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Abstract
Fragment-based drug discovery or FBDD is one of the main methods used by industry and academia for identifying drug-
like candidates in early stages of drug discovery. NMR has a significant impact at any stage of the drug discovery process, 
from primary identification of small molecules to the elucidation of binding modes for guiding optimisations. The essence 
of NMR as an analytical tool, however, requires the processing and analysis of relatively large amounts of single data items, 
e.g. spectra, which can be daunting when managed manually. One bottleneck in FBDD by NMR is a lack of adequate and 
well-integrated resources for NMR data analysis that are freely available to the community. Thus, scientists typically resort 
to manually inspecting large datasets and relying predominantly on subjective interpretations. In this manuscript, we present 
CcpNmr AnalysisScreen, a software package that provides computational tools for automated analysis of FBDD data by 
NMR. We outline how the quality of collected spectra can be evaluated quickly, and how robust workflows can be optimised 
for reliable and rapid hit identification. With an intuitive graphical user interface and powerful algorithms, AnalysisScreen 
enables easy analysis of the large datasets needed in the early process of drug discovery by NMR.
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Abbreviations
CcpNmr  Collaborative computing project for NMR 

(software)
FBDD  Fragments based drug discovery
HSQC  Heteronuclear single quantum coherence 

spectroscopy
KD  Dissociation constant
NMR  Nuclear magnetic resonance
PCA  Principal component analysis
NOE  Nuclear overhauser effect
STD  Saturation transfer difference
WaterLOGSY  Water-ligand observation with gradient 

spectroscopy
TINS  Target immobilised NMR screening

CSP  Chemical shift perturbation
GUI  Graphical user interface
ppm  Part per million
RF  Radio frequency
ROC  Receiver operating characteristic
SMILES  Simplified molecular-input line-entry 

system
JSON  JavaScript object notation
FDA  Food and drug administration

Introduction

Over the years, the versatility of NMR as a non-destructive 
and adaptable analytical tool has encouraged the develop-
ment of multiple fragment-based drug discovery (FBDD) 
approaches by NMR (Dias and Ciulli (2014). Nowadays, it 
is possible, albeit not frequently done, to conduct the entire 
drug discovery process by NMR: from hit detection and 
binding site identification to the determination of the ligand 
orientation and hit optimisation. A meticulous examina-
tion of recent FDA-approved drugs and drugs in clinical 
stage studies, indicates a substantial contribution of various 
NMR-based techniques to the whole drug discovery process 
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(Petros et al. 2006; Szlávik et al. 2019; Schoepfer et al. 2018; 
Erlanson et al. 2016a). Assuming the target of interest has 
already been identified, hit identification is usually the first 
step in the drug discovery process and this is the aspect we 
concentrate on in this article. This can be achieved by NMR 
using a number of common ligand-detected NMR meth-
ods (Dias and Ciulli 2014), namely 1H-relaxation-edited 
(commonly called 1H), saturation transfer difference (STD) 
(Mayer and Meyer 1999), WaterLOGSY (Dalvit et al. 2000) 
(Fig. 1a), and alternative relaxation experiments  (T1ρ,  T2). In 
addition, a number of complementary techniques, i.e. target 
immobilised NMR screening (TINS) Vanwetswinkel et al. 
(2005), spin label analysis (Jahnke 2002), paramagnetic 
relaxation enhancement (PRE) (Guan et al. 2013) and 19F 
experiments (Dalvit and Vulpetti 2012) have been success-
fully used in the primary hit identification process.

All direct ligand-observed NMR methods rely on 
the differential molecular properties of the target and 
ligand, strategically recording only ligand signals while 

suppressing the detection of target signals thus allowing 
for a significant reduction of spectral crowding.

A small-molecule ligand engaged in a fast-exchange 
complex with a macromolecule partially acquires the spec-
troscopic NMR properties, e.g.  T1/T2 relaxation and 1H-1H 
cross-relaxation rates, of the macromolecule. When there 
is a sufficiently large molar excess of the small molecule 
ligand, this typically results in the detection of chemical 
shifts of the ligand free-state, but with modified relaxation 
properties more reminiscent of the bound state (Campos-
Olivas 2011) (Fig. 1a). For example, small molecules 
tumble fast in solution and hence their NMR resonance 
lines are characterised by long transversal relaxation times 
 (T2) that result in narrow lines. In contrast, when bound 
to a slowly tumbling macromolecules the NMR lines of 
the small molecule are significantly broader. Therefore, in 
the case of fast exchange of the small molecule between 
the free and bound states, its NMR signals will become 
broadened (Fig. 1a).

