids comprised in TM domains of human and rat PMCA isoforms
TM1 Isoform TM3 TM4 TM5 TM6 TM7 TM8 TM9 TM10

hPMCA1 106–126 155–175 367–386 419–439 856–876 883–903 928–948 972–991 1006–1027 1040–1060
hPMCA2 95–115 153–173 391–410 444–461 876–895 906–926 947–969 988–1009 1029–1050 1061–1082
hPMCA3 98–118 156–176 365–384 418–435 850–869 880–900 921–943 962–983 1003–1024 1035–1056
hPMCA4 93–113 151–171 357–376 410–427 841–860 871–891 912–934 953–974 994–1015 1026–1047
rPMCA1 106–126 155–175 367–386 419–439 856–876 883–903 928–948 972–991 1006–1027 1040–1060
rPMCA2 95–115 153–173 391–410 444–461 876–895 906–926 947–969 988–1009 1029–1050 1061–1082
rPMCA3 98–118 156–176 365–384 418–435 850–869 880–900 921–943 962–983 1003–1024 1035–1056
rPMCA4 93–113 151–171 357–376 410–427 841–860 871–891 912–934 953–974 994–1015 1026–1047
UniProt IDs: hPMCA1 (P20020); hPMCA2 (Q01814); hPMCA3 (Q16720); hPMCA4 (P23634); rPMCA1 (P11505); rPMCA2 (P11506); rPMCA3 
(Q64568); rPMCA4 (Q64542)
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values appear more stable along the time in the presence 
of cholesterol (Fig. 5C). Global RMSF values observed in 
the whole protein are shown in Fig.  5D; while a detailed 
analysis of RMSF for all CARC motifs shows these regions 
have minor fluctuations when compared with other sites of 
the proteins (Fig. 5E). A similar analysis was performed for 
all transmembrane domains of both PMCA isoforms where, 
as observed also in Fig. 5E, there is noticeable greater data 
dispersion in TM corresponding to PMCA1 (Suppl. Mat. 1) 

Table 2  Amino acids comprised in the CARC motifs of h/r PMCAs
Isoform CARC1 CARC2 CARC3 CARC4
PMCA1 93–102 418–426 854–864 -
PMCA2 90–99 442–450 877–887 1028–1037
PMCA3 93–102 416–424 851–861 -
PMCA4 88–97 408–416 842–852 993–1002

Table 3  Comparison of CARC sequences of h/r PMCA1/PMCA4 iso-
forms
Isoform CARC number Sequence
hPMCA1 1 (93–102)* Kkpkt.Flql.V
rPMCA1 1 (93–102) Kkpkt.Flql.V
hPMCA1 2 (418–426)* Kf….FiigvtV
rPMCA1 2 (418–426) Kf….FiigvtV
hPMCA1 3 (854–864)* Kflq.FqltvnV
rPMCA1 3 (854–864) Kflq.FqltvnV
hPMCA4 1 (88–97)* Kkpkt.Flel.V
rPMCA4 1 (88–97) Kkpkt.Flel.V
hPMCA4 2 (408–416)* Kf….FiigvtV
rPMCA4 2 (408–416) Kf….FiigvtV
hPMCA4 3 (842–852)* Kflq.FqltvnV
rPMCA4 3 (842–852) Kflq.FqltvnV
hPMCA4 4 (993–1002)* Rnii.Fcsvv.L
rPMCA4 4 (993–1002) Rnii.Fcsvv.L
* CARC sequences analyzed in molecular dynamics simulations

Fig. 1  Topological location of CARC motifs in human/rat PMCA isoforms. The transmembrane domains indicating the predicted CARC sequences 
are highlighted in red. N: N-terminus; C: C-terminus; TM: Transmembrane domain
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The MD simulation performed with this last isoform 
showed an outstanding difference between the total energy 
determined when associated with cholesterol or phos-
pholipid, in comparison to values observed for PMCA1 
(Fig. 8A). Partial densities of lipids obtained from PMCA4 
MD simulation, show similar values to those observed with 
PMCA1, with slight variations when phospholipids are 
present (Fig.  8B). RMSD values of PMCA4 appear more 
stable over time in the presence of cholesterol and even in 
the presence of POPC, in comparison to those observed in 

compared to PMCA4 (Suppl. Mat. 12 and Fig. 8E), possibly 
indicative of higher flexibility in the former isoform, even in 
the presence of cholesterol.

