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Abstract
The accelerated acquisition of multidimensional NMR spectra using sparse non-uniform sampling (NUS) has been widely 
adopted in recent years. The key concept in NUS is that a major part of the data is omitted during measurement, and then 
reconstructed using, for example, compressed sensing (CS) methods. CS requires spectra to be compressible, that is, they 
should contain relatively few “significant” points. The more compressible the spectrum, the fewer experimental NUS points 
needed in order for it to be accurately reconstructed. In this paper we show that the CS processing of similar spectra can be 
enhanced by reconstructing only the differences between them. Accurate reconstruction can be obtained at lower sampling 
levels as the difference is sparser than the spectrum itself. In many situations this method is superior to “conventional” com-
pressed sensing. We exemplify the concept of “difference CS” with one such case—the study of alpha-synuclein binding to 
liposomes and its dependence on temperature. To obtain information on temperature-dependent transitions between different 
states, we need to acquire several dozen spectra at various temperatures, with and without the presence of liposomes. Our 
detailed investigation reveals that changes in the binding modes of the alpha-synuclein ensemble are not only temperature-
dependent but also show non-linear behavior in their transitions. Our proposed CS processing approach dramatically reduces 
the number of NUS points required and thus significantly shortens the experimental time.

Keywords  Non-uniform sampling · Serial NMR · Compressed sensing · Alpha-synuclein · Temperature-gradient · Protein-
membrane interaction

Introduction

The analysis of biomolecular structure and dynamics by 
NMR usually requires the acquisition of many multidi-
mensional (nD) spectra. Especially in the case of unfolded 
or intrinsically disordered proteins and those undergoing 
unfolding transitions, these measurements require extraor-
dinarily high resolution. Thus, we have to perform extensive 
sampling of nD time-domain signals, which means that col-
lecting data can take several days.

In this context, NMR-based techniques monitoring tran-
sitions between distinct structural states are of particular 
interest. Variable-pressure and variable-temperature NMR 
experiments give a unique insight into these transitions as 
they monitor the protein on a per-residue basis (Dreydoppel 
et al. 2022). This allows us to determine different transition 
temperatures for separate protein domains. Additionally, it 
makes it possible to confirm experimentally the “cooperativ-
ity” of the unfolding behavior. In the case of slow chemical 
exchange on the NMR timescale, these methodologies have 
additional advantages over other commonly used techniques, 
such as circular dichroism, differential scanning fluorimetry, 
differential scanning calorimetry, or dynamic light scat-
tering: They allow for the residue-resolved monitoring of 
two or more distinct structural states (for example, folded, 
intermediate, or unfolded) (Zhang et al. 2019). In addition 
to the large amount of biophysical information that can be 
obtained through protein unfolding studies, specific tempera-
ture-dependent mechanisms are also often best addressed by 
variable-temperature NMR (Baxter et al. 1998; Shchukina 
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et al. 2021). Variable-temperature NMR can also provide 
information on the thermodynamic properties of partially 
populated compact or exited states (Bouvignies et al. 2011), 
even in the context of intrinsically disordered proteins 
(IDPs) (Bah et al. 2014).

The study of liquid-liquid phase separation (LLPS) has 
recently attracted a great deal of scientific interest as phase-
separating systems have been demonstrated to contribute 
strongly to cellular functions by their spatial arrangement 
of proteins. Due to the often intrinsically disordered nature 
of the protein regions involved and the fact that NMR is the 
predominant technique used to access IDPs on a per-residue 
basis, NMR is considered one of the best tools for studying 
LLPS systems (Murthy and Fawzi 2020). NMR also offers 
the advantage of being able to measure gradients of tempera-
ture, pH, pressure, and salt concentration, on which LLPS is 
highly dependent (Cinar et al. 2019).

When setting up an optimal variable-temperature series 
of NMR experiments, we need to decide on the tempera-
ture range and the sampling step, that is, how to sample 
the temperature “pseudo-dimension”. The sampling must 
be dense, for two main reasons. First, we can only trans-
fer the resonance assignment between spectra in a series 
unambiguously if they do not differ too much (Fig. 1). If the 
experimental conditions cause dramatic changes between 

consecutive spectra, the resonance assignment must be re-
established from the ground up. This is cumbersome as it 
requires multidimensional spectra and highly concentrated 
samples with appropriate isotopic labeling. Second, the tem-
perature dependencies of peak intensities and chemical shifts 
can be very complex as they are influenced by many factors, 
such as relaxation, exchange with a solvent, changes in rela-
tive populations of structural states, sample degradation, and 
so on. Describing their complicated shapes is only possible 
with a sufficient number of points. Figure 2 shows examples 
of different peak intensity profiles from the current study.

