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method currently exists for deriving peak positional vari-
ances from single peak lists for grouping peaks into spin 
systems, i.e. spin system grouping within a single peak list. 
Therefore, we developed a complementary pair of peak list 
registration analysis and spin system grouping algorithms 
designed to overcome these limitations. We have imple-
mented these algorithms into an approach that can identify 
multiple dimension-specific positional variances that exist 
in a single peak list and group peaks from a single peak list 
into spin systems. The resulting software tools generate a 
variety of useful statistics on both a single peak list and pair-
wise peak list alignment, especially for quality assessment 
of peak list datasets. We used a range of low and high qual-
ity experimental solution NMR and solid-state NMR peak 
lists to assess performance of our registration analysis and 
grouping algorithms. Analyses show that an algorithm using 
a single iteration and uniform match tolerances approach 
is only able to recover from 50 to 80% of the spin systems 
due to the presence of multiple sources of variance. Our 
algorithm recovers additional spin systems by reevaluating 
match tolerances in multiple iterations. To facilitate evalu-
ation of the algorithms, we developed a peak list simulator 
within our nmrstarlib package that generates user-defined 
assigned peak lists from a given BMRB entry or database of 

Abstract  Peak lists derived from nuclear magnetic res-
onance (NMR) spectra are commonly used as input data 
for a variety of computer assisted and automated analyses. 
These include automated protein resonance assignment and 
protein structure calculation software tools. Prior to these 
analyses, peak lists must be aligned to each other and sets of 
related peaks must be grouped based on common chemical 
shift dimensions. Even when programs can perform peak 
grouping, they require the user to provide uniform match 
tolerances or use default values. However, peak grouping 
is further complicated by multiple sources of variance in 
peak position limiting the effectiveness of grouping meth-
ods that utilize uniform match tolerances. In addition, no 
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entries. In addition, over 100,000 simulated peak lists with 
one or two sources of variance were generated to evaluate 
the performance and robustness of these new registration 
analysis and peak grouping algorithms.

Keywords  Spin system grouping · Variance-informed 
DBSCAN · Peak list registration and alignment analysis · 
Simulated peak list with variance · Nuclear magnetic 
resonance

Introduction

One of the prerequisite analyses for protein structure deter-
mination is the assignment of chemical shifts to specific 
nuclei in a protein structure. During the assignment pro-
cess, spin systems are mapped to individual amino acid 
residues in a protein sequence. In general, a spin system 
can be viewed as a group of nuclear spins that interact with 
each other in a magnetic field. In this study, we define a 
spin system as a collection of related resonances associ-
ated with specific atoms in a molecule that can be grouped 
within a single spectrum and across multiple spectra with 
common resonances. In the context of biopolymers such as 
proteins, spin systems often represent resonances associated 
with atoms within one, two, or even three bonded residues. 
Manual resonance assignment is tedious and can take a sig-
nificant amount of time. Therefore, a variety of automated 
and semi-automated assignment programs have been devel-
oped to facilitate the protein resonance assignment process, 
specifically for solution (Shimotakahara et al. 1997; Moseley 
and Montelione 1999; Wang et al. 2005; Crippen et al. 2010; 
Schmidt and Güntert 2012; Niklasson et al. 2015; Guerry 
and Herrmann 2011) and solid-state NMR (Moseley et al. 
2010; Tycko and Hu 2010; Schmidt et al. 2013; Nielsen et al. 
2014). The process of automated resonance assignment typi-
cally involves several major steps: grouping peaks across 
peak lists into spin systems, classification of those spin sys-
tems by possible amino acid type, linking neighboring spin 
systems into segments, and then mapping those segments 
onto protein sequence.

Lack of automated tools to determine match tolerances

One of the historical problems that has limited the use of 
automated and semi-automated protein resonance assign-
ment tools along with other analyses of NMR peak lists is 
the requirement that users either specify uniform match tol-
erances typically for 1H and 15N resonances (for solution 
NMR) and 15N, and 13C resonances (for solid-state NMR) 
to perform spin systems grouping and linking, or rely on 
default uniform match tolerance values. Some programs 
even expect the user to provide spin systems instead of peak 

lists (Coggins and Zhou 2003). In essence, the user is left to 
determine which match tolerances should be used for their 
dataset. Restated, basic peak positional variance statistics 
that could be derived from the peak lists data are being 
required from the user, limiting the utility of these tools. 
Also, these same peak list statistics are useful for assessing 
the quality of peak lists, especially for downstream analyses 
(Baran et al. 2004; Moseley et al. 2001).

Presence of multiple sources of variance

Another problem that exists in experimental peak lists 
derived from both solution and solid-state NMR experi-
ments is the presence of multiple variances in dimension-
specific peak positions. In effect, there is a subset of peaks 
within a single peak list that have a smaller variance and can 
be grouped into spin systems using tighter match tolerance 
values, and a subset of peaks that have a larger variance in 
one or all dimensions that require larger match tolerance val-
ues for grouping into spin systems. On the one hand, using 
tighter tolerance values could result in failure to group peaks 
with larger variances, on the other hand using larger tol-
erance values could result in spin system overlap in peaks 
that have a smaller variance. This also limits the utility of 
uniform match tolerances for spin system grouping, linking 
and mapping algorithms. Figure 1 demonstrates the presence 
of peak groups (clusters) with multiple sources of variance 
in peak positions within experimental HN(CO)CACB peak 
lists. For the 30S ribosomal protein S28E from Pyrococ-
cus horikoshii in Fig. 1a, the two visualized spin systems 
demonstrate different sources of variances in the amide 
1H dimension. For the pancreatic ribonuclease in Fig. 1b, 
the visualized spin systems demonstrate multiple sources 
of variance in both amide 1H and 15N dimensions. These 
multiple sources of variances arise from an array of sample 
conditions, analytical conditions, experimental parameters, 
and spectral artefacts that can each contribute a different 
source of variation to a peak’s position, i.e. center.