On the other hand, the four CARC motifs predicted for 
the PMCA4 isoform were observed in the corresponding 
MD simulation (Fig. 6A). A close-up view shows CARC1 
and CARC2 motifs in the interface of the intracellular side 
of TM1 and TM4, while CARC3 and CARC4 are embed-
ded in TM5 and TM9 (Fig. 6B). Rendered images of CARC 
motifs of PMCA4 are shown in Fig. 7.

Fig. 3  Molecular dynamics simu-
lation of PMCA1. (A) Landscape 
view of a simulated system where 
PMCA 1 (pink) is shown in a 
membrane containing choles-
terol (cyan) and POPC; water 
molecules, ions, and POPC, were 
removed from the image. (B) 
Close-up image of the transmem-
brane domains of PMCA1, where 
CARC motifs are indicated in 
green

 

Fig. 2  Alignment of CARC sequences present in human PMCA iso-
forms: PMCA1 (ATP2B1); PMCA2 (ATP2B2); PMCA3 (ATP2B3); 
PMCA4 (ATP2B4). The residues comprising CARC sequences are 
marked with brackets; on the left side, the isoforms that contain the 

corresponding CARC domains are indicated (✓). Note that CARC4 is 
only present in PMCA2 and PMCA4 isoforms. Purple boxes highlight 
conserved sequences among the different PMCA isoforms
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Discussion

It is known that a wide range of mechanisms modulates 
PMCA activity, according to its active role in the homeosta-
sis of calcium in eukaryotic cells contributing to specialized 
functions in different tissues. In this study, we explored the 
role that sequences of the CRAC/CARC type, can play in 
these ATPases. Interestingly, our findings reveal the pres-
ence only of CARC sequences in human and rat PMCA 
isoforms and their regulatory function in the presence of 
cholesterol. This observation might have noteworthy impli-
cations, especially considering that previous estimations 
of interaction energy of cholesterol and membrane pro-
teins indicate that CARC motifs exhibit a higher affinity 
for cholesterol than CRAC motifs (-58.0 ± 12.10 kJ mol− 1 
and − 47.85 ± 10.68 kJ mol− 1, respectively) (Fantini et al. 
2016). This underscores the potential regulatory role of cho-
lesterol on these ATPases.

The identified CARCs in PMCAs are located in TM 
domains 1, 4, and 5; while in isoforms featuring a fourth 
CARC motif (PMCA2 and PMCA4), it is positioned in 
TM9. CARC1 and CARC2 tend to reside in the inner leaflet 
of the plasma membrane, while others are fully embedded 
in TM domains (CARC3, and when present, CARC4). The 
high similarity in their sequence, nearly 100%, shared by 
CARC1-CARC3 might suggest an evolutionary relevance 
for the role they might play in the cell, whereas CARC4 
remains enigmatic due to the presence in only two of the 
PMCA isoforms. In addition, PMCA1 seems to confirm its 
role as a major housekeeping isoform (Okunade et al. 2004) 
as indicated by the high homology observed between human 
and rat species and the well-conserved CARC sequences 
present in this isoform.

The MD simulation approach is a robust technique offer-
ing theoretical support for experimental design and hypoth-
esis testing. Previous research on membrane Ca2+-ATPases 
using MD simulations, has been based on SERCA models, 
and focused on aspects such as the role of calmodulin in pro-
tecting against oxidation (Lushington et al. 2005) and how 
membrane thickness modulates PMCA activity (Pignataro 
et al. 2005). More recent works have been based on mod-
els of E1, the more stable conformation (with high affinity 
for Ca2+) of PMCA4b, employing short times of simulation 
(Penniston et al. 2014; Davoudi et al. 2015). Here, based on 
our previous studies (Santiago-García et al. 2000; Mas-Oliva 
and Delgado-Coello 2007), we focused on the analysis of 
the PMCA1 and PMCA4 isoforms and their interaction with 
cholesterol possibly through CARC domains. The interac-
tion between the different protein motifs is likely depen-
dent on the availability of cholesterol in the cell membrane. 
In erythrocytes, around 30% of total lipids correspond to 
cholesterol evenly distributed across the membrane bilayer 