It is interesting to note that similar problems appear in 
studies involving parameters other than temperature, for 
example, pressure (Xu et al. 2021), ligand concentration 
(Williamson 2018), and also various pulse-sequence set-
tings such as mixing delay (Horst et al. 2006; Butts et al. 
2011) and diffusion-encoding gradients (Pagès et al. 2017). 
To analyze the established dependencies unambiguously, 
many spectra must be acquired.

A sufficiently fine sampling of a temperature pseudo-
dimension should typically include between 10 and 20 
two-dimensional (2D) spectra, depending on the tempera-
ture range. Such measurements take many hours, even if 
sensitivity is high. For this, there are three main reasons. 
First, the Nyquist theorem (Nyquist 1928) states that the 

Fig. 1   A region of 2D 1H −
15N 

HSQC spectra of aSyn (without 
liposomes) measured at various 
temperatures. A Superimposed 
spectra at temperatures from 15 
to 43 °C, with 2 °C increments. 
The resonance assignments 
are shown. B 15 °C. C 25 °C. 
D 35 °C. As can be seen, the 
assignment could not be unam-
biguously transferred between 
panels B, C, and D without the 
intermediate steps
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distance between sampling points is restricted by the spectral 
width. Second, because of the “Fourier uncertainty princi-
ple” (Szántay 2008), the evolution time must be sampled 
for long enough to maintain the spectral resolution. And 
third, samples need to return to equilibrium between con-
secutive sampling points in the indirect dimension, which 
takes several seconds unless fast-sampling techniques are 
used (Schanda et al. 2006). Because of these three factors, 
the measurement time can be as much as tens of hours, even 
for a single 2D spectrum (Misiak et al. 2013).

One of the most popular methods for accelerating NMR 
experiments is compressed sensing (CS). CS is based on 
the assumption of spectrum sparsity, whereby only a small 
proportion of spectral points contribute significantly to 
peaks; the rest contribute to the baseline and their intensity 
is close to zero. CS theory says that in such cases we can 
skip a considerable number of sampling points (Foucart and 
Rauhut 2010), a procedure called “non-uniform sampling” 
(NUS). Later on, we can reliably reconstruct the missing 
data points with one of several algorithms that exploit the 
sparsity assumption (Kazimierczuk and Orekhov 2011; 
Holland et al. 2011; Hyberts et al. 2012; Qu et al. 2015). 
CS theory further states that, for the probability of a good 
reconstruction of N spectral points to be high, the number 
M of sampled points should be proportional to

where K is the number of significant points in a spectrum 
(Foucart and Rauhut 2010; Shchukina et al. 2017a).

It should be noted that NMR spectra are not strictly sparse 
in the Fourier domain. CS theory states that in such cases K 
highest points in the spectrum may still be recovered exactly 
(see Theorem 2 in Candès et al. (2006)). Moreover, certain 
methods related to CS and based on low-rank minimization 

(1)M ∼ K log(N∕K)

overcome this limitation by defining a strictly sparse rep-
resentation of an NMR signal (Qu et al. 2015; Guo et al. 
2023).

Usually, the reconstruction is performed column-wise for 
2D NMR spectra, that is to say, separately for each point 
of the direct dimension, which has first undergone Fourier 
transform (FT). K varies from column to column, whereas M 
has to be the same for all the columns due to the way the 2D 
NMR signal is acquired. To be on the safe side, we should 
take into account the worst-case scenario in our choice of M 
and select the K of the least sparse (most crowded) column. 
If condition Eq. (1) is not fulfilled, peak intensities will be 
suppressed, which is particularly harmful when performing 
quantitative studies such as NOESY analysis (Wieske and 
Erdélyi 2021).

Typically, the 2D 1H −
15N HSQC of even a small protein 

is not very sparse, so non-uniform sampling (NUS) of such 
spectra does not save much time (Shchukina et al. 2017a). 
The situation is worse for IDPs, which have very low peak 
dispersion in the 1H dimension.

One way to improve CS efficiency is to increase the spar-
sity of the spectra. This can be done during signal acquisi-
tion or by means of pre-reconstruction signal processing. 
Specific methods include using a virtual echo (Mayzel et al. 
2014) or reducing the number of peaks, for example, by 
using pure-shift (Aguilar and Kenwright 2018) or selective 
excitation (Piai et al. 2016). We have discussed several spar-
sity-increasing approaches elsewhere (Gołowicz et al. 2020).

In this paper we increase sparsity at the stage of signal 
processing, before the reconstruction. Our method involves 
exploiting the similarity between the reconstructed spectrum 
and a reference spectrum. We perform the CS reconstruc-
tion on the difference between two spectra, which is much 
sparser than either of the original ones. This concept has 
been successfully applied previously in real-time dynamic 

Fig. 2   Relative heights (with vs. without liposomes) of example 
peaks in aSyn 2D 1H −

15N HSQC spectra at various temperatures. A 
Peak A069N-H. The transition between two or more states is sigmoi-
dal when fitted; we can estimate the “melting” temperature for this 

residue. B Peak T059N-H. The curve is almost linear, the decreased 
peak height resulting mostly from faster relaxation. If we sampled 
fewer temperature points, the approximation would be far less reli-
able. See profiles for all other residues in SI
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magnetic resonance imaging reconstruction by Majumdar 
et al. (2012).