AutoAssign, an automated resonance assignment soft-
ware for solution NMR HN-based peak lists, was the first 
automated protein resonance assignment tool to provide 
the ability to register different peak lists, extract peak list 
quality statistics, and offset registration values necessary to 
align a set of peak lists against a specified reference peak 
list (Moseley et al. 2010; Monleón et al. 2002). In essence, 
the registration analysis algorithm finds the global offset 
values that necessary to apply to each peak within peak list 
of interest in order for it to match target peak list, i.e. it 
minimizes the variance between corresponding (matching) 
peaks of two different peak lists. The more recently devel-
oped Peakmatch algorithm can also match a set of peak lists 
against a reference peak list and derive offset values using 
a complete grid search or downhill simplex optimization 
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(Buchner et al. 2013). Both AutoAssign’s registration analy-
sis algorithm and the Peakmatch algorithm work in pairwise 
mode, i.e. they match a target peak list against a reference 
peak list, but they are both unable to derive statistics neces-
sary to group peaks into spin systems within a single peak 
list with more than one peak per spin system (e.g. HN(CO)
CACB, NCACX, CANCOCX). While single peak list reg-
istration functionality is not required to group peaks into 
spin systems, it facilitates the development of new grouping 
algorithms that use a bottom-up approach in grouping peaks 
into spin systems. In other words, single peak list registra-
tion can facilitate the creation of more accurate spin system 
groups from more reliable smaller variance peak lists first 
and then extend those spin systems across spectra using pair-
wise registration statistics derived from pairwise alignment 
of two different peak lists.

Therefore, we have developed a new registration analysis 
algorithm that can execute in two modes: (i) a pairwise-
registration analysis mode that aligns two different peak 
lists against each other and calculates necessary dimension-
specific peak position statistics; and (ii) a self-registration 
analysis mode that calculates dimension-specific peak posi-
tion statistics for a single peak list with multiple peaks per 
spin system while fixing the alignment to zero. This lat-
ter registration analysis mode is accomplished by match-
ing the single peak list against itself while ignoring same-
peak matches in order to calculate these dimension-specific 
peak positional variances. This new registration analysis 
algorithm provides the necessary statistics to allow both 

intra- and inter-peak-list peak grouping and to assess the 
peak positional uncertainty of individual peak lists.

Application of registration analysis algorithm 
in grouping algorithm

Since peak positions have multiple sources of variance 
which are difficult to handle with uniform match tolerances, 
we also developed a new iterative grouping algorithm that 
combines our peak list registration analysis algorithm with 
an adaptation of the density-based spatial clustering of 
applications with noise (DBSCAN) clustering algorithm 
normalized by dimension-specific peak position variances. 
This combined algorithm is capable of grouping peaks from 
a single peak list into spin systems using different sets of 
match tolerances derived from our new registration analysis 
algorithm in an iterative analysis.

Algorithm for generating simulated peak lists 
with multiple sources of variance

A related problem is the limited number of assigned 
experimental peak lists available in the public repositories 
for the robust evaluation of computational NMR analysis 
algorithms and methods. As of March, 2017, the Biologi-
cal Magnetic Resonance Data Bank (BMRB) (Ulrich et al. 
2008) contains only a few hundred assigned peak lists 
from a wide variety of NMR experiments. In order to uti-
lize these assigned peak lists for software tool evaluation, 

Fig. 1   Zoomed-in visualization of spin systems taken from two 
experimental HN(CO)CACB peak lists that demonstrates the pres-
ence of multiple sources of variance within peak lists. The dots cor-
respond to peak centers, two peaks form an individual spin system, 

ovals show the per-dimension variance (bivariance): a for the 30S 
ribosomal protein S28E from P. horikoshii, spin systems 44 and 66 
show variance in the H dimension; b for pancreatic ribonuclease both 
spin systems 68 and 130 show variance in both H and N dimensions
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they need to be extracted and converted into appropriate 
file formats (e.g. Sparky (Goddard and Kneller 2008; Lee 
et al. 2014), AutoAssign, Xeasy (Bartels et al. 1995), etc.). 
Also, thorough robustness analysis requires thousands of 
assigned peak lists for the rigorous testing of algorithms 
and methods. To provide the necessary datasets, simulated 
peak lists can be derived from assigned protein resonance 
assignment entries in the BMRB. However, the simulation 
of assigned peak lists that provide the same level of dif-
ficulty as real experimental peak lists is difficult to gener-
ate. Historically, few published methods have been evalu-
ated with simulated peak lists incorporating even a single 
source of variance. One published evaluation of protein 
resonance assignment methods even used simulated peak 
lists with no variance added, representing a very unrealis-
tic test of performance (Wang et al. 2005).

To address these and related NMR-STAR file utiliza-
tion problems, we have developed the nmrstarlib package 
(Smelter et al. 2017), a new open source library that can 
be used to extract experimental peak list data from BMRB 
entries and convert them into peak lists of appropriate 
format (e.g. Sparky, AutoAssign, Xeasy). In addition, 
we developed a peak list simulator that can create peak 
lists of different types using the entire BMRB, allowing 
the creation of large numbers of simulated assigned peak 
lists that includes dimension-specific noise from multiple 
sources of variance as specified by the user. This new 
peak list simulator is also part of the nmrstarlib package 
(Smelter et al. 2017).

Materials and methods

Experimental data sets

The combined registration analysis and grouping algorithm 
was evaluated using 16 different experimental peak lists 
from 13 different proteins: ten peak lists were derived from 
solution NMR experiments and six peak lists were derived 
from solid-state NMR experiments (Table 1). Peak lists usu-
ally contain chemical shift values for each dimension that 
correspond to specific pattern in specific NMR experiment 
and may contain additional information such as peak inten-
sity, line width, and peak volume.

