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Abstract Although originally designed for broadband

inversion and decoupling in NMR spectroscopy, recent

methodological developments have introduced adiabatic

fast passage (AFP) pulses into the field of protein

dynamics. AFP pulses employ a frequency sweep, and have

not only superior inversion properties with respect to offset

effects, but they are also easily implemented into a pulse

sequence. As magnetization is dragged from the ?z to the

-z direction, Larmor precession is impeded since magne-

tization becomes spin-locked, which is a potentially useful

feature for the investigation of microsecond to millisecond

dynamics. A major drawback of these pulses as theoretical

prediction is concerned, however, results from their time-

dependent offset: simulations of spin density matrices

under the influence of a time-dependent Hamiltonian with

non-commuting elements are costly in terms of computa-

tional time, rendering data analysis impracticable. In this

paper we suggest several ways to reduce the computational

time without compromising accuracy with respect to

effects such as cross-correlated relaxation and modulation

of the chemical shift.

Keywords NMR � Adiabatic fast passage �Microsecond–

millisecond dynamics

Introduction

The functionality of proteins relies on their three-dimen-

sional structure as well as on their dynamic properties. In

proteins tumbling in solution, global dynamics are

superimposed on local mobility, properties that can be

dissected and quantified by NMR relaxation methods. Due

to the causal relation between molecular motion and

nuclear spin relaxation it is possible to determine protein

motional parameters from relaxation measurements at

atomic resolution. Possible targets of relaxation mea-

surements are heteronuclei in the protein backbone, such

as 15N or 13C, which are relaxed mainly by dipolar

interactions with their covalently bound protons and their

chemical shift anisotropies. A number of time-scales can

be addressed by various NMR methods. Most promi-

nently, nanosecond (global) to picosecond (local bond

vector) motions can be characterized through longitudinal

relaxation, transverse relaxation and cross-relaxation (Kay

et al. 1989). Various other heteronuclear relaxation

pathways have been exploited to study bond vector

motions in great detail (Dayie et al. 1996; Peng and

Wagner 1994). Conformational dynamics on the
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microsecond to millisecond time-regime encompass vital

processes such as folding, ligand binding, allostery and

catalysis (Kay 2005; Mittermaier and Kay 2006; Palmer

2004; Boehr et al. 2006; Frederick et al. 2007; Henzler-

Wildman and Kern 2007; Kay et al. 1998; Popovych et al.

2006; Sugase et al. 2007; Tollinger et al. 2001, 2006) and

are therefore the focus of many NMR studies. In partic-

ular, two methods have found widespread application, i.e.,

the Carr-Purcell-Meiboom-Gill (CPMG) relaxation dis-

persion (Tollinger et al. 2001; Palmer et al. 2001) and

spin-lock T1q relaxation dispersion experiments (Trott and

Palmer 2002; Palmer and Massi 2006). These experiments

measure the transverse relaxation rate (R2) of a signal of

interest in dependence either of the repetition rate of a

train of 180� pulses (CPMG) (Allerhand et al. 1966;

Tollinger et al. 2001; Palmer 2004) or of the effective

spin-lock amplitude (T1q) applied during a relaxation

period of constant time. Using these methods, the

exchange contribution (Rex) to the transverse relaxation

rate can be separated from the ‘exchange-free’ relaxation

rate. Furthermore, it is possible (in favorable cases) to

extract information about the motional parameters of the

process that governs the relaxation dispersion. Both

methodologies are well-established and have provided

unprecedented insight into fundamental biological pro-

cesses (Mittermaier and Kay 2006), in particular because

otherwise ‘invisible’ states can be characterized. The

CPMG technique responds strongly to processes with

exchange rates between 102 and 104 per second as it

monitors transverse relaxation exclusively. Hardware

limitations concerning the repetition rates of refocusing

pulses in the CPMG train restrict the upper limit of

detectable time scales to exchange rate constants on the

order of a few thousand per second (Loria et al. 1999;

Palmer 2004; Tollinger et al. 2001). Conversely, although

larger effective spin lock fields are used in off-resonance

T1q-dispersion experiments (and thus potentially faster

time scale motions can be assessed), their sensitivity is

compromised by the reduction of the contribution of

transverse relaxation to the effective spin lock relaxation

rate. Both methods are also limited with respect to the

population of the minor state, which, if too large, may

severely compromise signal to noise ratios. Thus the

excellent sensitivity of these methods to very small pop-

ulations of excited states turns into a disadvantage as soon

as these states are populated to a substantial ([15%)

degree.

More than a decade ago, the adiabatic fast passage (AFP)

approach was used for generating optimal initial conditions

in R1q measurements (Mulder et al. 1998) and also for

determining heteronuclear relaxation rates for a system in the

absence of ls–ms motion (Konrat and Tollinger 1999). The

AFP pulse is operative over an entire relaxation period, and it

achieves effective spin locking simultaneously over a range

of offsets determined by its sweep width (see below). The

apparent spin-lock relaxation rate, R1q, depends crucially on

the amplitude of the AFP pulse. From this field dependence

of R1q the transverse relaxation rate R2 can be extracted.