Taking the difference between two spectra is an inherent 
part of other techniques, such as saturation transfer differ-
ence (Viegas et al. 2011) and difference diffusion-ordered 
spectroscopy (Ribeiro et al. 2010). It has also been used to 
remove background signals (de Groot et al. 1988). However, 
it has not been used before to support the CS reconstruction 
of spectroscopic NUS data sets. Some other methods of fast 
spectral acquisition have exploited the similarities between 
spectra in a series, but in different ways - methods such as 
multidimensional decomposition (Jaravine et al. 2008; Lin-
net and Teilum 2016), methods exploiting the knowledge-
based confinement of frequency space (Kazimierczuk et al. 
2010; Matsuki et al. 2011; Frey et al. 2013), variants of the 
Radon transform (Kupče and Freeman 2013; Dass et al. 
2017; Rytel et al. 2019; Nawrocka et al. 2019; Romero et al. 
2020; Shchukina et al. 2021), and others (Shchukina et al. 
2017b).

Below, as an example of applying the method—and a 
challenging one at that—we examine the temperature 
dependence of membrane-protein interactions. This field 
of research often focuses on the transition temperature of 
the membrane. But the temperature dependence of protein-
membrane interactions can also be drastically influenced by 
the variability of the bound state or states, as is the case in 
our system. �-Synuclein (aSyn) is a small protein predomi-
nantly located in the presynaptic termini of neurons (Iwai 
et al. 1995). It has been widely studied due to its involvement 
in several diseases (multiple system atrophy, Parkinson’s 
disease, dementia with Lewy bodies) (Wakabayashi et al. 
1998; Konno et al. 2016) that currently lack a disease-mod-
ifying treatment, and also due to its structural heterogeneity. 
In vivo aSyn is partitioned between the cytosol and cellular 
membranes, with the cytosolic state showing intrinsic dis-
order (Theillet et al. 2016). aSyn plays a physiological role 
in the synaptic vesicle cycle, where it has been observed to 
influence vesicle clustering and fusion (Das et al. 2022). It 
adopts radically different structures depending on whether 
it is membrane-bound, free in solution, or part of a fibril. 
In addition, even the membrane-bound state of the protein 
consists of an ensemble of states that have been shown 
to depend on the protein:membrane ratio and the specific 
membrane composition and buffer conditions (Viennet 
et al. 2018). Below, we show how changing the measure-
ment temperature can shift the overall fraction of free and 
membrane-bound states, as well as the structural ensemble 
of the membrane-bound state. We also demonstrate that the 
data can be collected quickly and effectively processed with 
a new “difference CS” approach.

Method

Below, we present the fundamentals of the proposed differ-
ence compressed sensing (DCS) method and the procedures 
we use to boost its effectiveness. We also discuss sample 
preparation and measurement conditions, as well as the 
curve-fitting procedure used in the data analysis.

Concept and features of difference compressed 
sensing

With two sufficiently similar spectra at our disposal, we can 
increase the sparsity by taking their difference (see Fig. 3). Let 
us consider two 2D time-domain signals, fA(t1, t2) and 
fB(t1, t2) . In an experiment we acquire the full signal A, 
f
full

A
(t1, t2) , and signal B undersampled in t1 , f NUSB

(t1, t2) . The 
former is processed in the conventional manner, yielding the 
spectrum Sfull

A
(�1,�2) . We then apply the sampling schedule 

of signal B to signal A, that is to say, we artificially undersam-
ple signal A in the same way that we undersampled B. This 
gives us  f NUS

A
(t1, t2) . Finally, we take the difference between 

t h e  t w o  u n d e r s a m p l e d  F I D s : 
f NUS
diff

(t1, t2) = f NUS
B

(t1, t2) − f NUS
A

(t1, t2)

This then forms the input to the reconstruction algorithm. 
As spectra A and B are similar, some peaks will disappear in 
this difference, increasing the sparsity of the reconstruction 
input. Thus, the number K of significant points will be lower, 
so we will be able to safely decrease the number M of acquired 
points (see Eq. (1)). After the reconstruction, we need to add 
its output to spectrum A to obtain the reconstructed spectrum 
B: Srec

B
(�1,�2) = Srec

diff
(�1,�2) + S

full

A
(�1,�2).