Simulated data sets

Simulated HN(CO)CACB peak lists were generated using 
our peak list simulation algorithm. For HN(CO)CACB peak 
lists, every amino acid in the protein sequence not followed 
by a proline residue should produce two peaks per spin sys-
tem, except for glycine residues due to missing CB reso-
nances. Using individual entries from BMRB, we generated 
6896 “ideal” (0-variance) peak lists using H, N, CA, and CB 
assigned chemical shifts. Then we filtered out peak lists that 
had exact duplicate peaks in all three dimensions for every 
peak, because it would create spin systems with more than 
two peaks per spin system and mark those spin systems as 
100% overlapped due to peak duplicates no matter what vari-
ance those peak lists have. Next, we removed peak lists that 
had missing chemical shift values for CA or CB except for 

Table 1   Solution and solid-state NMR derived peak lists

Protein Sequence 
length

Spectrum type NMR type BMRB ID/PDB ID

Bovine pancreatic trypsin inhibitor (BPTI) 58 HN(CO)CACB Liquid-state 5359/5PTI
Cold shock protein (CspA) (Feng et al. 1998) 70 HN(CO)CACB Liquid-state 4296/3MEF
Protein yggU from E.coli (Target ER14) (Aramini et al.2003a) 108 HN(CO)CACB Liquid-state 5596/1N91
Fibroblast growth factor (FGF) (Moy et al. 1995) 154 HN(CO)CACB Liquid-state 4091/1BLD
30S ribosomal protein S28E from P. horikoshii (Target JR19) (Aramini2003b) 82 HN(CO)CACB Liquid-state 5691/1NY4
Non-structural protein 1 (NS1) (Chien et al. 1997) 73 HN(CO)CACB Liquid-state 4317/1NS1
Ribonuclease pancreatic (RnaseC6572S) (Shimotakahara et al. 1997) 124 HN(CO)CACB Liquid-state 4032/1SRN
Ribonuclease pancreatic (RnaseWT) (Shimotakahara et al. 1997) 124 HN(CO)CACB Liquid-state 4031/1SRN
Z domain of staphylococcal protein A (Zheng et al. 2004) 71 HN(CO)CACB Liquid-state 5656/1H0T
Staphylococcus aureus protein SAV1430 (Target ZR18) (Mereier et al. 2006) 91 HN(CO)CACB Liquid-state 5844/1PQX
β1 immunoglobulin binding domain of protein G (GB1) (Franks et al. 2005) 56 CANCOCX Solid-state 15156/2JSV
β1 immunoglobulin binding domain of protein G (GB1) (Franks et al. 2005) 56 NCACX Solid-state 15156/2JSV
β1 immunoglobulin binding domain of protein G (GB1) (Franks et al. 2005) 56 NCOCX Solid-state 15156/2JSV
Disulfide bond formation protein B (DsbB) (Tang et al. 2013) 176 NCACX Solid-state 18493/2LTQ
Cytoskeleton-associated protein-glycine-rich domains (CAP-Gly) (Yan et al. 

2013)
89 NCACX Solid-state 19025/2M02

Cytoskeleton-associated protein-glycine-rich domains (CAP-Gly) (Yan et al. 
2013)

89 NCOCX Solid-state 19025/2M02
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glycine residues because that would decrease the percent-
age of correctly grouped peaks due to missing data rather 
than due to increase in dimension-specific variance. Two 
thousand five hundred forty nine peak lists remained after 
removing peak lists with duplicate peaks or missing data. 
Using these remaining peak lists, additional peak lists were 
simulated for single source of variance in all dimensions, 
two sources of variance in all dimensions, and two sources 
of variance in N dimension by adding varying amounts of 
normally-distributed random noise Eq. 1:

 where � is mean, and � is standard deviation. In the case of 
two sources of variance, 20% of the peaks had noise stand-
ard deviation added that is five times larger than 80% of the 
remaining peaks in each simulated peak list.

Registration analysis algorithm

Our new registration analysis algorithm is based on a pre-
viously developed peak list registration analysis algorithm 
within the automated protein resonance assignment program 
AutoAssign (Moseley et al. 2010; Monleón et al. 2002), but 
which has never been well-described in prior publications. 
The algorithm has similarities to a point pattern match algo-
rithm (Ranade and Rosenfeld 1980) and a landsat image 
registration algorithm (Ton and Jain 1989) developed in 
the 1980s, but solves a more generalized multiple mapping 
issue than either of those older algorithms. We have made 
extensive modifications to the algorithm that includes new 
functionality and significant improvement in the computa-
tional efficiency. Our new registration analysis algorithm can 
perform both pairwise-registration of two different peak lists 
as well as self-registration of a single peak list that has mul-

tiple peaks per spin system. In either algorithmic mode, the 
registration analysis algorithm operates on two peak lists: 
an “input” peak list and a “root” or reference peak list. The 
algorithm calculates the best mapping of peaks from the 
“input” peak list to peaks in the “root” peak list for their 
comparable spectral dimensions to derive offsets needed to 
translate the “input” peak list to the “root” peak list in these 
comparable dimensions. The algorithm also calculates the 
standard deviation between mapped pairs of peaks in their 
comparable dimensions. The self-registration analysis mode 
of the algorithm treats a single peak list as both the “input” 

(1)p(x) =
1√
2��2

e
−

(x−�)2

2�2

and “root” peak lists and then calculates the best mapping of 
peaks assuming zero translation offsets and ignoring perfect 
matches due to self-mapping.

