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Abstract High-throughput functional protein NMR studies,

like protein interactions or dynamics, require an automated

approach for the assignment of the protein backbone. With the

availability of a growing number of protein 3D structures, a

new class of automated approaches, called structure-based

assignment, has been developed quite recently. Structure-

based approaches use primarily NMR input data that are not

based on J-coupling and for which connections between res-

idues are not limited by through bonds magnetization transfer

efficiency. We present here a robust structure-based assign-

ment approach using mainly HN–HN NOEs networks, as well

as 1H–15N residual dipolar couplings and chemical shifts. The

NOEnet complete search algorithm is robust against assign-

ment errors, even for sparse input data. Instead of a unique and

partly erroneous assignment solution, an optimal assignment

ensemble with an accuracy equal or near to 100% is given by

NOEnet. We show that even low precision assignment

ensembles give enough information for functional studies,

like modeling of protein-complexes. Finally, the combination

of NOEnet with a low number of ambiguous J-coupling

sequential connectivities yields a high precision assignment

ensemble. NOEnet will be available under: http://www.icsn.

cnrs-gif.fr/download/nmr.
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Introduction

Since the beginning of protein NMR, the automation of the

tedious assignment process of the NMR spectra has been

sought. Several factors make it difficult to automate the

assignment process. For instance, as NMR data yield

mainly ambiguous information for the assignment, it is

difficult to guarantee to find always the correct assignment

for all residues of a protein. Manual verification of the

obtained result is often required, for example by inspecting

visually the raw NMR spectra. Additionally, despite the

large number of automation solutions proposed during the

last 20 years none of them became a standard in the NMR

community (reviews: (Moseley and Montelione 1999;

Gronwald and Kalbitzer 2004; Baran et al. 2004; Altieri and

Byrd 2004; Billeter et al. 2008; Williamson and Craven,

2009; Güntert 2009)). These difficulties are reflected by the

fact that the majority of the proteins studied by NMR are

still assigned manually, requiring often several weeks even

for an experienced spectroscopist.

In parallel to the 3D structure determination of proteins

(a sometimes lengthy task, specially for larger proteins),

NMR demonstrated over the years its invaluable potential

for functional studies, like protein–protein and protein-

ligand interactions or protein dynamics. It is highly bene-

ficial to automate the assignment of the backbone

resonances for these studies that often only require the

assignment of the backbone resonances, especially if they

should be done in a high-throughput manner.
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Thanks to the growing number of available 3D struc-

tures of proteins, the 3D structure of the protein investi-

gated in a functional NMR study is often already known in

its free form. Knowing the 3D structure before any

assignment allows the spectroscopist to use alternative

sensitive NMR experiments instead of triple resonance

experiments for the assignment of the 15N–1H HSQC

spectrum.

We showed recently (Stratmann et al. 2009) with the

development of ‘‘NOEnet’’ that 1HN–1HN NOE networks

are valuable experimental constraints in structure-based

assignment. Other structure-based assignment approaches

(Dobson et al. 1984; Bartels et al. 1996; Gronwald et al.

1998; Bailey-Kellogg et al. 2000; Pristovsek et al. 2002;

Pristovsek and Franzoni 2006; Hus et al. 2002; Erdmann

and Rule 2002; Pintacuda et al. 2004; Langmead et al.

2004; Langmead and Donald 2004; Apaydin et al. 2008;

Xiong and Bailey-Kellogg 2007; Xiong et al. 2008) require

a combination of alternative data, like residual dipolar

couplings (RDCs), chemical shifts (CS), 1Ha–1HN NOEs,

solvent accessibility or TOCSY data (see (Stratmann et al.

2009) for more details). To be able to extract assignment

information from these alternative data sets, incomplete

optimization algorithms are mainly used giving a limited

number of solutions (often only one global assignment),

with the drawback that their accuracy is difficult to assess.

The alternative data sets used in structure-based assign-

ment are usually too sparse or too ambiguous to yield one

unique assignment solution for all peaks. By searching for

a unique assignment solution, a high amount of assignment

errors are consequently introduced. For example, the con-

tact replacement approach (Xiong et al. 2008) yields only

an accuracy of 60–80% with highly ambiguous data. For

many of the alternative data sources their ambiguity

increases with the number of residues. Probably because of

this, none of the existing structure-based approaches has

been tested on protein sizes above 200 residues using real

experimental data. With NOEnet we showed for the first

time that structure-based assignment is feasible on a pro-

tein size above 200 amino acids with an accuracy near to

100%.