Fig. 1  Ligand-detected NMR methods. Common techniques for 
detecting ligand binding (Sugiki et  al. 2018) to a large macromo-
lecular target (blue motif). The binding and non-binding compounds 
(small molecules) are displayed as a green hexagons and red squares, 
respectively a 1H Relaxation-edited experiment. The peaks of both 
compounds in the control spectrum are characterised by narrow res-
onance lines. In the presence of a target, a binding compound par-
tially acquires the NMR properties of the macromolecule, resulting 
in a broadening of its resonance line (green peak). The effect does not 
affect a non-binding compound. b In the on-resonance experiment 
of a saturated transfer difference (STD) experiment, a saturating RF 
field is applied to the target and saturation is transferred to the bind-

ing compound, resulting in a slightly lower intensity of its resonance 
line. In the off-resonance control experiment no such effect occurs; 
consequently, only the resonance of the binding compound will be 
visible in the STD spectrum. c In the WaterLOGSY experiment satu-
ration is transferred to the target through saturation of the bulk water 
molecules and passed on to the binding compound. Its resonance line 
in the spectrum in the presence of the target will have the opposite 
sign compared to the control spectrum. d In the  T1ρ experiments a 
series of spectra are recorded with different relaxation durations. For 
the binding compound, spectral intensities will attenuate at a faster 
rate compared to the non-binding compound
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The saturation transfer difference (STD) experiment relies 
on the efficient spin-diffusion of saturated proton magneti-
sation in the macromolecule through measurement of the 
so-called “on-resonance” and “off-resonance” experiments. 
In the “on-resonance” experiment, selected 1H resonances 
of the macromolecule that are non-overlapping with those of 
the ligand are saturated using a train of RF pulses. The satu-
ration propagates rapidly through the macromolecule and to 
the bound ligand as a result of efficient intramolecular and 
intermolecular 1H-1H cross-relaxation, respectively (Lepre 
et al. 2004) (Fig. 1b). As the ligands are in rapid exchange 
between their bound and free states, they maintain their satu-
rated state resulting in attenuated or even absent signals in 
the resulting “on-resonance” spectra. In the “off-resonance” 
control experiment, the macromolecular resonances are not 
saturated resulting in signals with original intensities. Sub-
traction of the “off-resonance” spectrum from the “on-res-
onance” spectrum yields the STD spectrum, in which only 
saturated ligand resonances will be observable (Fig. 1b). The 
signals of the macromolecule will be minimal or absent, as 
a result of the much smaller concentration of the latter in 
comparison to the ligand, thus greatly simplifying spectral 
analysis.

In an alternative approach, the so-called WaterLOGSY 
experiments (Dalvit et al. 2000, 2001) (Fig. 1c), the ligand 
and macromolecular target are saturated indirectly through 
the bulk water magnetisation. The saturation is transferred 
from the bulk water to the ligand through several mecha-
nisms, in particular by direct 1H-1H intermolecular cross-
relaxation between water molecules in close proximity 
to the binding pocket and the bound ligand. Alternative 
mechanisms include the direct exchange with macromo-
lecular NH and OH protons within the binding site and the 
ligand, or indirectly, through a spin-diffusion mechanism. 
In both cases, NMR properties of the bulk water are trans-
ferred to the bound ligand, and the resulting spectrum dis-
plays inverted signals for bound ligands compared to the 
unbound ligands (Fig. 1c). The detection of ligands that bind 
to macro-molecules with a relatively low density of protons 
might benefit from the WaterLOGSY technique (Jahnke 
2002). Furthermore, WaterLOGSY experiments have dis-
played higher sensitivity for detecting binding molecules 
compared to STD experiments when used to screen very 
large biomolecules at low concentrations (Antanasijevic 
et al. 2014). Antanasijevic et al. believed that this is caused 
by the higher concurrent (direct and indirect) saturation of 
various sites in the binding complex (Antanasijevic et al. 
2014).

A third approach exploits the altered  T1/T2 relaxation 
properties of ligands that bind to a macromolecular target 
(vide supra). In the so-called 1H-relaxation-edited experi-
ment, also referred to as the  T1ρ experiment, a series of spec-
tra are recorded in which the ligand signals are subjected to 

varying durations (typically in a range of 1 to 200 ms) of 
transverse relaxation, i.e. either as  R2 or  R1ρ. Bound ligands 
will exhibit faster  R2 or  R1ρ rates, i.e. shorter  T2 or  T1ρ relax-
ation times, and their signals will be significantly attenuated 
in the spectra compared to ligands that do not bind to the 
macromolecular target (Fig. 1d).

In spite of all the powerful NMR experiments used for 
NMR-based FBDD (Sugiki et al. 2018), inefficient evalu-
ation of the primary hit screening data can disrupt or post-
pone any of the later phases, such as binding site identifica-
tion and hit optimisation (Fig. S1).

Primary screening is routinely performed manually by 
comparing spectral information derived from thousands 
of STD, WaterLOGSY and relaxation-edited experiments. 
Manual analysis of these data inevitable results in human 
errors or subjective inconsistencies, in addition to problems 
arising from commonly occurring experimental errors, such 
as improper alignment and scaling of spectra. The latter 
are detrimental to the accurate assessment of any datasets, 
whether manual or automated. Even when using computa-
tional routines, several inherent difficulties to the data analy-
sis process still remain. The different nature of each NMR 
screening experiment translates into fundamentally differ-
ent spectral patterns. Consequently, it requires robust algo-
rithms, such as those employed for peak detection or peak 
matching, that ideally require no fine tuning of algorithms 
via adjustable parameters as this would slow-down, compli-
cate and reduce the reproducibility of whole data analysis. 
Accurate peak detection is also fundamental for the genera-
tion of the most optimal mixtures on the basis of the library 
of spectra of the compounds, as subsequent deconvolution of 
their spectra is a key step in the identification of potentially 
binding compounds.