Figure 2 shows the flow diagram of the new registration 
analysis algorithm for both pairwise- and self-registration 
execution modes. First, the algorithm parses two peak list 
files (i.e. the same peak list file twice for self-registration). 
Then for each peak list, the algorithm constructs a Euclidean 
distance matrix, i.e. calculates the distance between every 
pair of peaks within a peak list. If the “input” peak list is 
identical to the “root” peak list, the self-registration branch 
of the algorithm executes. If the “input” and “root” peak list 
are different, the pairwise-registration branch of the algo-
rithm executes. Next, the algorithm creates a support matrix 
and compares each “input” peak distance matrix row to each 
“root” peak distance matrix row in order to calculate the 
set of supporting peak mapping pairs, i.e. the support set 
(SS). Each cell in the support matrix has a set of support 
pairs (m, n) ∈ SSi,j, i.e. pairs of indexes that identify indi-
vidual coordinates in the support matrix. Using the pair of 
indexes, a corresponding support set can be identified. Using 
the support pairs in the support sets, the robustness score 
for a given support pair (i, j) is calculated using a sum of 
Jaccard similarity coefficients (Jaccard indeces) multiplied 
by corresponding peak difference matching probabilities as 
illustrated in Eq. 2:

where i, j are the row and column coordinates of the sup-
port matrix, m, n are the row and column coordinates of 
the support matrix whose pair (m, n) is an element of SSi,j, 
and p�2, df  is the Chi square probability calculated for cor-
responding peak differences in the input and root peak lists 
for specified degrees of freedom df , i.e. as defined by Eq. 3:

where l specifies the index of the comparable dimension of 
a peak in both the input and root peak lists and their corre-
sponding standard deviation std. A supporting peak mapping 
pair is determined by a match tolerance defined in terms of 
standard deviation units. The default is four standard devia-
tion units. The self-registration execution mode excludes 
identical peak mappings from this comparison. Using the 
support list, a robustness score is calculated for each com-
parison. The robustness score indicates how many peaks in 
the “input” peak list are mapped to corresponding peaks in 
“root” peak list in a concordant manner (i.e. below match 

(2)robustness(i, j) =
∑

(m,n)∈SSi,j

SSi,j ∩ SSm,n

SSi,j ∪ SSm,n
⋅ p�2

df
(i,j,m,n)

(3)�
2

df
(i, j,m, n) =

df∑
l=0

((
input peak listi[l] − input peak listm[l]

)
−
(
root peak listj[l] − root peak listn[l]

)
std[l] ⋅ 2

)2
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tolerances) with a single mapping peak-pair representing the 
center of the concordance. The higher the robustness score, 
the larger the concordance. Next, the algorithm uses the sup-
port list of the peak mapping pair with the best robustness 
score to calculate the registration offsets and statistics, which 
is used to derive new match tolerances. The algorithm iter-
ates until the statistics of registration converge, i.e. until per 
dimension standard deviations stop changing.

One detail to note in Eq. 3 is the use of std[l] ⋅ 2 in calcu-
lating the chi-squared statistic. Based on linear error analysis 
and independent variable propagation rules, one would expect 
std[l] ⋅

√
2 to be the correct estimate of the standard deviation 

to use in this equation. However, in this iterative registration 
approach, std[l] ⋅ 2 provides superior performance (See Sup-
plemental Tables S1, S2). We believe that the use of 2 instead 
of 
√
2 accounts for non-independent error propagation in the 

given difference of differences analysis.

Grouping algorithm

Our single peak list spin system grouping algorithm is based 
on the widely-used density-based clustering algorithm 

DBSCAN (Ester et al. 1996), which can detect clusters of 
varying size and shape. The original DBSCAN algorithm 
requires two global parameters: radius ε, which defines 
ε-neighborhood of a point and minimum number of points, 
µ that can form a cluster. The DBSCAN algorithm uses a 
region query similarity function to initialize clusters where 
it calculates the Euclidean distance between core point 
and every other point in the data and function that expands 
cluster by examining neighborhoods of points in initialized 
cluster in order to discover cluster points (Ester et al. 1996).

In our case, each peak represents a point in a peak list 
data and in order to group peaks into clusters (spin sys-
tems) without overlap or split, we would have to know the 
radius ε for each of the clusters in advance. For peak list 
data, it is not easy to know those parameters in advance and 
requires domain expert to identify tolerances needed for 
grouping peaks into spin systems (clusters). This is further 
complicated by the presence of multiple sources of variance 
affecting subsets of peaks within a single peak list, i.e. some 
peaks will require larger tolerances for grouping them into 
spin systems than others. Therefore, uniform tolerances can-
not be used to discover optimal peak grouping.

Fig. 2   Flow diagram of the peak list registration analysis algorithm
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For our grouping algorithm, we replaced the region query 
function that uses neighborhood radius ε and the Euclid-
ean distance similarity function with versions that use a hi-
squared-based distance cutoff and variance-normalized dis-
tance (hi-squared statistic) to decide if a peak can be included 
into a spin system cluster or not. These statistics-inspired 
changes create a variance-informed version of the DBSCAN 
algorithm. Equation 4 describes the criteria for inclusion or 
exclusion of peaks from initialized spin system cluster:

where peaki and peakj is every pair of peaks within a single 
peak list,df—number of degrees of freedom that correspond 
to the number of comparable dimensions, k—specifies index 

(4)

⎧
⎪⎪⎨⎪⎪⎩

�
df∑
k=0

�
peaki[k]−peakj[k]

std[k]

�2

≤

√
F−1(p, df )

�
df∑
k=0

�
peaki[k]−peakj[k]

std[k]

�2

>
√
F−1(p, df )

of comparable dimension within a peak and its correspond-
ing standard deviation std obtained from the registration 
analysis algorithm, F−1(p, df )—chi-squared inverse cumula-
tive distribution function for a given p-value and degrees of 
freedom. If the normalized distance between peaks is less or 
equal than the inverse survival function for a given p-value 
and corresponding degrees of freedom, the peak belongs 
to the spin system cluster, otherwise the peak is excluded 
from the spin system cluster. The variances used to calculate 
the normalized distance are supplied by our self-registra-
tion analysis algorithm. The use of a chi-squared statistic 
allows the cutoff parameter to be provided in terms of a chi-
squared-based probability. The default for the algorithm is 
a p-value = 0.0001.