Spectrum A does not necessarily have to be fully sampled: 
It can also be undersampled, as long as this is done at a reason-
ably high level. The sampling schedule of B should be a subset 
of the sampling schedule of A. In this case, the additional step 
of reconstructing A is required.

Increasing sparsity by minimizing differences

In the case of DCS we can considerably reduce the number of 
significant spectral points K by making the two spectra even 
more similar, for example, by suppressing the differences in 
peak positions, linewidths, and amplitudes. To some extent the 
latter can be done deterministically, for instance by consider-
ing the sample dilution upon the addition of liposomes. We 
can suppress differences in peak positions and linewidths very 
effectively in the direct dimension by comparing the 1D spec-
tra of the first t1 increment, fA(t1 = 0,�2) and fB(t1 = 0,�2) . 
Slightly different experimental conditions affect peak posi-
tions, amplitudes, and linewidths. As a result, fA(t1 = 0,�2) 
and fB(t1 = 0,�2) differ as shown in Fig. 4A.
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Fig. 3   Difference compressed sensing (DCS). A Fully sampled time-
domain signal. B Non-uniformly sampled time-domain signal simi-
lar to A. C Difference between experimentally undersampled time-
domain signal B and artificially undersampled time-domain signal A. 
The similarity between A and B causes C to be more compressible 
than B. The artificial undersampling of A (red dots in panel A) is 

performed according to the experimental undersampling B. D Fully 
sampled spectrum of A. E CS-reconstructed difference spectrum. F 
Reconstructed difference spectrum added to full spectrum A. This 
final result corresponds to spectrum B; all the panels represent a col-
umn of a 2D spectrum/interferogram, i.e., fixed �

2

Fig. 4   Minimizing differences using DCS pre-processing. A The 
superposition of the first t

1
 increment of 2D 1H −

15N HSQC of aSyn 
with liposomes (blue) and without liposomes (red), before correc-
tion. There are slight differences in the linewidth and peak positions. 

B Superposition of spectra from panel A, corrected to minimize the 
norm of the residual between them (as in Eq. (2)). The correction 
algorithm yields an optimal shift of two spectral points and optimal 
line broadening of 1 Hz
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In our example we applied a simple brute-force algorithm 
that finds the correction of peak positions and linewidths by 
minimizing the norm of the residual between fA(t1 = 0,�2) 
and fB(t1 = 0,�2):

The correction for this example is shown in Fig. 4B. We use 
the values � and Δ�2 , minimizing the difference of Eq. (2), 
to generate the sparsest possible “difference signal”, which 
we then use as input for the DCS reconstruction.

Sample preparation and NMR experiments

The aSyn protein sample was uniformly labeled with 15N . 
The production and purification protocols are described 
elsewhere (Wrasidlo et al. 2016): In short, E. coli cells 
containing IPTG-inducable aSyn were grown to a high cell 
mass in LB medium, washed, and then transferred to 15N 
ammonium chloride-supplemented M9 medium for induc-
tion. Expression was carried out for 16 h (h) at 28 °C, before 
the cells were harvested by centrifugation. After sonicat-
ing the resulting pellet, we carried out purification using 
heat precipitation, followed by streptomycin, ammonium 
sulfate and ethanol precipitations. Finally, we used an ion 
exchange chromatography step to obtain samples with 
≥ 95% purity as judged by SDS-PAGE analysis. We obtained 
POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-
glycerol)) from Avanti Polar Lipids for the production of 
liposomes via extrusion through a 0.4 μM filter.

All NMR experiments were performed using a Var-
ian 700 MHz DDR2 spectrometer with an HCN probe. 
Two NMR samples were used. The first was 0.13 mM 15N 
labeled aSyn dissolved in 585 μL of an H2O ∶ D2O mixture 
(9:1,v/v) containing 50 mM of phosphate buffer (pH 6.5), 
1 mM of EDTA, and 1 mM of sodium azide. The second 
sample was obtained by adding 65 μL of POPG liposomes 
(4  mg/mL dissolved in an identical buffer) to the first 
sample. For both NMR samples we measured a set of 15 
1H −

15N HSQC spectra, spanning a temperature range of 
15–43 °C (2 °C between consecutive spectra). Each HSQC 
spectrum was measured with a relaxation delay of 1.5 s (s), 
four scans, spectral widths of 11.468 kHz ( 1H ) and 2.7 kHz 
( 15N ), and maximum evolution times set to 89 ms ( 1H ) and 
95 ms ( 15N ), corresponding to 256 points measured in the 
indirect dimension. The assignment of aSyn signals was 
taken from previous work (Wrasidlo et al. 2016).