Currently, only a limited number of tools that provide 
support for NMR screening exist, such as Bruker TopSpin 
(TopSpin) or MestreLab MNova Screen (Peng et al. 2016), 
both of which are often not affordable for occasional or 
academic users. Alternatively, NmrGlue (Helmus and Jaro-
niec 2013), a freely available collection of NMR library 
functions, could serve as the building blocks for creating 
stand-alone custom scrips for expert users, but to the best 
of our knowledge no such efforts have been documented. In 
this manuscript we introduce the CcpNmr AnalysisScreen 
software programme, or AnalysisScreen for short, which is 
part of the Analysis version-3 software suite (Skinner et al. 
2016) as an alternative data analysis and inspection platform. 
AnalysisScreen aims to facilitate the hit identification pro-
cess by offering a set of tools for streamlined inspection of 
spectral data, automation of common processing and analy-
sis workflows. As a result, AnalysisScreen assists in both 
qualitative and quantitative inspection of NMR data, reduc-
ing false negatives (wrongly missed or rejected hits) and 
false positives (wrongly accepted hits). The AnalysisScreen 
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core is implemented with the requirements of speed and cus-
tomisation in mind, thus offering users a platform capable of 
easy adaptations, following any future NMR methods that 
might emerge.

Materials and methods

Computational libraries

AnalysisScreen is written in the Python 3.6 programming 
language. Synthetic datasets, implemented algorithms, 
routines and macros, were written using the open-source 
scientific libraries such as Numpy, ScyPy (Taschini 2008), 
Sci-kit Learn (Pedregosa et al. 2011) and Numba which are 
included in the main CcpNmr environment (Skinner et al. 
2016). Numba (Lam et al. 2015) has been used to improve 
the speed of repeated and time-consuming routines, such 
as peak picking. Pandas (McKinney 2011), has been used 
mainly for importing, parsing, exporting and filtering 
metadata. PyQt5, PyQtGraph (Campagnola), Matplotlib 
(Hunter 2007) and Seaborn (Waskom et al. 2017), have 
been employed for plotting and results analysis as well as 
for building custom widgets into the main programme.

The core code and concept of the NmrMix simulated-
annealing algorithm (Stark et al. 2016), including its scor-
ing function, were used to implement the mixture analysis 
module included in CcpNmr AnalysisScreen. Although the 
crucial simulated-annealing algorithm steps were unaltered 
as in the original package, it has been speed-optimised. We 
also included the ability to preserve the best-scored mixtures 
and included an option for their use as input for subsequent 
generations, while retrieving them if ameliorated solutions 
could not be achieved.

The peak picker algorithm used for analysing these data-
sets was based on the method described by Billauer (2012). 
The Algorithm has been optimised to handle larger NMR 
datasets using Numba’s properties, and inserted extra filters, 
such as masked regions (to be ignored from the analysis) 
and removal of local minima. The positive noise threshold 
is used as the delta value in the peak picker.

Positive and negative noise thresholds are estimated auto-
matically as follows:

where N is a defined downfield region of the spectrum, by 
default 10% of the total datapoint count; σ is its standard-
deviation and α is the adjustment factor.  NMin, is used instead 
of  NMax to calculate the negative threshold.

Negative and positive noise threshold values were used 
to calculate the Signal-to-Noise ratio as

(1)N
Th

= ��N ∗ N
Max

where S is the peak height and α is the adjustment factor. 
 NMax and  NMin are the positive and negative noise threshold 
values.

Scorings

Matching and relative scores for hit identification were cal-
culated as

where  AMed represents the median for the absolute observa-
tions (peak heights or Δppm positions for matching scores) 
and  ATot the total count. If only two values are present in the 
array, then only the minimum value is taken:

Hit scores were normalised to values in a range 0–100 by:

where S are the relative scores calculated using Eqs. 3 and/
or 4.

Testing datasets

To evaluate AnalysisScreen’s capabilities we used two types 
of spectral datasets. The first was artificially created, and 
it is referred to as “simulated”; whereas the second data-
set consisted of a total of 2070 spectra provided by our 
industrial collaborators as part of an actual experimental 
screening trial. It is referred throughout the manuscript as 
“experimental”.

Simulated spectral datasets were generated using in-house 
written scripts (macros) in Python, employing the Analy-
sisScreen Python environment. Using these macros, we 
were able to create an arbitrary number of spectral peaks 
at random positions and heights, and with Lorentzian line 
shapes with varying linewidths. To test the dependency of 
correctly identifying a hit on the Signal-to-Noise (S/N) ratio, 
we simulated an STD spectrum for 100 compounds and rec-
reated 300 randomly generated copies at various S/N ratios. 
For simplicity, only one peak per spectrum was created at a 
random position. The peak picker routine was expected to 
find a total of 100 known true positive peaks and 100 true 
negatives. Total true negatives were set arbitrarily to 100 to 
avoid an unbalanced dataset. Molecule structures, includ-
ing SMILES, and other chemical properties were randomly 
created and assigned to the spectra. All simulated datasets 
and metadata generated for this work were used only for 

(2)SN
Ratio

= α ∗
S

N
Max

− N
Min

(3)S
Rel

=
|
|AMed

|
|*ATot

(4)S
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= |A
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|*A
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(5)S
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= 100 ∗

S − S
Min

S
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− S
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testing or demonstration purposes and have no biological 
significance.