Figure 3 shows the flow diagram of the peak grouping 
algorithm that groups peaks within a single peak list into 
spin systems. The grouping algorithm consists of two main 
functions—one that initializes the clusters and the other 
that expands clusters by examining the neighborhood of an 

Fig. 3   Flow diagram of the 
grouping algorithm
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initialized cluster in a similar fashion to DBSCAN (Ester 
et al. 1996).

Combined registration analysis and grouping algorithm

In order to address the presence of multiple sources of peak 
positional variance, we developed an iterative algorithm that 
combines both the self-registration analysis algorithm and 
grouping algorithm to derive spin system clusters using mul-
tiple variance-based match tolerances calculated with the 
help of the registration analysis algorithm. Figure 4 shows 
the flow diagram of combined algorithm. First, the com-
bined algorithm reads a single peak list in and runs the self-
registration analysis algorithm to identify initial variance 
values for each comparable dimension. Next, the group-
ing algorithm uses per dimension variance values to group 
peaks into spin system clusters. Then, the combined algo-
rithm checks if there are unclustered peaks left. From the 
unclustered peaks, the algorithm creates a new peak list file 
and attempts to register it against itself again to determine 
new larger variances that can be used to group peaks into 
spin system clusters. Conceptually, the iterative algorithm 
poses the problem in terms of a linear mixture of multiple 
normal-like distributions that create groups of peaks that 
have variable positional density.

Peak list simulation algorithm

To create additional data sets for robustness analysis, we 
developed an algorithm that can simulate peak lists using 
assigned chemical shift values deposited in BMRB entries. 
We implemented this algorithm as a peak list simulator sub-
module within the previously developed nmrstarlib Python 
package (Smelter et al. 2017), which facilitates the reading 
and writing of NMR-STAR formatted files, especially entry 
files maintained by BMRB. This algorithm uses the nmrstar-
lib functionality to access assigned chemical shift values for 
H, C and N resonances for each residue in a protein chain 
and then saves them as a peak list file in different formats 
(e.g. Sparky, AutoAssign, JSON). Moreover, the algorithm 
provides the ability to add varying amounts of noise to each 
dimension of the peak list in order to create more realistic 
data sets. The peak list simulator uses a very generic spec-
trum definition based on different resonance classes (e.g. 
CA, CB, N, etc.) and their relative positions (−1, 0, +1, 
etc.): therefore, different through-bond experiments can be 
described for both solution and solid-state NMR spectra very 
easily. The local contact peaks for through-space experi-
ments can be simulated as well using the relative position 
descriptions (0, +1, +2, +3, +4). Figure 5 shows an exam-
ple of a spectrum description configuration file in javascript 
object notation (JSON) format. This design allows a user to 
easily add new experiment descriptions using this configu-
ration file without hardcoding peak list creation logic into 
source code.

Programming details, command‑line interfaces, 
and availability

All developed algorithms can be used as stand-alone tools 
and have simple command-line interfaces. The registra-
tion analysis algorithm was implemented using the C++ 
programming language using the C++11 standard. The 
grouping and peak list simulation algorithms were imple-
mented using the latest version of the Python programming 
language (currently 3.6.0). Supplementary Fig. S1–S3 show 
command-line interfaces for registration, grouping, and peak 
list simulation algorithms respectively.

The software package that implements the single peak 
list registration analysis and grouping algorithms is avail-
able under figshare repository (https://doi.org/10.6084/
m9.figshare.4814605), documentation with examples 
(https://doi.org/10.6084/m9.figshare.4816441), solution-
state and solid-state NMR experimental peak lists (https://
doi.org/10.6084/m9.figshare.4815163), simulated peak 
lists (https://doi.org/10.6084/m9.figshare.5260660), results 
of the registration analysis and grouping algorithms 
and visualization of results (https://doi.org/10.6084/
m9.figshare.4815160).

Fig. 4   Flow diagram overview of the entire registration analysis and 
grouping process

http://dx.doi.org/10.6084/m9.figshare.4814605
http://dx.doi.org/10.6084/m9.figshare.4814605
http://dx.doi.org/10.6084/m9.figshare.4816441
http://dx.doi.org/10.6084/m9.figshare.4815163
http://dx.doi.org/10.6084/m9.figshare.4815163
http://dx.doi.org/10.6084/m9.figshare.5260660
http://dx.doi.org/10.6084/m9.figshare.4815160
http://dx.doi.org/10.6084/m9.figshare.4815160
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The nmrstarlib package is available at http://software.
cesb.uky.edu, at GitHub (https://github.com/Moseley-
BioinformaticsLab/nmrstarlib) and at PyPI (https://pypi.
python.org/pypi/nmrstarlib) under the MIT license. Project 
documentation is available online at ReadTheDocs (http://
nmrstarlib.readthedocs.io/).