The spectra were artificially undersampled at various 
sampling levels (8, 16, 24, 32, 40, 48, 56, 64, and 128 points 
out of 256) with Poisson-gap samplings (Hyberts et al. 
2010; Kazimierczuk et al. 2008; Kasprzak et al. 2021). For 
the reconstruction we used the iterative soft thresholding 

(2)

argmin

�,Δ�2

||f full
A

(t1 = 0,�2 − Δ�2) ∗ exp(−
�
2
2

2�2
) − f NUS

B
(t1 = 0,�2)||

algorithm implemented in the mddnmr program (Orekhov 
et al. 2021), with default settings (200 iterations and virtual 
echo).

Fitting peak intensity curves

As we expect the dependencies of peak relative intensities 
on temperature to have a sigmoidal shape, we approximated 
the experimental data with a hyperbolic tangent function 
(Fig. 2). We introduced parameters to scale the “basic” curve 
and shift it along both vertical and horizontal axes: xscale , 
xshift , yscale , yshift . Our approximation function thus has the 
following form:

In the fitting procedure, x corresponds to the temperature of 
the experiment and y corresponds to peak relative intensity. 
Among the four adjustable parameters, xshift is of special 
interest as it defines the transition temperature, which is 
our primary concern. We apply the following boundaries 
to the parameters: yscale , in between half the y range and 
two times it; yshift , within the range of min(y) ± 0.1 ; and 
0.05 < xscale < 0.8 ; 20 < xshift < 40 (transition temperatures 
between 20 and 40 °C).

We use the “curve_fit” optimization function from the 
SciPy Python library (Virtanen et al. 2020) with the Trust 
Region Reflective (‘trf’) algorithm (Moré and Sorensen 
1983). The experimental profiles (full data) and their 
approximations for all the peaks visible in spectra, with and 
without POPG, are given in the SI. The transition tempera-
tures of selected residues are given in Fig. 5. We omitted 

(3)y = yscale

(
1 − tanh

(
xscale ⋅ (x − xshift)

))
∕2 + yshift

Fig. 5   Transition temperature vs. residue number for the aSyn bound 
to liposomes. The values were determined by fitting sigmoidal 
curves, as shown in Fig.  2. Results of FT (full data), CS and DCS 
(64 NUS points) are marked with circle, Down-Pointing Triangle and 
star, respectively
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those with too few data points (fewer than six), where peaks 
went below the noise level too soon and were not visible 
in higher temperatures. We also filtered out peaks whose 
profiles were “not sigmoidal enough”. This applied in three 
different cases: First, some profiles were linear, as we could 
also see from the horizontal scaling parameter— if it was 
too little, it meant that the approximation yielded only the 
close-to-linear middle region of the sigmoid function and 
we could introduce the condition xscale > 0.08 . Second, 
some profiles did manifest a transition but this transition 
was too small. If the last-but-one data point on both sides 
differed less than twice, we omitted those peaks. Finally, we 
excluded peaks whose approximation had too high a rela-
tive residual (more than 0.1). The rest, which give a reliable 
picture of a transition temperature, are shown in Fig. 5. As 
can be seen, the NUS reconstructions - CS and DCS - reveal 
a trend in transition temperatures similar to that seen in the 
FT of the full data. 

Results and Discussion

We applied DCS and conventional CS to a series of 2D 
1H −

15N HSQC spectra of aSyn acquired at various tem-
peratures, with and without the addition of liposomes. The 
results are interesting in terms of both biophysics and signal 
processing. We discuss both contexts below.

aSyn‑liposome interactions

The high internal dynamics of aSyn in its intrinsically dis-
ordered regions, combined with the high molecular mass 
of the liposomes used in this study and a slow exchange 
rate between free and bound states (Bodner et al. 2009), 
provide a remarkable way of indirectly obtaining informa-
tion on the bound state of the protein. When aSyn is bound 
to a liposome, all stably bound regions of the protein have 
similar relaxation behavior to the liposome itself and are 
thus not directly detectable by NMR. However, the unbound 
regions of aSyn retain such high levels of flexibility that 
the signal intensities obtained are nearly unchanged com-
pared to the unbound state of the protein. We can therefore 
obtain the fraction of stably bound aSyn by measuring the 
peak intensity of each residue with liposomes relative to 
its unbound state ( Irel ). We then use the residue-resolved 
information obtained by this method to get information on 
various binding states as shown in (Viennet et al. 2018), 
who relied on  the approach after it was verified by studying 
the bound state indirectly using CEST methodology (Fusco 
et al. 2014). Tracking of relative peak intensities along the 
primary sequence of the protein has been used to study the 
effect of different membrane compositions (Viennet et al. 
2018), as well as to obtain information on the binding mode 

and efficacy of pharmaceutical compounds (Wrasidlo et al. 
2016). Here, we used this approach to study the tempera-
ture dependence of aSyn-liposome interactions. The changes 
taking place as the measurement temperatures increase are 
readily observed when comparing the peak intensity pattern 
along the primary sequence at different temperatures (see 
Figs. 6 and 7 ).