PMCA1 data (Fig. 8C). Interestingly, the RMSF values cor-
responding to CARCs in both PMCA isoforms tend to be 
lower and with fewer fluctuations in the presence of cho-
lesterol compared to the sole presence of POPC (Figs. 5E 
and 8E).

The statistical analysis of RMSF corresponding to TM 
domains for both PMCA1 and PMCA4 shows significant 
differences across all TM domains when comparing cho-
lesterol-containing systems to those containing only POPC 
(Suppl. Mat. 3 and 4).

Additionally, using tools of the VMD program, we gen-
erated rendered time-lapse videos enabling the observation 
of cholesterol molecules in close proximity to the CARC 
motifs observed from the outer and inner leaflets of PMCA1 
(Suppl. Mat. 5 and 6, respectively) and PMCA4 (Suppl. 
Mat. 7 and 8, respectively).

Fig. 4  Close-up images of CARC motifs found in PMCA1. In the 
top figure, the landscape view of CARC motifs present is shown. 
The close-up images of CARC1-CARC3 motifs are shown as green 
licorice lines, cholesterol molecules are presented as white licorice 
lines, surrounding POPC molecules are presented as transparent green 
beads, and non-CARC-associated protein depicted as pink ribbons
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Fig. 5  Parameters obtained from molecular dynamics simulations 
of PMCA1. (A) Total energy calculated along 150 ns of simulation 
for POPC (-4.71×106 ± 919.9  kJ/mol) and cholesterol-containing 
(CHOL) systems (-4.77×106 ± 36.5 kJ/mol). (B) Partial density dis-
tribution of the head of lipids along the Z-axis of the simulation box. 
CHOL P*: Phospholipids of the system with cholesterol; CHOL C*: 
Cholesterol of the system with cholesterol; POPC P*: Phospholipids 

of the system with POPC. (C) RMSD as a function of time; POPC 
(1.37 ± 0.047 nm); CHOL (0.71 ± 0.04 nm). (D) RMSF as a function 
of residue number of PMCA1 in the POPC system or in a system with 
cholesterol; note that the shown model of PMCA1 includes only 1038 
residues. (E) RMSF corresponding to each of the three CARC motifs 
found in PMCA1 (mean values ± SD). RMSD: root mean square devi-
ation. RMSF: root mean square fluctuation

 

1 3



Journal of Bioenergetics and Biomembranes

(Yawata 2003). In contrast, 60% comprises phospholipids 
that exhibit asymmetric distribution facilitated by different 
Ca2+-activated transporters (Daleke 2008).

The extended simulation times of 150 ns employed in the 
MD simulations of human PMCA1 and PMCA4, revealed 
differences in systems containing cholesterol and POPC 
or POPC alone. The more negative total energy values 
observed in both PMCA isoforms when cholesterol is pres-
ent, indicates that the interaction is energetically favorable 
resulting in a more stable configuration, this effect could 
also indicate higher affinity for cholesterol regarding the 
CARCs motifs. In this scenario, the presence of cholesterol 
might enhance the stability of the PMCA isoform and poten-
tially influence its structure and function. The distinction 
becomes more pronounced in the case of PMCA4, particu-
larly with the more negative values, suggesting a potential 
higher affinity for cholesterol likely attributable to the pres-
ence of one additional CARC motif. Undoubtedly, under-
standing the specific motifs involved in the interaction, 
such as the CARC sequences, as well as variations in their 
occurrence or positioning, are the focus for future research. 
Variations in the presence or location of these motifs among 
different PMCA isoforms may contribute to a more favor-
able energetic configuration for the protein through cho-
lesterol interactions. Indeed, if a specific isoform features 
additional CARC motifs, it might exhibit a favorable con-
figuration potentially resulting in a stronger interaction with 
cholesterol.