Results and discussion

Performance on experimental data sets

First, we evaluated the performance of our combined reg-
istration analysis and grouping algorithm on manually 

assigned peak lists derived from solution and solid-state 
NMR experiments. Table 2 shows the summary of results 
for peak lists derived from solution NMR HN(CO)CACB 
type experiments (Grzesiek and Bax 1992). The expected 
number of peaks for the HN(CO)CACB peak list can be 
estimated from a protein sequence, i.e. for every spin sys-
tem in a protein there should be at least two peaks except 
for glycine (due to missing CB resonance) and proline 
(due to missing amide H resonance) residues ([number of 
amino acids in sequence − number of prolines − number 
of glycines] × 2 + number of glycines − 1). Similarly, the 
expected number of spin systems (clusters) for the HN(CO)
CACB peak list can be estimated from a known sequence 
(number of amino acids in sequence − 1 − number of 

{ 
    "HNcoCACB": { 
        "Labels": ["H", "N", "CA/CB-1"], 
        "MinNumberPeaksPerSpinSystem": 2, 
        "PeakDescriptions": [ 
            {"fraction": 1,    "dimensions": ["H", "N", "CA-1"]}, 
            {"fraction": 0.95, "dimensions": ["H", "N", "CB-1"]} 
        ] 
    }, 

    "NCACX": { 
        "Labels": ["N", "CA", "CX"], 
        "MinNumberPeaksPerSpinSystem": 2, 
        "PeakDescriptions": [ 
            {"fraction": 1, "dimensions": ["N", "CA", "CO"]}, 
            {"fraction": 1, "dimensions": ["N", "CA", "CA"]}, 
            {"fraction": 1, "dimensions": ["N", "CA", "CB"]}, 
            {"fraction": 1, "dimensions": ["N", "CA", "CG"]}, 
            {"fraction": 1, "dimensions": ["N", "CA", "CD"]}, 
            {"fraction": 1, "dimensions": ["N", "CA", "CE"]}, 
            {"fraction": 1, "dimensions": ["N", "CA", "CZ"]} 
        ] 
    } 
} 

Fig. 5   Spectrum description configuration file of peak list simulation algorithm

Table 2   Spin system grouping results for solution NMR derived peak lists using combined registration analysis and grouping algorithm

a Value in parenthesis shows how many spin systems were identified if only uniform tolerances were used and single iteration of grouping algo-
rithm was performed

Protein / Peak list Expected peaks Observed peaks Ungrouped 
peaks

Expected 
spin sys-
tems

Identi-
fied spin 
systemsa

Miss-
ing spin 
systems

Overlapped 
spin systems

Split spin 
systems

BPTI/HN(CO)CACB 101 134 17 47 54 (30) 0 0 2
CSP/HN(CO)CACB 125 145 39 57 53 (32) 12 0 0
ER14/HN(CO)CACB 194 181 7 93 87 (57) 8 2 0
FGF/HN(CO)CACB 273 303 24 128 139 (112) 13 2 1
JR19/HN(CO)CACB 151 141 7 71 67 (58) 4 0 0
NS1/HN(CO)CACB 137 203 36 66 81 (43) 26 8 2
RnaseC6572S/HN(CO)CACB 235 282 16 116 130 (56) 18 4 2
RnaseWT/HN(CO)CACB 235 403 19 116 181 (122) 9 2 1
ZDOM/HN(CO)CACB 134 153 29 67 55 (40) 15 3 5
ZR18/HN(CO)CACB 172 163 3 85 80 (52) 5 0 0

http://software.cesb.uky.edu
http://software.cesb.uky.edu
https://github.com/MoseleyBioinformaticsLab/nmrstarlib
https://github.com/MoseleyBioinformaticsLab/nmrstarlib
https://pypi.python.org/pypi/nmrstarlib
https://pypi.python.org/pypi/nmrstarlib
http://nmrstarlib.readthedocs.io/
http://nmrstarlib.readthedocs.io/


290	 J Biomol NMR (2017) 68:281–296

1 3

GLY residues − number of PRO residues). The number of 
observed peaks is usually larger than the number of expected 
peaks for a given protein sequence due to NMR artefacts. 
The number of ungrouped peaks shows how many peaks 
were left ungrouped after iterative registration analysis and 
grouping procedure. This number is proportional to num-
ber of glycine residues (because of missing corresponding 
peak for the CB resonance) in the protein sequence, and the 
number of artefact peaks that appear in the spectrum. The 
numbers of missing, overlapped, and split spin systems were 
inferred directly from the assigned peak lists. For example, 
a split in spin systems occurs when two peaks that should 
form their own spin system cluster end up being added into 
other neighbor spin system clusters. Results of our itera-
tive grouping algorithm summarized in Table 2 show that 
it is capable of grouping peaks into spin system clusters 
that correspond to real spin systems in a protein sequence. 
When we limited our grouping algorithm to a single regis-
tration-grouping iteration, the number of identified clusters 
decreased dramatically (See Table 2 value in parenthesis) 
ranging from 13% less recovered clusters for 30S ribosomal 
protein (BMRBID 5691) to 57% less recovered clusters for 
ribonuclease pancreatic (BMRBID 4032).

Table 3 contains similar summary results for solid-state 
NMR derived peak lists. CANCOCX (Franks et al. 2007), 
NCACX (Pauli et al. 2001), and NCOCX (Pauli et al. 2001) 
peak lists for the GB1 protein were nearly complete and 
therefore showed low number of overlapped and split spin 
systems. Peak lists for DsbB and Cap-Gly proteins had a 
large number of missing and artefact peaks, therefore we 
observed a higher number of overlapped and split spin sys-
tems. The quality of peak list registration analysis and there-
fore spin system grouping is highly correlated with the qual-
ity of peak lists. Also, the larger the number of missing and 
artefact peaks in the peak lists, the larger the number of over-
lap in spin systems that were generally observed. Similar to 
solution NMR derived peak lists, we limited the algorithm 
to a single registration-grouping iteration. However, we 

observed that solid-state NMR derived peak lists were more 
consistent and did not have as much dimension-specific vari-
ance in comparison to solution NMR derived peak lists (See 
Table 3 value in parenthesis). This may seem surprising, 
given the typical lower spectral quality of solid-state NMR 
spectra in comparison to solution NMR spectra in terms of 
sensitivity and peak widths. However, when good quality 
solid-state NMR spectra are obtainable, the greater spread 
of peaks across 15N and 13C dimensions used for grouping 
provides advantages over the more crowded amide 1H and 
15N dimensions used for grouping in solution NMR spectra.