At low temperatures (15 °C), binding is nearly entirely 
restricted to the 25 most N-terminal residues of aSyn. But 
higher temperatures (35 °C) show strong binding for more 
than 100 residues, leaving only the C-terminal residues 
relatively unaffected. While the higher temperatures lead 
us to expect faster exchange between free and bound forms, 
the very slow exchange described (Bodner et al. 2009) for 
intermediate temperatures and also the lack of residue-
specific peak shifts induced by liposomes, which would be 
expected for fast exchanging species, allow us to interpret 
the observed curves as a reflection of the bound fraction 
of protein regions. The dense sampling of temperatures 
in this study provides further insights into the intriguing 
changes observed in aSyn-liposomes interactions.

Tracking the relative intensities on a per-residue basis 
across the measured temperature range, we see that not 
only is there a reduction in peak intensity, but for many 
residues this transition is non-linear. By fitting a sigmoidal 
function to these residues, we can obtain the temperature 
of maximal change (that is, the “melting” or “transition 
temperature”; see Fig. 5). For peaks displaying non-linear 
behavior, the temperature of transition from one binding 
mode (or ensemble of structures) to another rises along the 
primary sequence of the protein. Although the tempera-
ture range is narrow, we see that the N-terminal region 
(AAs 1–40) of the protein switches to a larger bound 
fraction earlier than the remainder of its membrane bind-
ing region. It has previously been observed that aSyn’s 
N-terminus has a higher membrane affinity (Bartels et al. 
2010). However, as far as we are aware, the temperature 
dependence of binding for its latter part has not been stud-
ied. That said, the disconnect between the regions is well 
established: Early work has demonstrated a helical break 
around residue 45 for micelle-bound aSyn (Chandra et al. 
2003; Ulmer et al. 2005; Bussell 2005), and this has also 
been shown to exist in the more physiological conditions 
of vesicle-bound aSyn (Lokappa and Ulmer 2011). The 
transition takes place at around 26 °C, close to standard 
measurement temperatures of 25 °C and above most room-
temperature experiments, underscoring the importance of 
considering the possible effects of the measurement tem-
perature on experimental observables.

The protein:liposome ratio is constant over the entire 
temperature range, so the larger amount of bound pro-
tein regions at higher temperatures reflects either a struc-
tural change in the membrane or a structural change in 
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the bound state of aSyn. As the transition temperature is 
far removed from the melting temperature of POPG-based 
bilayers (Wiedmann et al. 1993), a temperature-dependent 
structural change in the membrane would be a local effect, 
driven by the prior structural ordering of lipids through 
aSyn, as is observed for other proteins (Drücker et al. 
2013; Varyukhina et al. 2022). Membrane curvature modi-
fication by aSyn has been suggested (Braun et al. 2012), 
so a localized influence on the order of lipid molecules 
is likely. Therefore, additional binding of aSyn could be 
facilitated by a further insertion in the lipid bilayer or by 
interactions between bound aSyn entities in its new struc-
ture, or both as indicated in (Schwarz et al. 2023).

The data presented shows a change in the bound state 
of aSyn at elevated temperatures. This change is not a sim-
ple transition to one new bound state, but rather involves 
intermediate states or more than one new bound state: The 
transition is not uniform throughout the entire length of the 
protein. We are thus possibly observing a synergistic process 
involving both an alteration of the lipid structural order and 
aSyn structural re-arrangement. It is interesting to note that 

the two major regions with differing temperature-depend-
ent binding profiles fit in well with the known helical break 
within the structure of aSyn - which, it has been proposed, 
plays a central role in its physiological function. On the 
one hand, the interaction of the C-terminal helix improves 
the odds of forming a membrane anchor at the N-terminus 
(Cholak et al. 2020); on the other, the two helices are subse-
quently also capable of binding to two separate membranes, 
enabling membrane fusion processes (Das et al. 2022). The 
strong impact that different lipid compositions have on the 
binding affinity and binding mode of aSyn (Man et al. 2021) 
is likely mirrored in the temperature dependence that we 
observe.

NUS reconstruction—DCS versus CS

For each temperature in a series, we performed DCS 
reconstruction for spectra with the addition of liposomes 
( SB(�1,�2) ), using fully sampled spectra without liposomes 
( SA(�1,�2) ) as a basis. As all the data was acquired using 

Fig. 6   DCS reconstruction results: relative heights of peaks in 
1H −

15N HSQC of aSyn with and without liposomes versus residue 
number. Various temperatures, NUS level of 40 points and full data 

results. Normalized residuals are as follows (from lowest temperature 
to highest): 0.081; 0.068; 0.064; 0.108; 0.100; 0.128; 0.195; 0.320; 
0.307; 0.290; 0.267; 0.256; 0.230; 0.442; 0.510
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full sampling, we could test various NUS levels by apply-
ing artificial undersampling. The indicator of aSyn-liposome 
binding, Irel , served as a quality factor. In our analysis we 
sought to answer the following questions: What are the 
advantages and disadvantages of DCS in terms of recon-
struction quality and sensitivity? How does conventional CS 
compare with DCS for spectra with different signal-to-noise 
ratios and NUS levels? Can we use NUS methods other than 
CS/IST to process difference signals? Is DCS applicable to 
serial measurements other than VT-NMR? And does it make 
sense to apply it to dimensionalities three and more?