A guarantee of high accuracy (near 100%) is crucial for

the large adoption of automated assignment approaches.

NOEnet was designed to tackle specifically this problem of

accuracy, through an efficient complete search algorithm

that yields all assignment solutions compatible with the

input data in form of an assignment ensemble.

The sparseness and quality of experimental NOE data

condition the size of the assignment ensemble obtained. A

fraction of the 15N–1H HSQC peaks are uniquely assigned,

while the others have multiple assignment possibilities.

Fortunately, multiple assignment possibilities can be

exploited in structure-based assignment. For example, the

set of assignment possibilities can be mapped onto the

known 3D structure for each peak alone or for a group of

peaks. This allows a visual inspection of the possible

assignment zone. In order to quantify the extension of each

assignment zone, we introduced a quality factor named

spatial assignment range (SAR).

In this article, we investigate how additional data beside

the NOE network can restrict the final assignment ensem-

ble. To achieve this goal, we introduce a general filter

approach that allows the inclusion of almost any type of

input data without much efforts. We establish a parameter

optimization protocol that allows a first test of the data

quality and an optimal restriction of the assignment

ensemble. We first investigate the case of 15N labeled

proteins and the impact of 15N and HN chemical shifts (CS)

and 1H–15N residual dipolar couplings (RDC). The adding

of 1H–15N RDC appears particularly effective. For the case

of doubly 15N, 13C-labeled proteins, the sole use of addi-

tional 13Ca, 13Cb and 13CO chemical shifts that can be

obtained from the two triple resonance experiments

CBCA(CO)NH and HNCO markedly improves the preci-

sion of the assignment ensemble. Finally, we show that the

combined use of a 1HN–1HN NOE network and highly

ambiguous sequential connectivities allows an accurate,

uniquely defined assignment, even for large proteins like

EIN (259 amino acids).

Methods

Conceptual bases of NOEnet

NOEnet searches to assign the backbone resonances of the
15N–1H HSQC spectrum to the residues of the protein, from

a known 3D structure of the protein and a network of

unambiguous 1HN–1HN NOEs. The main idea of NOEnet is

to sample all possible matches of the whole available

experimental NOE network onto the connectivity network

of the 3D structure. In terms of graph theory, the algo-

rithmic problem, which belongs to the class of NP-hard

problems, is to find all possible subgraph monomorphisms

or graph matchings. In opposition to algorithms that search

one or several assignment solutions, NOEnet searches

iteratively the assignment impossibilities, while ensuring in

general that the correct assignment is not removed. At the

beginning of the search, each peak can be assigned to any

residue in the (npeaks 9 nresidues) assignment table A. Dur-

ing the search, impossible peak assignments are removed

from A. NOEnet makes several refinement cycles, return-

ing each time an assignment ensemble in form of the

assignment table A, which will have less assignment pos-

sibilities at each cycle. This approach allows the exploi-

tation of the current result, even if the complete search is
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still not finished. In general, the first cycle will return

rapidly an assignment ensemble almost as good as the final

assignment ensemble. More details about the algorithmic

concepts realized in NOEnet can be found in (Stratmann

et al. 2009). Here will be explained in detail, how addi-

tional data are handled by NOEnet.

The minimal input for NOEnet is a list of unambiguous
1HN–1HN NOEs and the 3D structure in the Protein Data

Bank (PDB) file format. Unambiguous NOEs means that

each NOE cross peak can be related to exactly two

unambiguous resonances of the 15N–1H HSQC spectrum.

Peaks with degenerated [15N, 1HN] chemical shifts have to

be identified in advance (thanks to pH, salt or temperature

variations) and removed from the set of peaks to assign.

The NOE cross peaks, which can be related to more than

two of the remaining HSQC peaks, are also excluded.