Best and worst spin system grouping results are visual-
ized in Fig. 6. Panel a shows the best grouping result for 
solution NMR derived peak lists for 30S ribosomal protein 
S28E from P. horikoshii where clean non-overlapped spin 
system clusters are formed (numbered points of differ-
ent color), and small number of artefact peaks are present 
(smaller unnumbered points); panel b shows the worst result 
for solution NMR derived peak lists for non-structural pro-
tein 1, which has more overlap (spin system clusters #73, 
#77, #79, and #80) and significantly larger number of arte-
fact peaks (smaller unnumbered points); panel c shows the 
best grouping result among the solid-state NMR peak lists 
for GB1 protein where no overlap is present within spin sys-
tem groups; and panel d shows the worst result among solid-
state NMR peak lists for DsbB protein, with more artefact 
peaks observed in comparison to solution NMR peak lists 
and significantly higher overlap due to the lower quality of 
the peak list (spin system clusters #9, #13, #17, #18, #25, 
#29).

Performance on simulated data sets

To evaluate robustness of our algorithms, we generated 
large numbers of simulated HN(CO)CACB peak lists (see 
Table 4). To create peak lists that better reflect what is 
observed in experimental peak lists, we introduced vary-
ing amounts of noise based on random normal distributions 

Table 3   Spin system grouping results for solid-state NMR derived peak lists using combined registration analysis and grouping algorithm

a Number of expected peaks estimated based on magnetization transfer pattern and amino acid sequence. Alternative magnetization transfer path-
ways increase the number of peaks present
b Value in parenthesis shows how many spin systems were identified if only uniform tolerances were used and single iteration of grouping algo-
rithm was performed

Protein/Peak list Expected 
peaksa

Observed peaks Ungrouped 
peaks

Expected 
spin systems

Identified spin 
systemsb

Missing spin 
systems

Overlapped 
spin systems

Split spin 
systems

GB1/CANCOCX 268 240 70 55 56 (56) 1 6 28
GB1/NCACX 268 463 62 55 65 (65) 0 0 19
GB1/NCOCX 268 474 16 55 82 (67) 0 4 10
DsbB/NCACX 940 215 43 175 47 (47) 126 14 1
CapGly/NCACX 410 515 16 88 50 (50) 33 25 0
CapGly/NCOCX 410 218 25 88 47 (47) 38 32 5
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for several conditions: (i) single source of variance in all 
dimensions; (ii) two sources of variance in all dimensions; 
(iii) two sources of variance in one dimension. Figure 7 (See 
Supplementary Figs. S4, S5) demonstrates results for single 
source of variance condition, where we simulated peak lists 
with increasing random noise from 0.001 to 0.050 for 1H 

dimension and from 0.01 to 0.50 for 13C and 15N dimen-
sions. The percentage of accurately grouped peaks versus 
percentage of overlapped peaks are plotted as a function 
of dimension-specific standard deviations. The red verti-
cal line separates high quality versus low quality peak lists 
with larger peak positional variance and overlap. Normally, 

Fig. 6   Visualization of spin system grouping results where colored 
points correspond peak centers grouped into spin systems, peak cent-
ers of the same color belong to the same spin system (spin systems 
are numbered sequentially), unnumbered blue points correspond to 
either spurious unassigned peaks or in case of HN(CO)CACB peak 
lists peaks corresponding to glycine residues (due to missing CB res-

onance): a example of best spin system clustering for 30S ribosomal 
protein S28E from P. horikoshii (HN(CO)CACB peak list); b exam-
ple of worst spin system clustering non-structural protein 1 (HN(CO)
CACB peak list); c example of best spin system clustering for GB1 
protein (NCACX peak list); d example of worst spin system cluster-
ing for DsbB protein (NCACX peak list)
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good quality peak lists have 1H, 13C, and 15N chemical 
shift standard deviations on the left side of the red line. It 
is clear from the diagram that for the smallest variance in 
peak positions, our algorithm groups 99% of peaks into cor-
rect non-overlapped spin systems across all simulated peak 

lists. As variance in peak positions increases percentage of 
overlapped peaks increases. At larger dimension-specific 
variance condition (0.01 for 1H dimension and 0.1 for 13C 
and 15N dimensions), it is still capable of grouping 77% of 
peaks into clean non-overlapped spin systems. Figure 8 (See 

Table 4   Simulated HN(CO)
CACB peak lists

Number of variance sources Minimum stand-
ard deviation 
values

Maximum 
standard deviation 
values

Total number of 
simulated peak 
lists

Single source of variance in all dimensions H: 0.001 H: 0.050 127,450
C: 0.01 C: 0.50
N: 0.01 N: 0.50

Two sources of variance in all dimensions H: 0.001, 0.005 H: 0.010, 0.050 25,490
C: 0.01, 0.05 C: 0.10, 0.50
N: 0.01, 0.05 N: 0.10, 0.50

Two sources of variance in N dimension, 
single source of variance in C and H dimen-
sions