The partial density profiles, with the Z-axis zero repre-
senting the center of the bilayer, shows symmetric distri-
bution of phospholipids and cholesterol and an estimation 
of the membrane thickness during the simulations. How-
ever, the main difference is observed in the plot depicting 
the heads of phospholipids in the system with only POPC 
(POPC P*, cholesterol free system) where the density is 
lower in PMCA4 compared to PMCA1 (Figs. 5B and 8B). 
This disparity could be associated with the presence of a 

Fig. 7  Close-up images of CARC motifs found in PMCA4. The top 
panel shows the landscape view of CARC motifs. Close-up images of 
CARC1-CARC4 motifs are shown as green licorice lines, cholesterol 
molecules are presented as white licorice lines, surrounding POPC 
molecules are presented as transparent green beads, and non-CARC-
containing sequences depicted as fuchsia ribbons

 

Fig. 6  Molecular dynamics simu-
lation of PMCA4. (A) Landscape 
view of simulated systems where 
PMCA4 (fuchsia) is shown in a 
membrane containing choles-
terol (cyan) and POPC; water 
molecules, ions, and POPC, were 
removed from the image. (B) 
Close-up image of the transmem-
brane domains of PMCA4, where 
CARC motifs are indicated in 
yellow
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Fig. 8  Parameters obtained from molecular dynamics simulations 
of PMCA4. (A) Total energy calculated along 150 ns of simulation 
for POPC (-3.62×106 ± 1625.8  kJ/mol) and cholesterol-containing 
(CHOL) systems (-4.77×106 ± 36.5 kJ/mol). (B) Partial density dis-
tribution of the head of lipids along the Z-axis of the simulation box. 
CHOL P*: Phospholipids of the system with cholesterol; CHOL C*: 
Cholesterol of the system with cholesterol; POPC P*: Phospholipids 

of the system with POPC. (C) RMSD as a function of time; POPC 
(2.39 ± 0.009 nm); CHOL (0.96 ± 0.14 nm). (D) RMSF as a function 
of residue number of PMCA4 in the POPC system or in a system with 
cholesterol. (E) RMSF corresponding to the each of the four CARC 
motifs found in PMCA4 (mean values ± SD). RMSD: root mean 
square deviation; RMSF: root mean square fluctuation
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of the serotonin1A receptor was identified through targeted 
mutation studies (Kumar et al. 2021). An important fact to 
keep in mind is that membrane lipids contribute to shape 
membrane-protein function, but the embedded proteins also 
influence the dynamics of the surrounding lipids (Grouleff 
et al. 2015). In this study, the rendered images obtained from 
MD simulations provided valuable insights into the impact 
of cholesterol on PMCAs’ stability, as well as the influence 
of CARC motifs on both protein and membrane structure. 
In health, the role of PMCA as controlling the fine-tuning 
of intracellular Ca2+ has long been acknowledged, recent 
evidence suggests that this regulation occurs within specific 
microdomains through points of contact between the endo-
plasmic reticulum and the plasma membrane (Krebs 2022). 
To date, the conditions that trigger a potential imbalance 
in the calcium homeostasis are still not well understood. 
The present study supports the view that this fine-tuning 
might also occur in membrane domains where cholesterol 
is present.