Beside the peaks of the (15N, 1H) atom-pairs of the

protein backbone, some peaks correspond to the (15N, 1H)

atom-pairs of side-chains. Especially, the tryptophan (TRP)

side-chains generate (15N, 1H) peaks, which are not dis-

tinguishable from the peaks corresponding to the backbone

of the protein. We included the TRP side-chains as addi-

tional pseudo-residues. The peak pairs corresponding to

NH2 groups of side-chains are assumed to be identified by

their identical 15N frequency or from decoupled HSQC

experiments, and were not included as assignment

possibility.

Incorporation of additional data

If available, additional data should restrict the solution

space further. We added 15N and 1HN chemical shifts (CS)

and 1H–15N residual dipolar couplings (RDC). The 15N and
1HN chemical shifts are readily obtained from the 15N–1H

HSQC spectrum without additional effort, whereas the

measurement of RDCs requires a protein sample dis-

solved in a weak alignment medium (Bax and Grishaev

2005). If a doubly 15N, 13C-labeled sample is available,
13C chemical shifts (13Ca(i-1), 13Cb(i-1), 13CO(i-1)) can

be obtained from two sensitive triple resonance experi-

ments (CBCA(CO)NH and HNCO) and associated to the

HSQC peak corresponding to residue i. These carbon

chemical shifts are included in NOEnet in the same way as

chemical shifts of the HSQC spectrum.

In order to include these secondary data, we imple-

mented a general approach based on filters. The assign-

ments, which are inconsistent with the constraints imposed

by additional NMR data, are rejected during the search of

assignment possibilities. The filter consistency is tested at

each elementary step of the search for assignment possi-

bilities. The filter approach allows a straightforward

extension of NOEnet with any type of additional peak

assignment constraint.

The chemical shift filter

Experimental chemical shifts dexp are converted into an

assignment constraint, through comparison with theoretical

CS values dtheo predicted from 3D structure by one of the

available programs (Shen and Bax 2007; Neal et al. 2003;

Xu and Case 2001; Meiler 2003). Each assignment of a

peak j to a residue i can be evaluated by comparison of the

corresponding CS values dj
exp and di

theo. The general idea is

to reject only assignments a ¼ a1; a2; . . .½ � of a set of peaks

and not to reject a single peak assignment ak ¼
ðpeakjk ; residueikÞ; since this could introduce errors in the

assignment result due to the imperfections of the predicted

values dtheo. The RMSD for a current assignment

a = [a1, a2, ..., an] is given by:

RMSDa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
k¼1 dexp

jk
� dtheo

ik

� �2

n

v

u

u

t

ð1Þ

with n being the actual number of assigned peaks, i.e. the

depth of the backtracking search (see (Stratmann et al.

2009) for more details). The current assignment a along the

backtracking search is rejected if RMSDa [ TCS(n). The

empirically chosen RMSD threshold function T(n) is

defined as:

TCSðnÞ ¼ mCS þ ðuCS � mCSÞ � e�n=cCS : ð2Þ

It decreases exponentially (see Fig. 1) from uCS to mCS

with the size n of a, as the correct assignment of only a

small number of peaks is likely to lead to a higher RMSD

than the correct assignment of a high number of peaks. In

Fig. 1 Threshold function TCS(n) of the chemical shift filter. Only

current assignments a ¼ a1; a2; . . .; an½ � with RMSDa \ TCS(n) are

accepted during the search for the assignment ensemble. The ‘upper’

threshold uCS is usually fixed, while the minimum threshold mCS and

the decay constant cCS are optimized. The threshold function TRDC(n)

of the RDC filter has the same shape. See text for more details
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addition, the CS-filter is applied only if the current

assignment a contains a minimum number of five peaks.

The 15N and 1HN chemical shifts have a range of about 30

and 3 ppm respectively, but the 1HN shifts are less well

predicted and require therefore proportionally higher uCS

and mCS parameter values. The parameters uCS and mCS are

set for the 1HN chemical shifts to 2 and 0.8 ppm,

respectively. For the 15N chemical shifts, the value of uCS

remains fixed to 10 ppm, while mCS is optimized. The

decay constant cCS is the same for both nuclei and is also

optimized. For 13C chemical shifts, uCS is fixed to the same

value as for 15N chemical shifts (10 ppm), while mCS and

cCS are optimized independently of the values for 15N.