H: 0.001 H: 0.010 25,490
C: 0.01 C: 0.10
N: 0.01, 0.05 N: 0.10, 0.50

Fig. 7   Single source of variance in all dimensions: percentage of 
grouped (non-overlapped) and overlapped peaks with increase in 
standard deviation values of peak dimensions. The dots correspond to 

the percentage of the grouped/overlapped peaks, whiskers are calcu-
lated standard error of the mean
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Supplementary Figs. S6, S7) shows similar results but for 
two sources of variance in all dimensions, i.e. 80% of peaks 
had random normal noise added from 0.001 to 0.01 for 1H 
dimension and from 0.01 to 0.1 for 13C and 15N dimensions, 
the remaining 20% of peaks had random normal noise five 
times higher (from 0.005 to 0.05 for 1H dimension and from 
0.05 to 0.5 for 13C and 15N dimensions). Figure 9 (See Sup-
plementary Figs. S8, S9) shows results for two sources of 
variance for only 15N dimension, 1H and 13C had single 
source of variance. Results on Figs. 8, 9 demonstrate that 
our iterative grouping algorithm can handle peak lists with 
multiple sources of variance in single or all dimensions and 
can group 99% of peaks for the smallest variance values in 
peak dimensions and 71% of peaks at the 0.01 1H chemical 
shift standard deviation level.

Comparison to hierarchical DBSCAN

In order to test if other clustering algorithms can be 
used to group peaks within single peak list into spin 

system clusters, we used a recently developed variation 
of DBSCAN called hierarchical DBSCAN (HDBSCAN) 
(Campello et al. 2013; McInnes et al. 2017). We chose 
this clustering algorithm, because it has a few advan-
tages: it does not require specification of the expected 
number of clusters upfront as opposed to k-means clus-
tering algorithm and it does not require specification 
of the ε-neighborhood parameter as opposed to regular 
DBSCAN clustering algorithm. This hierarchical version 
performs DBSCAN using varying values of radius ε and 
integrates all results to find the best clustering solution. 
The HDBSCAN algorithm is designed to overcome one 
of the hardest problems in clustering such as the detec-
tion of variable density clusters. Table 5 shows results 
of HDBSCAN for solution NMR peak lists. The number 
of overlapped spin systems was significantly higher in 
comparison to our implementation of combined registra-
tion analysis and grouping algorithm when applied to the 
peak list data. Also, for solid-state NMR derived peak lists 
HDBSCAN performed slightly worse than our algorithm 

Fig. 8   Two sources of variance in all dimensions: percentage of 
grouped (non-overlapped) and overlapped peaks with increase in 
standard deviation values of peak dimensions, 20% of peaks have five 

times larger variance than the remaining 80% of peaks in all dimen-
sions. The dots correspond to the percentage of the grouped/over-
lapped peaks, whiskers are calculated standard error of the mean
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(see Table 6). Our grouping algorithm implementation 
is slower than HDBSCAN due to the complexity of the 
registration analysis algorithm step, but it produces more 

accurate and more consistent results for both solution and 
solid-state NMR derived experimental peak lists as well 
as for simulated peak lists.

Fig. 9   Two sources of variance in one dimension: percentage of 
grouped (non-overlapped) and overlapped peaks with increase in 
standard deviation values of peak dimensions, 20% of peaks have five 

times larger variance than the remaining 80% of peaks in N dimen-
sion. The dots correspond to the percentage of the grouped/over-
lapped peaks, whiskers are calculated standard error of the mean

Table 5   Spin system grouping results for solution NMR derived peak lists using HDBSCAN algorithm

Protein / Peak list Expected peaks Observed peaks Ungrouped 
peaks

Expected 
spin sys-
tems

Identi-
fied spin 
systems

Miss-
ing spin 
systems

Overlapped 
spin systems

Split spin 
systems

BPTI/HN(CO)CACB 101 134 15 47 24 0 31 0
CSP/HN(CO)CACB 125 145 37 57 21 12 35 1
ER14/HN(CO)CACB 194 181 33 93 26 8 77 1
FGF/HN(CO)CACB 273 303 43 128 53 13 108 3
JR19/HN(CO)CACB 151 141 18 71 23 4 66 3
NS1/HN(CO)CACB 137 203 49 66 31 26 43 8
RnaseC6572S/HN(CO)CACB 235 282 38 116 45 18 90 4
RnaseWT/HN(CO)CACB 235 403 68 116 68 9 75 9
ZDOM/HN(CO)CACB 134 153 22 67 25 15 49 5
ZR18/HN(CO)CACB 172 163 42 85 22 5 59 0
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Conclusions

Firstly, we have developed a complimentary pair of reg-
istration analysis and grouping algorithms that work on a 
single peak list in order to derive peaks that belong to the 
same spin system. The new peak list registration analysis 
algorithm is capable of executing in two modes: self-reg-
istration analysis and pairwise-registration analysis. The 
self-registration analysis mode allows the derivation of reg-
istration statistics for a single unassigned peak list that has 
multiple peaks per spin system.The pairwise-registration 
analysis mode allows alignment of two different unassigned 
peak lists in order to calculate registration statistics. Next, 
the new bottom-up iterative grouping algorithm that can 
group peaks into spin systems within a single peak list and 
can handle multiple sources of variance that are present 
within experimental data sets. Each of the iterations in our 
grouping algorithm is based on a density-based clustering 
algorithm with a variance-normalized distance function 
for calculating which peaks are clustered together, using 
dimension-specific variances that are derived from the self-
registration analysis algorithm. Utilization of the single 
peak list registration analysis algorithm will facilitate the 
development of more sophisticated and automated spin sys-
tem grouping algorithms that produce more accurate spin 
systems for downstream data analyses.

Secondly, we have developed automated tools that allow 
the creation of simulated peak lists with a range of positional 
variances using assigned chemical shifts in BMRB entries. 
We used these tools to create a very large simulated dataset 
from the entire BMRB to rigorously test the performance 
and robustness of our algorithms. These tests showed that 
our algorithms can detect multiple sources of variance intro-
duced into simulated data sets and reliably group peaks into 
spin systems for peak lists that are far from ideal.
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