The experimental dataset consisted of a library of 1760 
small-molecule compounds, for which a processed one-
dimensional reference spectrum was provided in Bruker 
format. From this library, 1548 fragments had been used 
to create 310 samples containing four to five, randomly 
selected small ligands at ~ 200 μM each and an unnamed 
target at ~ 4 μM. A processed STD spectrum for each sample 
was provided. Although all the crucial data needed for the 
assessment of the AnalysisScreen routines was available, the 
biological information and detailed experimental conditions 
were confidential and not shared with us.

Results and discussion

Parsing and importing NMR data and metadata

Typically, an NMR based FBDD screening experiment 
requires the handling of a large volume of spectral data 
and metadata. To address this problem, we included in 
AnalysisScreen the option to use spreadsheets in Excel 
format as a data loading mechanism. The programme can 
natively read, parse and load files with multiple sheets 
(Fig. S2A–B), where column-based keywords define the 
relevant pieces of information. Upon parsing and import-
ing into AnalysisScreen, commonly used parameters and 
information associated within a sample, e.g. different 
experimental conditions, are immediately available within 
the sidebar of the AnalysisScreen programme (Fig. 2a). 
All metadata is retained with the relevant CcpNmr object, 
such as experiment types of spectra or SMILES and other 

Fig. 2  CcpNmr AnalysisScreen sidebar and various pop-ups. a 
Screenshot of the sidebar state after parsing and loading an Excel file 
containing spectral metadata. Objects are automatically created and 
are listed on various branches. The regex-enabled search widget (blue 
rectangle) allows for quick scanning of project metadata through the 
tree, an essential feature when handling several hundred entries of a 
typical NMR screening dataset. b Small molecule metadata are stored 
into the CcpNmr software as Substances. Substances are a represen-
tation of chemical properties of the reference compound. They can 

be visualised and edited in the Substances pop-up. If SMILES are 
provided, molecular structures are also shown in this window. c The 
Samples properties pop-up enables users to insert and edit informa-
tion regarding particular experimental conditions, such as concentra-
tion and pH or other sample identifiers. d The SpectrumGroup editor 
pop-up allows users to quickly and easily group spectra using drag-
and-drop features. SpectrumGroups can be displayed as single entities 
in displays or be used as input data for several tools throughout the 
programme
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chemical properties of molecules, named Substances in 
the programme nomenclature. All objects used for screen-
ing analysis can also be graphically inspected, edited or 
deleted using dedicated pop-ups (Fig. 2b–d).

To further simplify the data analysis preparation, the 
data loader also includes an automatic path recognition 
ability so that specifying the absolute spectral data loca-
tions is no longer required. In addition, spectra can be 
automatically grouped into so-called SpectrumGroups; 
these are user-defined collections of spectra, designed in 
such a way that multiple routines can be applied uniformly 
to all their items. SpectrumGroups follow the same phi-
losophy of single spectra when it comes to visualisation, 
and can, therefore, be displayed and manipulated as sin-
gle entities. Samples, SampleComponents, Substances, 
SpectrumGroups and SpectrumHits objects are internally 
connected, forming the underpinning core objects of the 
AnalysisScreen programme (Fig. S2C). AnalysisScreen 
maintains the same organisational working areas of Ccp-
Nmr AnalysisAssign (Skinner et al. 2016), called mod-
ules. Modules are containers designed to visualise, inspect 
and perform actions on all types of data the project might 
contain.

Assessment of spectral quality by PCA 
decomposition

Commonly, NMR primary screening studies rely on a collec-
tion of one-dimensional spectra acquired for each compound 
in the screening library, called the reference spectra or refer-
ence library. The reference library is typically recorded in 
an automated fashion and its data are used throughout the 
analysis. Therefore, ensuring its suitability by filtering out 
any potentially compromised spectra is essential. Nonethe-
less, inspecting spectra individually for large libraries can be 
a time-consuming task. Principal Component Analysis, PCA 
(Stoyanova and Brown 2001), can be used for the assessment 
of spectra, without pre-knowledge of spectral line shapes or 
other peculiarities. AnalysisScreen offers an integrated PCA 
decomposition module, capable of effortlessly performing 
a PCA on large libraries. Figure 3 displays the result of a 
PCA analysis performed on a SpectrumGroup consisting 
of 1760 experimental reference spectra. The result of this 
analysis shows a high variance dispersion among the first 
two PCA components, enabling quick identification of any 
outliers. Intriguingly, we could identify several groups of 
spectra that displayed similar processing defects or other 

Fig. 3  Principal component analysis (PCA) of 1760 reference spectra. 
Most of the spectra were uniformly grouped around the PCA origins, 
(blue rectangle, panel a); for spectra in the region 3 < PC1 < 7 (pur-
ple rectangle, panel b) large phasing errors were observed; the spectra 

in the region PC1 > 8 (green rectangle, panel c) appeared highly dis-
torted, probably due to inadequate solvent suppression. Finally, spec-
tra presenting only noise were discovered in the region indicated by 
the red square (panel d)
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spectral imperfections (Fig. 3, sections b, c and d), such as 
phasing artefacts, inadequate solvent suppression or even the 
absence of signal data all together. Also, very high values of 
the Q-Score, a metric commonly used for evaluating varia-
tions outside of the PCA model (Mujica et al. 2011), easily 
identified most of the irregular spectra (Fig. S3A).