Figure 8 shows Irel in DCS and fully sampled spectra as 
a function of the residue number for the lowest temperature 
in the series (15 °C). It is worth comparing these plots with 
those presented in Fig. 9. For lower sampling levels (32 or 
40 NUS points), the DCS reconstruction is much better than 
the CS reconstruction. It provides a very good Irel profile and 
unambiguously indicates that residues close to N-terminus 
are involved in binding. Thus, the increased sparsity pro-
vided by DCS does indeed lead to better reconstruction. At 
higher sampling levels, the CS reconstruction is better than 

DCS as taking the difference amplifies the noise by approxi-
mately 

√
2 . On the other hand, if there are enough NUS 

points, condition Eq. (1) is fulfilled. At higher temperatures 
(over 23 °C), the noise amplification problem becomes so 
pronounced that DCS cannot be considered superior to con-
ventional CS. This fact also manifests itself in the residuals 
of the peak heights of the reconstructed data compared to 
those of the full data. For each panel in Figs. 6, 7, 8, and 
9, we provide the corresponding normalized residuals: the 
l2-norm of the difference of the reconstructed and the full 
height vectors, divided by the l2-norm of the full height 
vector. In the Supplementary Information, we also provide 
a list of all the normalized residuals for all temperatures and 
sampling levels.

To sum up, using only 64 points from a 256 points grid 
allows us to reconstruct the temperature curves with high 
fidelity, providing melting temperatures (see Fig. 5). At an 
even lower NUS level (40 points) the resulting trends (Fig. 6) 
are satisfactory in qualitative terms. We can now collect the 
data for the samples with liposomes in approximately two to 
three hours, compared to 12 h for full sampling.

Fig. 7   Conventional CS reconstruction results: relative heights of 
peaks in 1H −

15N HSQC of aSyn with and without liposomes vs. res-
idue number. Various temperatures, NUS level of 40 points and full 

data results. Normalized residuals are as follows (from lowest tem-
perature to highest): 0.125; 0.093; 0.141; 0.113; 0.135; 0.138; 0.169; 
0.121; 0.154; 0.260; 0.403; 0.178; 0.330; 0.459; 0.172



158	 Journal of Biomolecular NMR (2023) 77:149–163

1 3

The peculiar shape of a “difference spectrum” (Fig. 10C) 
should be taken into account when choosing an appropri-
ate NUS method for its reconstruction. Some of the algo-
rithms, such as SMILE (Ying et al. 2017), SCRUB (Coggins 
et al. 2012), and LPMP (Kazimierczuk and Kasprzak 2014) 
assume a certain lineshape, typically a mixture of Gauss-
ian and Lorentzian. Others, such as R-MDD (Jaravine et al. 
2006) or low-rank completion (Qu et al. 2015) are not so 
strict, but work most effectively when the signal is auto-
recursive (for example, exponential). Such assumptions are 

not necessarily fulfilled in difference spectra. The recon-
struction algorithm in this case should not therefore assume 
any particular peak shape. Iterative soft thresholding (Kazi-
mierczuk and Orekhov 2011; Hyberts et al. 2012; Sun et al. 
2015), iteratively re-weighted least squares (Kazimierczuk 
and Orekhov 2011; Kazimierczuk et al. 2012), maximum 
entropy (Hoch 1969; Mobli and Hoch 2008), and machine-
learning methods (Hansen 2019; Karunanithy and Hansen 
2020; Luo et al. 2020; Jahangiri et al. 2023) employing 
dedicated networks are all suitable for difference spectra. 

Fig. 8   DCS reconstruction results: relative heights of peaks in 
1H −

15N HSQC of aSyn with and without liposomes versus residue 
number. Various NUS sampling levels and full data results. T=15 C◦ 
(see Supplementary Information for results at higher temperatures). 

Normalized residuals are as follows (from lowest sampling level to 
highest): 0.136; 0.105; 0.091; 0.087; 0.081; 0.071; 0.070; 0.067; 
0.055
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Methods based on the assumption of dark spectral regions, 
such as SIFT (Matsuki et al. 2011) or iterated maps (Frey 
et al. 2013), could also work effectively on the difference 
signals. Moreover, the bright regions can be severely nar-
rowed down. Notably, the virtual echo procedure (Mayzel 
et al. 2014) is fully applicable to DCS—and indeed was 
effectively used in this study.