Recently, Mangia et al. determined exchange parameters for

a system with ls–ms dynamics by measuring R1q and R2q

dispersions (Mangia et al. 2010) using trains of AFP pulses of

different shape during a relaxation delay (R2q is the relaxa-

tion rate of magnetization perpendicular to the effective

field). They obtained the exchange contribution to the natural

line-width by subtraction of relaxation rates of non-

exchanging residues, assuming effects such as cross-relax-

ation, relaxation interference, or chemical shift anisotropy to

cancel out to a large extent as long as these parameters are

similar across the protein sequence. Thereby the authors

avoided the time-consuming process of computing the entire

trajectory of magnetization during the AFP pulses.

In this paper we show how spin dynamics during adia-

batic fast passage can be treated mathematically in an

exhaustive but efficient way. We explicitly consider the

effects of CSA-DD cross-correlated relaxation and the

modulation of the isotropic chemical shift in response to

chemical/conformational exchange on the ls–ms time-

scale and demonstrate the agreement between theory and

experiment for a protein that accesses its excited state on a

time-scale of several hundreds per second. We give an

analytical as well as a numerical solution, and we show

how to reduce computational time. In addition, we compare

these exact results to an approximation that can be used for

the computation of T1q in systems with skewed popula-

tions. We show that CSA-DD cross-correlation, which is

not explicitly included in the approximation, can be

accounted for in a straightforward way, and we show the

potential utility of this approximation for fitting AFP pro-

files using synthetic data sets.

Adiabatic fast passage

Over the years adiabatic fast passage (AFP) pulses have

become an important tool in pulse sequence programming

mostly in order to deal with radiofrequency (rf) inhomo-

geneity (Abragam 1962; Boehlen and Bodenhausen 1993;

Kupce and Freeman 1995). Their most outstanding feature

is their perfect inversion profile, which is nearly indepen-

dent of offset and exact rf calibration. It was this property

that triggered the development of early applications, i.e.,

broadband heteronuclear decoupling and broadband

inversion. An AFP pulse is typically a relatively long rf

pulse with both amplitude and (typically parabolic) phase

modulation. The latter results in a linear frequency sweep

over a defined spectral region (msweep). The amplitude
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(x1 = cB1) is constant throughout most of the pulse with

the exception of the beginning and the end (approx.

10–20% of the total pulse length), where it is increased

from 0 to x1
max and decreased from x1

max to 0 using a

sinusoidal or cosinusoidal ramp, respectively. A typical

pulse shape is depicted in Fig. 1a.

The inversion properties of an AFP pulse can be quali-

tatively understood on the basis of a coordinate frame

shown in Fig. 1b. The time-dependence of offset xS

(depicted along the z-axis) and field strength x1 (depicted

along x) results in a time-dependent effective magnetic

field xeff(t) characterized by an angle h(t) with respect to

the z-axis. During AFP inversion, the effective field starts

out from the ?z direction, sweeps through the transverse

plane and ends up along -z. As long as the adiabaticity

condition (dh/dt « xeff) is fulfilled (Abragam 1962; Boeh-

len and Bodenhausen 1993; Kupce and Freeman 1996), the

magnetization vector rotates in very small circles around

the effective field, appearing aligned with it, and remains

so throughout the pulse (Fig. 2a). Ramping of the spin-lock

amplitude ensures complete inversion by the end of the

pulse, while the frequency sweep defines the spectral

region where inversion occurs. The magnetization vector is

effectively spin-locked since its Larmor precession is

impeded by the alignment with the effective magnetic field.

In the case where the adiabaticity condition is not fulfilled,

the magnetization vector is not spin-locked and dephasing

occurs (Fig. 2b).

Relaxation in the spinlock frame is composed of a

longitudinal and a transverse component:
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Fig. 1 a Typical shape of an AFP pulse. The offset of the AFP-pulse

with respect to the transmitter is shown in blue (right y-axis), and the

field strength x1 (ramped at the beginning and end of the pulse in

order to ensure magnetization gets aligned with the effective field) is

depicted in red (left y-axis). b Snap-shot of the effective field

xeff(t) and its components. A spin experiences an instantaneous field

that depends on its current offset xS(t) with respect to the AFP pulse

and on the strength of the AFP pulse, x1(t). Its response is to rotate

around this field. Magnetization that is collinear with xeff(t) remains

aligned to it even as xS(t) and x1(t) are modulated, as long as the

adiabaticity condition is not violated
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Fig. 2 a Trajectory of magnetization during an ideal AFP pulse,

fulfilling the adiabaticity condition. The time dependence of the

effective magnetic field is shown in red. The magnetization vector

(blue) follows it and perfect inversion occurs. b Path of magnetization

in case where the adiabaticity condition is not fulfilled. The

magnetization vectors oscillates around the effective field, and the

pulse does not lead to inversion. Attenuation due to relaxation has

been neglected
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Reff ðtÞ ¼ cos2 hðtÞR1 þ sin2 hðtÞR2 ð1Þ

The overall effect of an AFP pulse on the spin-lock

relaxation rate is quantitatively described by the parameter

sin2heff, which is the time integral over sin2 hðtÞ and, as such,

a function of the spin-lock amplitude. It depends on the

offset of the resonance, but also on the sweep width: Fig. 3

shows that in AFP pulses that employ a larger sweep range,

the same spin-lock field strength leads to a smaller sin2heff.

Equation 2 shows that in the absence of chemical or

conformational exchange the spin-lock relaxation rate

depends linearly on sin2heff.