In the AnalysisScreen PCA module, each data-point in 
the PCA space is linked to its corresponding spectrum, so 
it can be easily accessed, inspected, removed from the pro-
ject, or corrected using other tools such as pipes (vide infra) 
present in the programme. Furthermore, the decomposition 
module allows principal component vectors to be displayed 
and offers the possibility to create new simulated spectra or 
export the various scores (Fig. S3B).

Mixture optimisations

Following the quality assessment of the reference library, 
its reference spectra form the basis for generating mixtures 
based on their peaks. In fact, for reducing the experimental 
resources required for NMR-based screening, i.e. samples, 
NMR time, etc., a common approach is to analyse several 
compounds simultaneously against a target in a so-called 
mixture, which should be carefully designed to minimise 
spectral overlap. Manually generating random mixtures can 
result in overcrowded spectra, which are difficult to interpret, 
error prone and time-consuming when it comes to decon-
voluting single signal entities to identify possible binders. 
AnalysisScreen includes optimisation tools that allow the 
user to create and edit mixtures, thus minimising spectral 
overlaps. The core engine of the AnalysisScreen mixtures 
module uses the powerful NmrMix simulated annealing 
algorithm (Stark et al. 2016). However, we significantly 
boosted the execution speed of key numerical routines by 
converting on “the-fly” the original Python code in a com-
piled machine language. The mixture generation tool also 
guarantees that mixtures and scores are internally preserved 
during all iterations and eventually the best-scoring solutions 
are presented to the users. AnalysisScreen can create mix-
tures de-novo starting from reference spectra, but it can also 
be used to score existing mixtures, such as the one provided 
by our collaborators. The latter was generated randomly 
without any further optimisation.

We assessed the mixture generation tool with an initial 
1000-iterations calculation and calculated the total overlap 
score for each iteration (Fig. S4A). The evolution of the sim-
ulation shows the pattern of this stochastic algorithm, with 
the overlap score reaching several minima just above a value 
of 1250, which is notably better than value of 1381 obtained 
for the original randomly created mixtures. However, some 
iterations displayed considerably inferior values; those solu-
tions were obviously discarded. To assess the influence of 
the size and the nature of the dataset, we divided our original 

input into either four or ten random SpectrumGroups and 
performed the calculations followed by joining the results in 
a single clustered output. This simple strategy showed a fur-
ther progressive reduction in total overlaps and scores (Fig. 
S4B). Although this result is somewhat counterintuitive, we 
speculate that by introducing four or ten random groups, 
we have increased the overall randomness of the sampling 
algorithm with respect to relevant spectral regions of inter-
est. Nonetheless, our findings demonstrated the importance 
of running a large number of iterations to establish an opti-
mal mixture, rather than relying on a few single individual 
optimisations. Using the automated approach, significantly 
optimised mixtures were generated when compared to the 
original randomly generated one. Importantly, we find both 
a shift to lower values in the distribution of the scores of 
each mixture as well as a reduction in the number and lower-
ing of the most poorly scoring mixtures, i.e. those with the 
most problematic overlap. It is to be expected that the latter 
represent the most challenging mixtures in the analysis of 
the data (vide infra).

Pipelines

The heterogeneity of NMR techniques for 1D screening, 
translates into the need for specific analysis workflows for 
each method. We addressed this by designing and imple-
menting the AnalysisScreen pipeline module (Fig.  4a, 
b). It permits users to apply multiple tasks or algorithms, 
called pipes, to single spectra or all spectra contained in a 
SpectrumGroup.

AnalysisScreen features application-specific pipes, such 
as line broadening, WaterLOGSY and STD hit detection, as 
well as a set of other data manipulation pipes that are shared 
across all other Version-3 Analysis programmes (Skinner 
et al. 2016). These include but are not limited to alignment, 
re-referencing and phase correction. Furthermore, the pipe-
line architecture easily allows the addition of user-defined 
operations such as a bespoke pipe, (Fig. S5A–B). The pipes 
together form a so-called pipeline that effectively imple-
ments a user-defined workflow. Any pipeline can be saved 
as a JSON file for re-use or exchange with other users of the 
CcpNmr Analysis suite. An example of an STD analysis 
pipeline is shown in Fig. 4c. The pipeline consists of a set of 
seven simple tasks, some of which are experiment-specific, 
such as STD Spectrum Creator, STD Efficiency, STD Hits, 
and some of which affect generic tasks, e.g. Noise Thresh-
old, Exclude Regions, Peak Detector pipes dictate the pick-
ing peaking. And finally, there is the Output Pipe. Each of 
these pipes is fully documented in the available tutorials 
within the software. SpectrumHits, defined as a detectable 
and identifiable signal that has changed relative to its con-
trol, can be accessed and inspected graphically by the Hit 
Analysis module (Fig. 4d). This module allows interactive 
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navigation to spectra and peaks for the best-matched refer-
ences and SpectrumHits. Furthermore, the main table allows 
quick and straightforward assessment of the best results by 
rank-order examination of several scores and display of all 
associated hit metadata.