Is it possible to co-process the data with and without 
liposomes using multidimensional decomposition (Orekhov 

and Jaravine 2011)? Indeed, if the differences between 
spectra SA(�1,�2) and SB(�1,�2) were only a matter of 
amplitudes (peak heights), then individual peak shapes in 
SB(�1,�2) could be effectively determined from SA(�1,�2) 
by multidimensional decomposition. The NUS reconstruc-
tion of SB(�1,�2) would then be limited to determining 
peak heights. Unfortunately, the slight shifts of resonance 
frequencies between spectra make this approach unfeasible.

Another option we considered and found ineffec-
tive in determining Irel is a quasi-Radon transform of a 

Fig. 9   Conventional CS reconstruction results: relative heights of 
peaks in 1H −

15N HSQC of aSyn with and without liposomes versus 
residue number. Various NUS sampling levels and full data results. 
T=15 C◦ (see Supplementary Information for results at higher tem-

peratures). Normalized residuals are as follows (from lowest sampling 
level to highest): 0.721; 0.463; 0.220; 0.183; 0.125; 0.060; 0.075; 
0.041; 0.060
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non-stationary signal, as discussed in Shchukina et  al. 
(2021). This method is good at determining the changes in 
resonance frequency, but not so good for peak height vari-
ations. Although these variations are encoded in the line-
shapes (see Fig. 1 in Dass et al. (2017)), they are not easy to 
decode using currently available methods.

Importantly, DCS could be the optimal approach for 
speeding up other serial NMR experiments in which low 
spectral sparsity limits the use of conventional CS. If the 
signal-to-noise ratio is reasonably high, one might consider 
using it for reaction monitoring, for example. By contrast, 
if most peaks in the spectrum change their intensities—for 
example, in 3D DOSY and 2D relaxation series—taking the 
difference does not improve sparsity and the use of DCS is 
not justified.

As with conventional CS, a high dynamic range of signal 
intensities in the spectrum is challenging for DCS (Wieske 
and Erdélyi 2021). Sometimes, however, using a difference 
signal may lower the intensity range. When studying reac-
tions occurring in mixtures, for instance, consecutive spectra 
in the series of measurements may only show changes in 
small components, thus improving the CS reconstruction 
conditions not only in terms of sparsity, but also dynamic 
range.

For serial measurements of dimensionality higher than 
two, the low sensitivity is more problematic than the 
mathematical conditions of NUS reconstruction (Eq. (1)). 
As shown elsewhere (Kazimierczuk et al. 2014), it often 
makes sense to worsen the latter and improve the signal-
to-noise ratio, for example, using the relaxation-matched 
NUS density (Barna et al. 1987). For dimensionalities 
higher than three, thousands of NUS points are usually 
collected for sensitivity reasons, making even conventional 

CS reconstruction unnecessary (Kazimierczuk et al. 2009, 
2013). Thus, in our opinion, the main field of application 
for DCS is likely serial 2D NMR with high sensitivity and 
low sparsity, combined with high sparsity of the “differ-
ence spectrum”. The variable pressure or variable tem-
perature series are good examples of this.

Conclusion

The efficacy of NUS/CS reconstruction depends on the spar-
sity (compressibility) of the spectrum. We can sometimes 
improve the quality of the reconstruction by focusing only 
on the differences between NUS data and similar spectra that 
are known in advance. In the case of aSyn, as described in 
this paper, the DCS approach allows us to determine tem-
perature-dependent transitions in the bound ensemble with 
much faster signal acquisition times than is the case with 
conventional CS. The information obtained on the tempera-
ture dependence of aSyn binding shows two somewhat inde-
pendent regions, which fit well with published information 
on its membrane-bound structure and the role this structure 
plays in its physiological function. This new information on 
temperature dependence should be taken into consideration 
in future investigations of this protein.

Importantly, after acquiring the signal it is possible to 
choose between CS and DCS. In so doing, one should con-
sider the strengths and weaknesses of each approach. Thus, 
while DCS increases sparsity and improves the mathemati-
cal conditions of the reconstruction, it worsens the signal-to-
noise ratio. Conventional CS, by contrast, is more sensitive. 
As we show in this paper, CS and DCS are complementary 

Fig. 10   2D 1H −
15N HSQC of aSyn at T=15◦ C and an example ver-

tical trace (8.347 ppm in �
2
 ). A Spectrum of aSyn sample without 

liposomes. B Spectrum of aSyn sample with liposomes. C Raw dif-

ference between A and B. D Difference spectrum optimized accord-
ing to Eq. (2)
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tools. Indeed, in some cases, the optimal approach may be 
to use both approaches in a single study.
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