R1q ¼ R1 þ R0
2 � R1

� �
sin2 heff ð2Þ

In the presence of chemical exchange, the transverse

relaxation rate is R2 ¼ R0
2 þ Rex, where Rex is the exchange

contribution that affects the spin-lock relaxation rate to an

extent that depends on sin2heff. Therefore R1q is no longer a

linear function of sin2heff. The deviation from linearity is

characteristic for a set of exchange parameters, which are—in

the simple case of a system undergoing two-site exchange

between the states A and B—the exchange rate, kex, the

population of the excited state, pB, and the difference between

the Larmor precession frequencies, Dx = XS,B - XS,A. In

addition, the deviation is dependent on the frequency sweep

width of the AFP pulse (see below; Fig. 4).

In what follows, a more detailed description of the

evolution of magnetization during adiabatic fast passage is

given that accounts also for scalar coupling and cross-

correlated relaxation.

Numerical description of AFP

Every spin system can be described in terms of its density

operator r(t). The numerical simulation of magnetization

amounts to solving the differential equation (Ernst et al.

2003)

drðtÞ
dt
¼ LðtÞrðtÞ: ð3Þ

The Liouvillian contains all coherent and non-coherent

mechanisms for the evolution of spin density. For a time-

independent Liouvillian matrix L, as encountered in

conventional spin-lock experiments, calculating the

relaxation rate corresponds to finding the largest real

eigenvalue of L (Trott and Palmer 2002). In the case of an

AFP pulse the Liouvillian matrix L is time-dependent due

to the offset sweep and the ramped amplitude. However,

continuous behavior can be assumed for a sufficiently

small time step s, and integration of Eq. 3 can be
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Fig. 3 Dependence of sin2heff on the spin-lock amplitude x1 for

different sweep ranges msweep (solid lines: 2 kHz, dashed lines: 4 kHz,

dotted lines: 10 kHz). The black lines result from a resonance with a

chemical shift in the middle of the sweep, and the red lines have a

relative shift of 10 ppm with respect to the middle of the sweep. The

effect of the offset of the resonance vanishes at larger sweep widths

(10 kHz). The difference in sin2heff between the resonances with the

different chemical shifts is indicated as a grey shaded area
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Fig. 4 Dependence of R1q on sin2heff in the presence of conforma-

tional exchange on the ms time-scale. As the exchange contribution to

the natural line width is dependent on the spin lock field strength,

exchange results in a deviation from linearity (the dependence of R1q

on sin2heff in the absence of additional line-broadening effects is

depicted as a thin black line). The sweep width msweep influences

sin2heff as a function of spin-lock amplitude, but also the size of the

deviation from linearity for exchanging spins. The spike on the left

hand side is a consequence of the violation of the adiabaticity

condition (e.g., imperfect inversion). Exchange parameters were

kex = 1,000 s-1, pB = 4%, Dx/2p = 240 Hz. The AFP pulse dura-

tion was 100 ms. Spin lock amplitudes ranged up to 2 kHz with 20%

ramping at the beginning and the end of the pulse
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performed iteratively resulting in a multi-step calculation.

For each time step s = ti - ti-1 the density matrix is

computed according to

rðtiÞ ¼ expð�LðtiÞsÞrðti�1Þ ð4Þ

For an isolated spin S system with only Larmor

precession and auto-relaxation, r(t) and L(t) are given by

rðtÞ ¼
SxðtÞ
SyðtÞ

SzðtÞ � Sz t!1ð Þ

0

@

1

A

LðtÞ ¼
�R2 �xSðtÞ 0

xSðtÞ �R2 �x1ðtÞ
0 x1ðtÞ �R1

0

@

1

A

where x1(t) is the field strength of an AFP pulse applied

from the x direction and xS(t) is the offset of the spin-lock

field at a given time t with respect to the precession fre-

quency of spin S. R1 and R2 are the longitudinal and

transverse autorelaxation rates, respectively, and Si(t) are

the magnetization components of spin S at time t.1

In a realistic spin system, however, it is necessary

to include weak scalar coupling and cross-correlated

relaxation channels. This can be accomplished by extend-

ing the basis to include the magnetization components that

are created by these mechanisms. Here we assume an AX

spin system (A = S, X = H), such that by scalar coupling

the size of the base is doubled (there is no need to include

magnetization modes where the scalar coupled spin is

transverse). Furthermore we consider A(CSA)-AX(DD)

cross-correlated relaxation (no extension of the basis is

necessary). In addition, the size of the basis doubles in the

presence of chemical or conformational exchange between

two states, modulating the Larmor precession frequency

(and other parameters) of the spins.

The following matrices show the Liouvillian and spin

density matrices in the presence of scalar coupling, CSA-

DD cross-correlated cross-relaxation,2 and modulation of

the isotropic chemical shift. Here, J is the scalar coupling

constant and Gx/z are the transverse and longitudinal CSA-

DD cross-correlated relaxation rates.3 The microscopic rate

constants kab and kba describe conformational exchange,

indices A and B refer to the two conformations that are

interconverted by the exchange process. Note that, for

simplicity, we set x1 = x1(t) and xS = xS(t).

1 In the absence of a spin-lock field, thermal equilibrium is

represented by a polarization of Z magnetization, and Sz(t) relaxes

towards Sz t!1ð Þ ¼ Seq
z . During on-resonance spin-lock

Sz t !1ð Þ ¼ 0 (as for the transverse components), and in the off-

resonance case the value is between 0 and 1. Of note, we have found

in our simulations that in the AFP experiment little or no error is

introduced to the calculated AFP profiles if it is assumed that

Sz t !1ð Þ ¼ 0.