Pipelines were initially tested on a series of small data-
sets simulating typical spectral patterns for STD, Water-
LOGSY, and 1H-relaxation-edited experiments. For each 
of these experimental screening data types the Spectrum-
Hits, were identified correctly (Fig. S6). We then created a 
larger dataset of simulated spectra at various Signal-to-Noise 
ratios (S/N) to determine the S/N regime for which observa-
tions could be accepted reliably as True Positive (TP) hits 

(Fig. 5a). Using these simulated spectra, we also evaluated 
the peak picker algorithm for its accuracy and sensitivity to 
correctly locate and distinguish the spectral signal from the 
noisy part of the spectrum. Using an in-house noise level 
threshold detection routine (Eq. 1), it was possible to detect 
over 90% of TP observations down to an estimated S/N 
of ~ 1.5 (Figs. 5b and S7A). Decreasing threshold param-
eters in an attempt to include more TP observations at lower 
S/N resulted in a decrease in general accuracy and preci-
sion, which is, obviously, not favourable (Figs. 5c, d and 
S7A–D). Analysis of the receiver operating characteristic 
(ROC) curve (Fig. S7D) shows the calculated threshold 
value to be located in the most favourable part of the ROC 

Fig. 4  CcpNmr AnalysisScreen Pipeline and Hit Analysis module. a 
Schematic representation of a pipeline. The pipeline is able to han-
dle SpectrumGroups as well as single spectra as the input data. Each 
pipe performs a dedicated action on the spectra and returns a new set 
of spectra which are used as input for each successive pipe. Finally, 
a result or report pipe provides information on performed actions. b 
Current graphical user interface for assembling and executing a Pipe-
line. The left side shows the available settings affecting the execu-
tion of the pipeline. Pipelines are constructed by simply selecting 
pipes from the main pull-down; the grey area underneath displays 
the selected pipes. On the right side, a pop-up is shown which can be 
used to customise the main selection pull-down. Pipelines can also be 
saved and restored, including last used parameters, as a JSON file that 

can be shared with other AnalysisScreen users. c A pipeline for STD 
hit identification. Each green header represents a pipe action. The 
pipe can be as simple as the Peak Detector, without user adjustable 
parameters, or a list of complex widgets such as the Noise Threshold 
pipe, which allows direct interaction with displayed spectra. d Cur-
rent Hit Analysis module graphical user interface containing a report 
of 1000 simulated samples for three different experiment types. The 
Hit Analysis module allows interactive inspection and assessment 
of SpectrumHits showing spectra, scores and associated metadata. 
Furthermore, custom peak tables (bottom) allow quick navigation 
through the peak hits in the selected spectrum display. A summary for 
the sample and SpectrumHit properties is shown in the bottom right 
corner
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curve, also suggesting it can be used as a reliable threshold 
for the automatic peak picking routine.

We also tested the performance of our automated STD 
analysis on the dataset containing 310 experimental STD 
spectra, acquired for samples in the presence of a biological 
target and mixture compositions of up to five components. 
Firstly, for comparison purposes, spectral peaks were manu-
ally picked for all available spectra. Using AnalysisScreen’s 
intuitive tools for visual spectrum inspection (Fig. S8), each 
of the 310 STD spectra was inspected by comparing it to 
all 1536 spectra of the reference library. A total of 18 STD 
spectra displaying STD effects were considered being True 
Positive SpectrumHits (Fig. 7a). Running the automated 
matching routine of AnalysisScreen, the same number of 
SpectrumHits was found (Fig. 7a). However, from the report 
of the Hit Analysis module we noticed that most of STD 
spectra were uniformly misaligned to their corresponding 
reference spectra (Fig. 6a, b) suggesting a potential refer-
encing issue. Referencing problems are commonly present 

in NMR due to variations in experimental conditions when 
acquiring screening samples and their reference compound 
independently (e.g. different spectrometers, temperatures, 
solvent compositions, etc.). The pipeline, therefore, includes 
re-reference and global alignment pipes that are capable of 
automatically detecting and applying shifts to each indi-
vidual spectrum or, alternatively, setting a specific param-
eter simultaneously for all spectra. For the dataset under 
examination, a total shift of 0.0075 ppm was determined 
(Fig. 6b) and applied to the STDs spectra. Finally, STD spec-
tra were re-matched to the reference data and the hits were 
re-evaluated.