Previous research from our laboratory has demonstrated 
the association, particularly of PMCA1 as the most preva-
lent isoform, with lipid raft domains in the liver tissue (Del-
gado-Coello et al. 2017), and relevance might be extended 
to pathological conditions affecting this organ. Moreover, 
our current findings may shed light on the altered Ca2+ 
homeostasis observed in various diseases. For instance, 
high PMCA1 transcript levels have been observed in epi-
leptiform hippocampal cells and murine hepatocarcinoma 
compared to control cells (Bravo-Martínez et al. 2011; Brio-
nes-Orta et al. 2021). Moreover, we have shown that choles-
terol exerts varying effects on PMCA activity in membranes 
isolated from different tissues. In membranes from cardiac 
sarcolemma or erythrocytes partially depleted of choles-
terol, PMCA activity is increased. In contrast, in membranes 
isolated from hepatocytes pre-incubated with 2 mM methyl-
ß-cyclodextrin, PMCA activity decreases considerably 
(Delgado-Coello et al. 2017). Together, these results con-
firm that the effect of cholesterol on membrane proteins, and 
specifically PMCA, depends on the cellular context as well 
as whether PMCA forms part of lipid-raft domains. Regard-
ing PMCA4, that is the main isoform expressed in eryth-
rocytes, it has been shown that acetylated tubulin forms a 
complex with the ATPase, modulating its activity in close 
relationship with surrounding lipids therefore erythrocyte 
deformability is reduced when PMCA activity decreases in 
hypertensive patients (Monesterolo et al. 2015).

In reference to other pathological conditions where 
PMCA is involved, it is well-stablished that the absence 
of PMCA1 in knockout mice leads to lethality, highlight-
ing the essential role of PMCA1 in vital physiological pro-
cesses. Conversely, the deficiency of PMCA4 in male mice 
provokes infertility (Okunade et al. 2004). Furthermore, 

fourth CARC motif in the PMCA4 isoform, affecting both 
the mobility of the lipids in the membrane and the thickness 
of the surrounding areas.

RMSD values indicated in both PMCA isoforms, a 
more stable configuration structure in the presence of cho-
lesterol; while MD simulations with only POPC shows a 
less stable trend over time, thus, indicating that the pres-
ence of cholesterol contributes to maintaining the stability 
of the whole structure along the time (Fig. 5 C). On the other 
hand, RMSF provides information regarding local confor-
mational changes in the backbone of a protein during the 
simulation. Besides the expected high fluctuations in the 
amino and carboxyl-ends of both PMCA isoforms (note that 
the carboxy-end of PMCA1 is not included in the model-
ing), we observed that cholesterol provides stability in the 
whole proteins (Figs.  5D and 8D). This stability tends to 
be higher in zones where CARC motifs reside, suggesting 
that they not only provide stability of protein-cholesterol 
interactions but also might have a major contribution in the 
formation, perhaps as an anchor point, to support and sta-
bilize lipid raft-type domains and the recruitment of pro-
teins in those structures (Figs. 5E and 8E). In this regard, 
we performed the analysis of H-bond formation between the 
PMCA and cholesterol or POPC in all systems studied (data 
not shown). We found an important increase in the H-bond 
occupancy being around of 2% on average in the absence of 
cholesterol, up to 20% for some H-bonds when cholesterol 
is present. We also observed that in the presence of choles-
terol it is possible the formation of H-bonds between posi-
tively charged amino acids within CARC motifs and POPC. 
These results strongly suggest the interaction of CARC 
motifs with lipids in the membrane, this finding holds rel-
evance as many proteins possessing CRAC/CARC motifs 
fail to demonstrate such interactions (Fatakia et al. 2020; 
Taghon et al. 2021). Although MD simulations of Aquapo-
rin 0, have shown through RMSD analysis a good stability 
regardless the presence of cholesterol, H-bond occupancy 
was larger and more stable in membranes containing choles-
terol (O’Connor and Klauda 2011). While cholesterol-rec-
ognition motifs were not initially considered at the time of 
this work’s reporting (Aquaporine 0 has one CRAC and one 
CARC motif), their results align somehow with the changes 
we observed in PMCAs packaging and overall stability, 
where the presence of cholesterol results in a less flexible 
and more stable structure.

It is well known that cholesterol provides stability for 
membrane proteins; for example, different serotonin recep-
tors have up to 10 cholesterol molecules bound in their 
crystal structures (Saxena and Chattopadhyay 2012; Jafu-
rulla and Chattopadhyay 2017; Sarkar and Chattopadhyay 
2021). Moreover, a molecular sensor for cholesterol, repre-
sented by a lysine residue (K101 in TM2) of a CRAC motif 
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