2 In AX spin systems where A is the nucleus of interest and X is scalar

coupled to A, A(CSA)-AX(DD) is the most important of the cross-

correlated relaxation mechanisms and has a significant effect on the

outcome of quantitative relaxation studies (e.g. 15N(CSA)-15N-1H(DD)

cross-correlation in 15N labeled proteins). Note, however, that in the

presence of other dipole vectors or in more complicated spin systems

such as methyl groups (AX3), cross-correlated relaxation mechanisms

are much more abundant and it is extremely demanding to account for

them in calculations.
3 Note that the cross-correlation rate has been assumed equal for both

exchanging species. Here we used mostly rates that are in accordance

with a rigid bond vector tumbling at the rate of a small spherical

protein. There is no significant influence of Gx and Gz of species B on

the AFP profile (data not shown) given the limited range of CSA-DD

cross-correlated relaxation rates for this system.
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kAB and kBA are related to the exchange-rate constant kex by

kAB ¼ pBkex

kBA ¼ pAkex

kex ¼ kAB þ kBA

where pA and pB are the populations of species A and B,

respectively.

The effective spin-lock relaxation rate R1q can be cal-

culated as

R1q ¼
1

tAFP

ln
SA

Zð0Þ
SA

ZðtAFPÞj j ð5Þ

SA
z 0ð Þ and SA

z tAFPð Þ are the z-components of the magneti-

zation at t = 0 and at the end of the AFP pulse (t = tAFP).

Whereas the effect of weak scalar coupling is negligible

even if in- and anti-phase relaxation are very different (data

not shown), cross-correlated relaxation has indeed a pro-

nounced effect on the AFP profile (Fig. 5).

Since a typical AFP pulse consists of several thousand

time steps s, an iterative calculation of density matrices is

rðtÞ ¼½SA
x ðtÞ SA

y ðtÞ SA
z ðtÞ 2SA

x IA
z ðtÞ 2SA

y IA
z ðtÞ 2SA

z IA
z ðtÞ. . .

. . . SB
x ðtÞ SB

y ðtÞ SB
z ðtÞ 2SB

x IB
z ðtÞ 2SB

y IB
z ðtÞ 2SB

z IB
z ðtÞ�

0

. . . ¼ �
A B

C D

� �

A ¼

RA
2S þ kAB xSA 0 Gx J 0

�xSA RA
2S þ kAB x1 �J Gx 0

0 �x1 RA
1S þ kAB 0 0 �Gz

Gx J 0 RA
2S;anti þ kAB xSA 0

�J Gx 0 �xSA RA
2S;anti þ kAB x1

0 0 �Gz 0 �x1 RA
1S;anti þ kAB

0

BBBBBBBBB@

1

CCCCCCCCCA

B ¼

�kBA 0 0 0 0 0

0 �kBA 0 0 0 0

0 0 �kBA 0 0 0

0 0 0 �kBA 0 0

0 0 0 0 �kBA 0

0 0 0 0 0 �kBA

0

BBBBBBBB@

1

CCCCCCCCA

C ¼

�kAB 0 0 0 0 0

0 �kAB 0 0 0 0

0 0 �kAB 0 0 0

0 0 0 �kAB 0 0

0 0 0 0 �kAB 0

0 0 0 0 0 �kAB

0

BBBBBBBB@

1

CCCCCCCCA

D ¼

RB
2S þ kBA xSB 0 Gx J 0

�xSB RB
2S þ kBA x1 �J Gx 0

0 �x1 RB
1S þ kBA 0 0 �Gz

Gx J 0 RB
2S;anti þ kBA xSB 0

�J Gx 0 �xSB RB
2S;anti þ kBA x1

0 0 �Gz 0 �x1 RB
1S;anti þ Rþ kBA

0

BBBBBBBBB@

1

CCCCCCCCCA
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quite time consuming.4 A reduction of the number of time

steps is possible to a certain degree, but can lead to sizable

errors (see Fig. 6a). However, another option to reduce

computational time is to apply Baker-Campbell-Hausdorff

theory (Ernst et al. 2003). This theory states that a product

of matrix exponentials with non-commuting exponents can

be approximated by one exponential (that is a function of

the two exponents) in the following way:

expðAÞexpðBÞ ¼ exp AþB� 1

2
B;A½ �

�

þ 1

12
B; B; A½ �½ � þ B; A½ �; A½ �ð Þþ . . .

� ð6Þ

The evaluation of the right-hand side of the equation can

be computationally less expensive than the calculation of

the product of two matrix exponentials depending on the

required number of members of the expansion. In our case,

where the expression

rðtÞ ¼ expðLnsÞ. . . expðL3sÞ expðL2sÞ expðL1sÞrð0Þ ð7Þ

has to be evaluated, it proved optimal to combine four time

steps to a first-order average Liouvillian

Lð4sÞ � ðL1 þ L2 þ L3 þ L4Þs. . .

. . .� 1

2
L2; L1½ �ð þ L3; L1½ � þ L3; L2½ � þ L4; L1½ �

þ L4; L2½ � þ L4; L3½ �Þs2 ð8Þ

Simulations show no observable deviations between the

density matrices obtained using BCH and the exact solution

(see Fig. 6b) while computational speed is increased fivefold.