Ultimately, a complete pipeline, consisting of automatic 
peak picking, re-referencing, and hit detection pipes was 
applied to the dataset. A total of 29 SpectrumHits were iden-
tified (Fig. 7a). Using the Hit Analysis module, the Spec-
trumHits were easily inspected and confirmed as True Posi-
tive observations whenever they displayed a recognisable 
signal above the noise. Some of these, however, had very 

Fig. 5  Peak and hit detection assessment using simulated spectra. 
a Simulated 1H spectra at different signal-to-noise ratios and esti-
mated positive noise thresholds calculated using Eq.  1, with α set 
to 1.5 (blue), relative adjustment  NTh+10 = + 10%  NTh (green) and 
 NTh-10 = − 10% (red). The left panel shows typical spectral peaks with 
an S/N greater than 2.5. Peak intensities are well above threshold val-
ues and peaks are correctly identified. At around a S/N of 1.5, most 
of the peaks are still identified, although a larger number of artefacts 
can be mistakenly included as real peaks. At very low S/N it is gen-

erally difficult to distinguish genuine peak shapes from the spectral 
noisy distortions. b Total count of correctly identified observations 
for 100 simple spectra simulated at over 20,000 different S/N vari-
ations. c Total accuracy for the peak picker on simulated spectra at 
different delta values. Accuracy (A) was defined as A = (TP+TN)/
(TP+FN+FP+TN). d Total sensitivity for the peak picker on simu-
lated spectra. Sensitivity (S) was calculated as S = TP/(TP + FN), with 
TP, TN, FP and FN denoting true positive, true negative, false posi-
tive, and false negative values, respectively
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low scores (Fig. S9C–D) and they were missed in the manual 
visualisation due to simple human oversight. However, four 
compounds previously flagged during the manual analysis 
as SpectrumHits were now not found (Figs. 7b and S9A, B), 
typically because the manual results did not comply with 
some of our pre-set threshold values, e.g. the spectral Signal-
to-Noise Ratio or the peaks were outside the chemical shift 
matching criteria. Some spectra, in fact, appeared to be very 
noisy and difficult to interpret even manually. In line with 
the simulated observations, experimental STD SpectrumHits 
for peaks with a S/N lower than 1.5 were barely recognis-
able from the overall noise and, were therefore excluded as 
True Positive hits. As such, we reinforce the importance of 
optimising acquisition parameters on a subset of samples to 
ensure an optimal S/N before the full STD screening study 
is started.

Inspection of the automated results also showed that some 
SpectrumHits had multiple matching reference spectra at 
crucial chemical shift positions, such as the mixture dis-
played in Fig. 7c. By displaying the total scores for opti-
mised and random mixtures, we identified this element as 

one of the worst scored, in proximity to the maximum and 
outliers (Fig. 7d). However, in the optimised mixture, as 
previously discussed, the corresponding compounds were 
part of mixtures with significantly less overlap. Therefore, 
we strongly believe that using the mixture optimisation strat-
egy before-hand would have further facilitated the final hit 
analysis detection.

Conclusions

With numerous techniques developed over the years, NMR 
has been invaluable in all stages of FBDD leading to prom-
ising drug-like molecules (Erlanson et  al. 2016b). The 
versatility of NMR spectroscopy has enabled it to tackle 
all aspects of drug discovery. Starting from the primary 
screening, NMR ‘chemical resolution’ excels in identify-
ing fragments which bind to the target with very low affin-
ity, including their binding properties (Meyer et al. 2004); 
NMR also assists in detecting target structural changes upon 
binding events, elucidating potential known and unknown 

Fig. 6  Re-referencing of spectral datasets. a and c show an exam-
ple of an STD SpectrumHit and its best-matched reference before 
and after applying a re-referencing pipe. b and d illustrate peak shift 
distributions of experimental STD spectra to their reference spectra 
before and after a re-referencing pipe was applied. The maximum of 

the distribution, ~ 0.0075 ppm, (from Fig. 6b), was used to calculate 
the total adjustment needed to re-reference the STD spectra to their 
references. d New distribution after the adjustment was applied, with 
a maximum centred around ~ 0.000 ppm
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“hot spots” (Williamson 2013). Lastly, it can be used for 
determining poses of multiple simultaneously binding frag-
ments, extracting valuable information for the generation of 
stronger ligands (Sánchez-Pedregal et al. 2005).

Although current techniques provide a multitude of roles 
and advantages, in everyday practice NMR data analysis 
can be daunting and time-consuming, generally due to lack 
of proper tools and uniform data handling practices. Cur-
rently, in contrast to AnalysisScreen the commercial Bruker 
TopSpin (TopSpin) and MestreLab MNova Screen (Peng 
et al. 2016) software packages unfortunately provide little 
customisation of individual workflows. Furthermore, hit 
scoring reports in TopSpin are limited to binary definitions, 
such as”binding” or “not binding” hits, whereas MNova 
Screen offers an overall intensity percentage change (Peng 
et al. 2016). No stand-alone NmrGlue (Helmus and Jaro-
niec 2013) based scripts for NMR screening data analysis 

currently exist; however, the routines of this package are also 
included in the CcpNmr Python environment of AnalysisS-
creen and thus are directly accessible within the programme, 
e.g. for incorporation into pipes.