A general optimization protocol is presented in the

‘‘Parameter optimizations’’ section.

The use of RDC data during the search

The prediction of theoretical RDC-values Dtheo not only

needs the 3D structure but also a good estimate of the

alignment tensor A. This can only be obtained from a set of

at least five (in practice [15) experimental RDC-values

Dexp ¼ Dexp
1 ;Dexp

2 ; . . .;Dexp
n

� �

of NHs whose assignments

are unique. The alignment tensor that yields the best fit

between Dexp and Dtheo of the peaks having a unique

assignment is obtained by SVD (Losonczi et al. 1999). If

the minimum number of uniquely assigned peaks is not

reached, the RDC data are converted into a temporary

assignment constraint: the idea is to calculate an alignment

tensor Aainitial
using the initial assignment ainitial found

during the search for the first 15 peaks. Temporary theo-

retical RDC-values Dtheo
ainitial

can be calculated for all residues

from the 3D structure with Aainitial
: The comparison of

Dtheo
ainitial

with the experimental RDCs Dexp constrains the

search for the remaining peaks connected by the NOE

network. If ainitial is incorrect, RDC-data evaluated using

Aainitial
will constrain the remaining peaks in an erroneous

way. The goal is to find more rapidly if ainitial is incorrect.

In average it should be more difficult to find an assignment

of all peaks of the NOE network that satisfies the erroneous

RDC-constraints and the network-properties simulta-

neously. In this sense, the addition of the RDC-data should

help to prune more rapidly the search tree. If initial

assignment ainitial is correct, the RDC-data in couple with a

correct alignment tensor Aainitial
should filter out assignment

possibilities, which would be allowed by the NOE network

constraints alone.

A permanent alignment tensor Aunique is calculated once

a sufficient number of uniquely assigned peaks is reached

(in practice n C 15). Aunique is updated with every new

unique peak assignment. With the availability of Aunique,

the temporary RDC assignment constraints are replaced by

permanent constraints, independent of the temporary

assignment a. Having the predicted RDCs Dtheo and the

measured RDCs Dexp, the comparison Dtheo$Dexp is done

in the same way as with the CS data, employing the RMSD

threshold approach explained in the previous paragraph

with:

RMSDa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
k¼1 Dexp

jk
� Dtheo

ik

� �2

n

v

u

u

t

: ð3Þ

As for the CS data, the threshold function is a decreasing

exponential with the number of currently assigned nodes n:

TRDCðnÞ ¼ DTRDCðnuniqueÞ þ mRDC

þ ðuRDC � mRDCÞ � e�n=cRDC : ð4Þ

For a typical value range of Dexp of ±30 Hz for NH

RDCs, uRDC is set to 10Hz. cRDC and mRDC are optimized

(see ‘‘Parameter optimizations’’ section). TRDC(n) is

increased by an empirical additional margin:

DTRDCðnuniqueÞ ¼ 2� ð1� nunique=NpeaksÞ: ð5Þ

It takes into account that the quality of the permanent

alignment tensor increases with the number of unique

assignments nuniques.

Response to erroneous constraints

Erroneous constraints yield incompatibilities in the con-

straint framework. If the constraint framework is dense

enough, an incompatibility can leave some strongly con-

strained peaks with no assignment possibility. This gener-

ates holes in the list of peak assignment possibilities. The

occurrence of a hole along the matching process indicates

that there must be one or more erroneous constraints in the

data set. Inversely, if every peak has at least one assign-

ment possibility at the end of the matching process, it is

highly improbable to have an error in this result. Erroneous

constraints can be caused by all data sources. Erroneous

NOEs can be caused by the use of too small distance

thresholds in the theoretical graph built from the 3D

structure, artifacts from the NOESY spectra or large dif-

ferences between the reference tridimensional structure and

the structure of the protein in solution. For CS- and RDC-

data, the choice of a too tight RMSD threshold will also

cause the removal of correct assignment possibilities and in

most cases the appearance of holes in the assignment list.