Analytical treatment

As numerical evaluations of large matrices are generally

slower than the evaluation of analytical expressions, we

opted to split the computation into two parts: (I) First we

address coherent evolution, i.e., Larmor precession and

scalar coupling, and derive an analytical expression for the

effect of these mechanisms. Subsequently (II), the stochastic

part is addressed where auto- and cross-relaxation mecha-

nisms are introduced, as well as conformational exchange

between two sites A and B. This is also performed in an

analytical way. Due to the small time increments, the two

parts can be performed sequentially without introducing

noticeable deviations from the numerical approach.

(I) Coherent evolution

This approach starts with the Hamiltonian for a heteronu-

clear, J-coupled IS spin system where the AFP pulse acts as a

(time-dependent) spin-lock on S (Zwahlen et al. 1997, 1998)

Hi ¼ 2pJIzSz þ xSðtiÞSz þ x1ðtiÞSx ð9Þ

This constitutes an instantaneous Hamiltonian defined by

the current offset xsðtiÞ, the current spin-lock amplitude

x1ðtiÞ, and the scalar coupling interaction. In this first step,

relaxation and conformational exchange are disregarded.

The Hamiltonian can be diagonalized by rotation into a

coordinate system that is tilted with respect to the z-axis by

an angle hðtiÞ ¼ arctan x1ðtiÞ=xsðtiÞð Þ:
H
0

i¼UHiU
�1

U¼ expðihðtiÞSyÞ for a field from y direction

H
0

i¼ 2pJS
0

zIz coshðtiÞ�2pJS
0

xIz sinhðtiÞ
þS

0

z xSðtiÞcoshþx1ðtiÞsinhð Þ
þS

0

x x1ðtiÞcosh�xSðtiÞsinhð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

coshðtiÞ¼
xSðtiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xSðtiÞ2þx1ðtiÞ2
q

sinhðtiÞ¼
x1ðtiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xSðtiÞ2þx1ðtiÞ2
q ð10Þ

The prime indicates a product operator in the tilted

frame. In contrast to Zwahlen’s et al. treatment of adiabatic
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0
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1ρ
 / 
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sin2θeff

+ CSA-DD

- CSA-DD

Fig. 5 Numerical simulation of R1q(sin2heff) of a 15N spin undergoing

chemical exchange (kex = 1,000 s-1, pB = 4%, Dx/2p = 240 Hz)

during an AFP pulse with the parameters msweep = 1 kHz, tAFP =

100 ms and 20% ramp with (solid line) and without (dashed line)

CSA-DD cross correlation (Gx = 5 s-1, Gz = 0.5 s-1)

4 Using Matlab (The MathWorks, www.mathworks.com), one sim-

ulation of an array of 11 data points (spin-lock amplitude) at one field

strength takes about 5 s, and one fit takes about 2–3 min. A Monte

Carlo simulation of 100 runs takes about 4 h. Doubling the number of

field strengths doubles the minimization time, and increasing the

number of residues in a global fit increases the computational time

accordingly.
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pulses during INEPT steps (Zwahlen et al. 1997),

simulations have shown that in our application the non-

secular part of the Hamiltonian in the tilted frame

(corresponding to 2Sx
0Iz) cannot be generally neglected.

Figure 7a shows that deviations resulting from omission of

the term depend critically on the sweep width of the AFP

pulse. This can be explained by considering the relative

duration of the inversion with respect to the AFP pulse: if

sweep widths are narrow, then the process of inversion

covers a larger fraction of the AFP pulse, resulting in the

above mentioned deviations. On the other hand, large

sweep ranges lead to almost instantaneous inversion,

resembling conventional 180 degree pulses, and non-

secular terms have little to no effect. In particular, we

have found substantial deviations for nuclei with small

gyromagnetic ratio such as 15N. For 1H nuclei where

generally larger sweep widths are employed due to the

larger frequency range, the 2Sx
0Iz-term can be safely

neglected.

The trigonometric functions of h that determine coherent

evolution of the density matrix are calculated in three steps

incorporating all terms of Eq. 10.

(1) Rotation of the density matrix into the tilted frame by

the equation

rðtiÞ0 ¼ UrðtiÞU�1

(2) Calculation of the next time step using the tilted-

frame Hamiltonian

rðtiþ1Þ
0
¼ expð�iH

0

iþ1ÞrðtiÞ
0
expð�iH

0

iþ1Þ
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x 104

5

6

7

8

9

10

11

12

0 1 2 3 4 5
x 10 4

5

10

15

20

25

kex / s
-1

kex / s
-1

(b)(a)

5000
500

400

100

nsteps = 200

R
1ρ

 / 
s-1

R
1ρ

 / 
s-1

Fig. 6 a Simulated dependence of R1q on the step size for an AFP

pulse with x1
max = 1 kHz, msweep = 1 kHz, tAFP = 100 ms, 20%

ramp (sin2heff = 0.83). We simulated the rate as a function of kex,

with pB = 4%, and Dx/2p = 240 Hz. As a reference, the results for a

step size of 0.02 ms (number of steps: 5,000) are given (black line).