The vast amount of data generated for each screening trial 
and the lack of freely available software capable of deal-
ing with this data leaves scientists setting up and repeating 
tiresome operations that could inadvertently lead to human 
errors. Moreover, users might rely only on qualitative assess-
ments, which can further increase the probability of misin-
terpreting the data. Here, we introduced CcpNmr Analy-
sisScreen, a software developed specifically for analysing 
Fragment-Based Drug Discovery data derived by NMR 
spectroscopy.

AnalysisScreen is easily able to cope with very large data-
sets, with a magnitude of tens of thousands of one-dimen-
sional spectral entries and associated metadata, including 

Fig. 7  Automated versus manual hit detection results. a Total num-
ber of SpectrumHits obtained by a visual inspection using manually 
picked peaks (light green bar); SpectrumHits obtained by the hit 
detection pipeline before and after re-referencing, using the same pre-
viously manually picked peaks (blue and yellow bars) and Spectrum-
Hits obtained after re-referencing and automatic peak detection using 
default parameters (dark green). b Newly detected and lost Spec-
trumHits counts between the four methods. Notably, the automatic 
approach showed 15 new potential SpectrumHits, which were missed 
during the manual analysis. c Example of STD SpectrumHit and best 
matched reference (compound 3) for the mixture. Although, all the 
references in the mixture appeared to have at least one matching peak 
to the SpectrumHit, the Hit Analysis module was accordingly able 
to score the references and identify the compound 3 as the top hit. d 

Total number of overlaps for the original randomly created mixtures 
and for the new optimised mixtures generated by the mixture genera-
tion module. Overlaps and other mixture scores were calculated as in 
NmrMix (Stark et al. 2016). In the red circle the SpectrumHit shown 
in Fig.  7c is highlighted; it appeared in proximity to the maximum 
(top horizontal bar) and outliers (coloured dots) as it scored a large 
degree of overlapping peaks. The rectangular boxes represent the 
interquartile range (IQR); the “X” symbol inside the IQR represents 
the mean; long horizontal bar in the middle of the dataset represents 
the median (second quartile, Q2), the area below and above indicates 
the first (Q1) and the third quartile (Q3). Q1, Q2 and Q3 are also 
referred as 25th, 50th, 75th percentile. The maximum is calculated as 
Q3 + 1.5*IQR and minimum as Q1-1.5*IQR (Galarnyk 2018)
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projects with over 1 million peaks, providing fast and repro-
ducible results. AnalysisScreen is designed in such a way 
that new user-specific tasks (pipes; Fig. 4) can be easily 
included in the main program, making it a very flexible plat-
form for custom implementations and bespoke workflows.

We have shown how automated computational tools 
included in the package, can drastically reduce both the time 
and bias in analysing the output of NMR screening data 
compared with manual analysis, including the reduction of 
False Positive and False Negative observations (Fig. 7). In 
practice, the manual analysis of a dataset such as the one 
presented in this manuscript, could take up to several days 
to complete. In contrast, the whole process can be reduced 
to minutes for setting and running automated routines, 
including a final visual assessment of results. We showed 
how manual analysis can be drastically compromised by 
alignment issues among experiments. Global automated 
and manual re-referencing tools are an integral part of the 
processing pipes of the programme. However, the automated 
re-alignment of individual peaks within 1D spectra remains 
a challenging aspect to tackle.

Furthermore, by using the decomposition module as a 
quick quality control method, the entire reference spectral 
libraries can be evaluated in seconds before performing the 
screening analysis (Fig. 3). The principal component analy-
sis has shown its potential also as a CSM screening tool 
(Namanja et al. 2019), and could be easily employed for 
assessing 1D relaxations series. Although this strategy can 
give quicker results, we believe it can reduce the overall sen-
sitivity and hits should also be confirmed by other analysis 
routines.

AnalysisScreen aims to be the ultimate free non-profit 
NMR software package able to cover all aspects of frag-
ment-based drug discovery data analysis. As such, it is cur-
rently being continuously developed and upcoming releases 
will include a series of additional processing pipes, such as 
baseline correction, and automated 1D peak fitting, addi-
tional support for automatic analysis of 2D titration series, 
and new routines for supporting intra- and inter-NOE analy-
sis data analysis used in binding pose elucidation.

We plan for a further enhancement of the mixture genera-
tion algorithm by inclusion of additional scoring parameters 
based on chemical properties of the compounds, such as 
 pKa, aggregation probabilities and chemical structural diver-
sities. Furthermore, we aim for an even more exhaustive 
Hit Analysis module that integrates cheminformatic tools 
for classifying hits by functional groups and supports the 
Pan-Assay Interference Compounds (PAINS) filters (Baell 
and Nissink 2018).

Through the continuing development of CcpNmr Analy-
sisScreen and its ability to allow for an easy implementation 
of user-defined functionalities, we believe the platform to be 
a versatile resource in the data analysis of FBDD data. We 

ultimately aim for the absence or limited use of user-defined 
parameters in pipelines to guarantee reliable, reproducible 
and bias-free outcomes in the primary screen analysis of 
small-molecule binders by NMR.
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