The required number of steps to obtain accurate results with the given

parameters is about 500 steps (blue line). b Numerical simulation with

(grey) and without (black) BCH approximation. (pB = 4%,

Dx = 240 Hz, x1
max = 1 kHz, msweep = 1 kHz, tAFP = 100 ms and

20% ramp, sin2heff = 0.83)

0 0.2 0.4 0.6 0.8 1

sin2θeff

0

8

7

6

5

4

3

2

1

(a)

νsweep = 1kHz

νsweep = 5kHz

0 1 2 3 4 5
x 104

5

6

7

8

9

10

11

12

kex / s
-1

R
1ρ

 / 
s-1

(b)
R

1ρ
 / 

s-1

Fig. 7 a Analytical simulation of the spin-lock relaxation properties

of a 15N spin during an AFP pulse. Black All terms are considered.

Red 2Sx
0Iz is neglected. Deviations are dependent on the sweep width.

b Comparison of the numerical (2,500 steps, grey line), analytical

(25,000 steps, black line) and analytical simulations (2,500 steps, red

dashed line) as a function of kex employing an AFP pulse of duration

100 ms, sweep width 1,000 Hz, amplitude 1,000 Hz (sin2heff = 0.83).

Exchange parameters were pB = 4% and Dx = 240 Hz. The devi-

ations become more pronounced as kex increases
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(3) Rotation back into the rotating frame

rðtiþ1Þ ¼ U�1rðtiþ1Þ0U

The density matrix for t = 0 consists of Sz magnetization

only. During the first time increment, Sx, Sy, 2SxIz, 2SyIz,

and 2SzIz are generated; this set serves as initial

magnetization for the subsequent steps. Details of the

calculation are illustrated in supplementary material.

(II) Non-coherent evolution (relaxation)

In order to include auto- and cross-correlated relaxation

mechanisms as well as the modulation of the isotropic

chemical shift by chemical/conformational exchange, their

effects are introduced after step (I) for every time incre-

ment in a consecutive manner by solving the common

mathematical problem dMðtÞ=dt ¼ AM0. The following

matrices were solved analytically by determining the

Eigenvectors and Eigenvalues of A.

Longitudinal components of the density matrix are

affected by

(a) longitudinal relaxation and exchange between Sz-terms

A ¼ �RA
1S � kAB kBA

kAB �RB
1S � kBA

� �
M0 ¼

SA
z

SB
z

� �

(b) longitudinal relaxation and exchange between 2SzIz terms

A¼ �RA
1S;anti� kAB kBA

kAB �RB
1S:;anti � kBA

� �
M0 ¼

2SA
z IA

z

2SB
z IB

z

� �

(c) CSA-DD cross-correlation between Sz and 2SzIz for

both states A and B

A ¼ 0 �Gz

�Gz 0

� �
M0 ¼

SA;B
z

2SA;B
z IA;B

z

� �

Equivalently, transverse components are treated using

(a) Transverse relaxation and exchange between Sx or Sy terms

A ¼ �RA
2S � kAB kBA

kAB �RB
2S � kBA

� �
M0 ¼

SA
x=y

SB
x=y

 !

(b) Transverse relaxation and exchange between 2SxIz or

2SyIz terms

A¼ �RA
2S;anti� kAB kBA

kAB �RB
2S;anti� kBA

� �
M0 ¼

2SA
x;yIA

z

2SB
x;yIB

z

� �

(c) CSA-DD cross correlation between Sx and 2SxIz (for

both sites A and B) as well as Sy and 2SyIz

A ¼ 0 �Gx

�Gx 0

� �
M0 ¼

Sx=y

2Sx=yIz

� �

This approach is marginally faster than the numerical

simulation with BCH for the same number of time steps.

However, for large exchange rates the number of time

steps in the analytical calculation has to be increased

significantly in order to avoid substantial deviations (see

Fig. 7b). The reason for this is the non-simultaneous

treatment of exchange with respect to coherent evolution

and relaxation.

Trott-Palmer equation

A few years ago Palmer and co-workers derived an

expression (Eq. 11) for the rotating frame relaxation rate of

the major species in an exchanging two-state system for all

time regimes (Trott and Palmer 2002, 2003). Here, the

time-consuming stepwise evaluation of the Liouville-van

Neumann equation is circumvented and replaced by the

computation of a closed form equation of R1q(t) as a

function of sin2h(t) and DX(t). For our purpose, R1q(t) is

computed in a stepwise manner, its time-average being the

effective rotating frame relaxation rate.

R1qðtiÞ ¼ R1 cos2 hðtiÞ þ R0
2 sin2 hðtiÞ

þ pApBDx2kex sin2 hðtiÞ
xA;eff ðtiÞ2xB;eff ðtiÞ2=xeff ðtiÞ2 þ k2

ex � 2pApBDx2 sin2 hðtiÞ

xeff ðtiÞ2 ¼ DXðtiÞ2 þ x1ðtiÞ2

xA;eff ðtiÞ2 ¼ dAðtiÞ2 þ x1ðtiÞ2

xB;eff ðtiÞ2 ¼ dBðtiÞ2 þ x1ðtiÞ2

hðtiÞ ¼ arctan x1ðtiÞ=Dxð Þ
dAðtiÞ ¼ XA � XAFPðtiÞ
dBðtiÞ ¼ XB � XAFPðtiÞ
Dx ¼ XB � XA

DXðtiÞ ¼ pAXA þ pBXB � XAFPðtiÞ ð11Þ

XA and XB are the resonance frequencies of species A and

B, respectively. XAFP(t) is the frequency of the applied AFP

pulse at a given time ti and x1(t) is the corresponding field

strength. This expression does not account for CSA-DD

cross-correlated relaxation. Our simulations, however,

have shown that a correction term to R1q can be obtained

from a comparison of AFP profiles computed with and

without cross-correlated relaxation (the cross-correlated

relaxation rates have to be determined separately). This

difference depends only on sin2heff and not on the param-

eters of the exchange process, wherefore the correction can

be applied without prior knowledge of the motional prop-

erties of the spin system.
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The stepwise calculation can in some cases (large field

strengths) be substituted by a one step calculation (see

Fig. 8). Here, the time-dependence of the Liouvillian is so

small that little error is introduced by assuming a constant

R1q. It suffices in such cases to compute the spin lock

relaxation rate for an angle sin2heff. Overall, using the

Trott-Palmer equation tremendously reduces computational

time (by at least two orders of magnitude), which is par-

ticularly important for data analysis.

Experimental results

Data obtained on the protein KIX

We have conducted 15N AFP experiments on the protein

KIX (1 mM, pH = 5.5, 50 mM phosphate buffer, 25 mM

NaCl), which exhibits exchange in the intermediate regime

on the chemical shift time-scale. NMR data were acquired

on a Varian Inova spectrometer operating at 18.8 T at 27

degrees. We recorded AFP experiments with a 100 ms

AFP pulse (with parabolic phase modulation and ramping

of 20% at each end) for arrays of spinlock amplitudes given

in Table 1. Sweep widths were 1, 1.4, and 5 kHz (see

supplementary material). The measuring time was about

24 h per AFP array. Due to the uncertainty in the direct

determination of R1 from the AFP experiment we decided

to record a separate experiment (for details see Table 1). In

addition we recorded transverse 15N(CSA)-15N-1H-(DD)

cross-correlated relaxation rates (Pelupessy et al. 2003),

experimental parameters are given in Table 2. (Note that

the exchange-free transverse relaxation rate can be

obtained from these experiments, offering an additional

constraint for the analysis). The effect of longitudinal
15N(CSA)-15N-1H-(DD) cross-correlated relaxation was

neglected since its effect is very small (data not shown).

We compared our experimental results with theoretical

curves calculated using parameters obtained from CPMG

experiments (Tollinger et al. 2006). The results are in

excellent agreement with the simulations, as demonstrated

in Fig. 9 and supplementary material.
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Fig. 8 Comparison of the Trott-Palmer equation with numerical

results. Black numerical. Grey Trott-Palmer equation with

2,500 steps. Red dashed Trott-Palmer equation with one step.

a kex = 1,000 s-1, pB = 4%, Dx/2p = 240 Hz, msweep = 1 kHz,

tAFP = 100 ms, 20% ramping. b kex = 30,000 s-1, all other param-

eters as in (a). c x1
max = 160 Hz (corresponding to a sin2heff of 0.38).

kex is varied between 10 and 5,000 s-1, all other parameters as in (a).

d x1
max = 1 kHz (corresponding to a sin2heff of 0.83), all other

parameters as in (c). Panels (a) and (b) demonstrate that the accuracy

of the one-step Trott-Palmer equation decreases with increasing

exchange contribution. Panels (c) and (d) illustrate the dependence of

the deviations on the spin-lock field strength. In all cases, employing

the Trott-Palmer equation in an iterative calculation reproduces the

numerical results
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Synthetic data sets

The process encountered in KIX involves a rather small

population of excited state (about 3%), and the AFP dis-

persion curves are not very pronounced, compared to the

CPMG dispersion curves (see previous section). Fitting these

data does not give reliable results, wherefore we have deci-

ded to demonstrate the applicability of the method using

synthetic data sets that assume higher populations of excited

states and various time-scales. Furthermore we assumed that

we have determined R1 and the cross-correlated relaxation

rates from independent measurements. We used five fitting

parameters only (kex, pb, Dx, R2
0(11.7T) and R2

0(18.8T)); the

antiphase relaxation rates do not exert significant influence

on the AFP dispersion curves, as scalar coupling is sup-

pressed to a large extent due to the spin lock). Also, to reduce

the amount of computational time (of the numerical

procedure), we decided to use 11 9 2 data points only

(number of spinlock amplitudes time number of field

strengths). We compared the numerical fitting procedure to

the script that employs the Trott-Palmer equation using an

equal number of steps, and we found a 150-fold decrease in

computational time using the Trott-Palmer equation (150

Monte Carlo runs took about 15 h for the numerical fit and

6 min with the Trott-Palmer equation). Fitting was per-

formed using Matlab (The MathWorks, www.mathworks.

com). Details of the Monte Carlo fitting procedure are given

in supplementary material. We tested the fit using the Trott-

Palmer equation on several time-scales log(kex/Dx) =

-0.07, 0.50, 1.02 at 11.7T) and several error levels using

pb = 0.2 and Dx corresponding to 3 ppm. Results proved to

be robust, an example is given in Fig. 10 and several others in

supplementary material.

Discussion

Adiabatic fast passage, although widely used for the pur-

pose of broadband decoupling, has not often been applied

to the investigation of dynamic properties on the milli-

second to microsecond time-scale of biological macro-

molecules. The reason for this is primarily the long

computational times required to predict the behavior of a

spin system under the influence of a time-dependent

Hamiltonian with non-commuting elements. We believe,

however, that AFP pulses present a valuable complement

to existing strategies, such as CPMG relaxation dispersion

measurements and R1q experiments. The AFP technique,

just as static R1q experiments, is in principle less respon-

sive to dynamic effects than CPMG as the relevant mag-

netization has a significant longitudinal component. This

means that large exchange contributions due to pronounced

excited state populations are quenched more efficiently,

such that an AFP analysis may present an alternative to the

Table 1 Experimental parameters for AFP and R1 experiments on 15N for the protein KIX

15N AFP spin lock amplitude (Hz) 15N AFP

measuring

time

15N R1 relaxation

delays (ms)

15N R1

measuring

time

0, 37.7, 59.0, 73.4, 92.4, 115.7, 144.9, 181.3, 227.0, 284.1, 355.6,

445.2, 498.0, 557.2, 623.4, 697.5, 780.4, 873.1, 976.9, 557.2,

780.4

24 h 0, 50, 100, 150, 200, 300, 400, 600, 900,

300

11 h

Table 2 Experimental parameters for transverse 15N(CSA)-15N1H-(DD) cross-correlated relaxation rate measurements (Pelupessy et al. 2003)

15N(CSA)-15N1H-(DD)

relaxation delays (ms)

15N(CSA)-15N1H-(DD) measuring

time transfer experiment

15N(CSA)-15N1H-(DD) measuring

time reference experiment

10, 20, 30, 40, 20 2 9 33 h 2 9 5.5 h

30

0

10

20

R
1ρ

 / 
s-

1

0 0.5 1.0

sin2θeff

Fig. 9 Comparison of experimental results (grey circles with error
bars) and the theoretical curve (black solid line) computed from the

exchange parameters obtained from CPMG experiments (KIX residue

D638: kex = 876 s-1, pB = 3.8%, Dx/2p = 1.80 ppm at 18.8T,

msweep = 1 kHz, tAFP = 100 ms, 20% ramping). Experimental R1

and R2
0 values are indicated as large grey squares at sin2heff = 0 and

1, respectively. Further results are shown in Supplementary material
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CPMG method at excited state populations of 10–20%.5 At

the same time, it entails the benefits of static R1q experi-

ments, i.e., the possibility to access faster time-scale

motions. Of note, AFP pulses have an important advantage

with respect to static R1q experiments, as they allow to

analyze spins that spread out over a large range of offsets

while at the same time maintaining a large transverse

magnetization component.6

Bearing in mind the potential of AFP pulses in this

field, we have investigated different approaches for

reducing the calculation time for the simulation and

analysis of AFP pulse sequences. The methods have

been described and discussed with respect to accuracy,

computational speed and limitations. A stepwise calcu-

lation is generally necessary in all cases, and all methods

proved to be robust. With regard to computational speed

the Trott-Palmer equation is the method of choice if

populations are sufficiently skewed. If the Trott-Palmer

equation is used, a numerical or an analytical calculation

has to be performed once for every spin in order to

account for CSA-DD cross correlation. We have dem-

onstrated the potential utility of the method for deter-

mining ls–ms dynamics by fitting synthetic data sets as

a function of time-scale and experimental error. With the

efficient computation of relaxation rates during the adi-

abatic fast passage pulses we hope to provide a basis for

a spread in applications of this tool in the field of bio-

molecular NMR spectroscopy.
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Fig. 10 Fit of simulated data. Exchange parameters were kex =

3,000 s-1, pb = 0.2, Dx = 3 ppm. Spinlock relaxation rates were

generated for a 15N nucleus at 11.7 and 18.8T, with a 100 ms AFP

pulse sweeping over a frequency range of 2,000 Hz in 2,500 steps

(ramping 20% at the start and at the end of the pulse). The

experimental error in measured rates was set to 0.5 s-1. The left panel
shows the (simulated) ‘experimental’ AFP profile (black circles and

error bars), superimposed with the individual fits of a Monte Carlo

simulation (200 runs) using the Trott-Palmer equation, shown as

yellow solid lines. The exchange free profiles for the two field

strengths are depicted as dashed black lines. The right panel shows

scatter plots of the resulting fit parameters, with the input values at the

intersections of the dashed lines. We assumed that cross-correlated

relaxation has been corrected for. Further examples (different kex and

errors) are shown in supplementary material

5 This is true as long as line-broadening effects do not compromise

the analysis. Note that CPMG experiments can, in principle, be

recorded for short relaxation periods as well, but cB1 sampling may

not be as exhaustive as for longer periods.
6 On-resonance T1q experiments can be conducted for one offset at a

time only, and resonances at different offsets are prone to severe

offset effects—their magnetization is efficiently scrambled due to

oscillations in the xy plane. Therefore, a spin by spin measurement is

required, which, however, is time-consuming and thus impractical. In

order to simultaneously measure all spins within a large spectral range

in one shot, R1q experiments are usually performed at large offsets,

with the spin-lock frequency so far away from all signals that the

angle h is approximately equal for all spins and dephasing due to

offset effects can be safely neglected. The disadvantage of this

approach is that, due to hardware limitations, only small deviations of

the spinlock field from the z-axis can be realized. As a consequence,

the magnetization component in the transverse plane is small,

decreasing the sensitivity of the method. A solution to this problem

has recently been suggested by Hansen and Kay (2007 J Biomol

NMR, 37, 4, 245–255). AFP experiments present an alternative way

to simultaneously measure many offsets at a time, since all spins in

the sweep range are dragged along with the effective field. Also,

larger tilt angles can be reached employing the same (maximum) field

strength and narrowing the sweep range.
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