Parameter optimizations

Beside the experimental data and the 3D structure, NOEnet

needs a set of threshold parameters (dmax
theo, TNOE, Dd, cCS,

mCS, cRDC, mRDC) for the interpretation of the input data

(see Table 1). The search for appropriate thresholds should
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begin with common values, which were experimentally

found valid for most cases and which are scaled to the

experimental conditions like the mixing time in the NO-

ESY experiment. Three cases can occur: (1) Some of the

thresholds are too tight, causing assignment errors. In most

cases, NOEnet produces an assignment list with holes. (2)

The thresholds are not tight enough, causing a explosion of

the search space. This can be seen by a poor convergence

causing a high number of stopped possibilities (i.e. sear-

ches temporarily stopped after a given number of trials).

(3) The thresholds are in an optimal range, NOEnet will

return relatively rapidly (some minutes to some hours,

depending on the protein size and the amount of data) a

well constrained result, if the given input data are

sufficient.

The different input data (NOE, CS, RDC,...) and their

corresponding thresholds should be tested sequentially.

The general protocol for the parameter optimization is

shown by the flowchart in Fig. 2. NOEnet uses the notion

of outliers, i.e. NOE cross peaks corresponding to distances

shorter than the upper theoretical distance dmax
theo by at most a

given value Dd. The number of allowed outliers is given by

TNOE. The NOE thresholds (dmax
theo, TNOE, Dd) are optimized

first, then the parameters for CS and RDC data, if used.

The OPTIMIZE procedure in Fig. 2 can be done in a

parallel fashion by running several trials with different

parameter values simultaneously. It consists in running

several trials with NOEnet to optimize the threshold

parameter x. If x is too tight, holes are likely to occur in the

assignment list, requiring to relax x. If the assignment list

contains no hole, x can be tightened. At each change of x,

either the tightest successful value of x is saved in xopt or

the most relaxed unsuccessful value of x is saved in xhole.

The tests x = xhole? and x = xopt? prevent from retesting

the same values or value ranges of x twice.

By default, a first set of theoretical distance thresholds

dtheo
max ¼ ð5; 6; 7 Å) for short, medium and long distances,

respectively, is used. If this is not successful, the long

distances threshold is increased by 0.5 Å , as the corre-

sponding weak NOEs could more likely correspond to spin

diffusion than the medium or strong NOEs. The NOE

outlier parameters are optimized first, their initial default

value are: TNOE
init = 3 and Ddinit = 1 Å. If available, CS and

RDC data are included with loose thresholds (cCS/RDC =

30 and mCS = 3.5 ppm/mRDC = 3.5 Hz (for a Dexp range

of ± 30Hz)). The OPTIMIZE function returns the optimal

value TNOE
opt . If TNOE

opt = 1, then the Dd threshold can be

tightened (i.e. increased). TNOE
opt = -1 indicates that even

with high TNOE [ 15 values, no hole free assignment

ensemble could be obtained by NOEnet. dmax
theo has to be

increased in this case as described above.

Once the NOE parameters optimized, the CS and RDC

parameters are also optimized sequentially using the opti-

mal NOE parameters.

Typically about 20 trials have to be done to optimize all

parameters. Several of these trials are very fast (some

minutes) due to the occurrence of holes, while some trials

can take several hours depending on the parameter values

and the data quality.

Tables S1 and S2 show all the trials performed for the

thresholds optimization on lysozyme with realistic simu-

lated and experimental NOE data, respectively. The trials

for EIN are shown in Table S3.

Results analysis

Spatial assignment range (SAR)

As NOEnet does not search for a unique assignment for all

peaks, but for an assignment ensemble compatible with the

Table 1 Parameters required

for NOEnet
Name Description Typical values

NOE-data

dmax
theo maximum 1HN–1HN distance in 3D structure,

one value for each NOE intensity class

(7, 6, 5 Å) for weak, medium and strong NOEs

TNOE number of allowed outliers 1–10

Dd outlier range 1–1.5 Å

CS-data

cCS decay constant of RMSD filter 10–30 residues

uCS upper RMSD threshold 10 ppm for 15N and 13C; 2 ppm for 1HN

mCS minimum RMSD threshold 3 ppm for 15N, 0.8 ppm for 1HN and 1.5 ppm for 13C

RDC-data

cRDC decay constant of RMSD filter 10–30 residues

uDC upper RMSD threshold 10 Hz

mRDC minimum RMSD threshold 3 Hz
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input data, the precision and accuracy of the ensemble can

be quantified. The accuracy is defined in this context as:

Accuracy ¼ 1� Ne

NP
ð6Þ

with Ne the number of HSQC peaks that do not have the

correct assignment in their list of assignment possibilities

and NP the number of peaks. An accuracy of 100% means

that the assignment ensemble contains among other

compatible assignments also the correct assignment. The

precision of the assignment ensemble is defined in terms of

completeness. We define two types of completeness: First

the unicity completeness describing the ratio of the number

of uniquely and correctly assigned peaks to the total

number of peaks:

C1 ¼
Nunique

NP
: ð7Þ

Second, the peaks with multiple assignment possibilities

can be classified by a quality factor obtained with the

available 3D structure of the protein. To obtain this quality

factor, we calculate the inter-residue spatial 1HN–1HN

Fig. 2 Flowchart of the

parameter optimization

protocol. First are optimized the

NOE thresholds dmax
theo

(maximum 1HN–1HN distance in

3D structure, one value for each

NOE intensity class), TNOE

(number of allowed outliers)

and Dd (outlier range in Å).

Then are optimized the CS
thresholds cCS (decay constant

of RMSD filter) and mCS

(minimum RMSD threshold)

and finally the RDC thresholds

cRDC and mRDC. See text for

further explanations
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distances for all residue pairs taken from the peak

assignment possibilities for a specific peak. We define

the spatial assignment range(SAR) as the maximum of

those distances and calculate it for each peak. The idea is

that studies that do not require exact positioning in the 3D

structure, as for example chemical shift perturbation

studies for protein–protein interactions, can also exploit

the peaks that are not uniquely assigned, but that have a

small SAR value. We thus define a second type of

completeness: the ratio between the number of peaks

with a SAR-value below a given threshold (typically 10 Å)

and the total number of peaks:

C2ð\10 ÅÞ ¼ NSAR\10A

NP
: ð8Þ

The uniquely assigned peaks are given a SAR-value of

zero.

Compared to the inherent uncertainty of chemical shift

perturbation data, we estimate that 10 Å is a reasonably

conservative threshold. A recent study compared a large

number of methods to translate chemical shift perturbation

data into a predictor of the interfacial residues (Schumann

et al. 2007). The results have been expressed in terms of

Matthews correlation coefficients (MCC), defined as:

MCC ¼ TN � TP� FN � FP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ððTPþ TNÞðTPþ FPÞðTN þ FPÞðTN þ FNÞÞ
p

ð9Þ

TN: True Negative, TP: True Positive, FN: False Negative,

FP: False Positive.

Testing 15 methods on 4 complexes, the authors

obtained a large range of MCC values from 0.14 to 0.82.

The average value (about 0.5) is quite far from a perfect

predictor which would have a MCC value of 1.0. This

shows for the first time quantitatively the high uncertainty

of a chemical shift perturbation based predictor for inter-

facial residues. Chemical shift perturbation does not allow

therefore the delineation of the interaction site with an

atomic precision, but rather with a precision around 10 Å.

The delineation of interaction surfaces from chemical shift

perturbations (CSPs) is thus not necessarily more precise

when using a unique, ‘atomic-resolution’ assignment of

chemical shifts than when using an assignment ensemble

with 10 Å resolution (i.e. spatial assignment range

SAR \10 Å). Actually, we show in the results section that

the interaction site prediction on the EIN-HPR complex is

of a good quality, using the assignment ensemble with SAR

values up to 30 Å.

Individual peak assignment refinement

The CS- and RDC-filters are routinely applied on assign-

ments of at least five peaks, in order to prevent the

introduction of assignment errors due to outlier values of

single peaks in the CS or RDC data. As done by other

approaches, like the NVR algorithm (Langmead et al.

2004; Langmead and Donald 2004; Apaydin et al. 2008),

assignment possibilities can also be restricted for individ-

ual peaks, yielding a higher reduction in assignment pos-

sibilities with the risk of introducing assignment errors.

This risk decreases with the number of independent data

available for each peak. We thus also implemented in

NOEnet a refinement procedure of the assignment list

operating on individual peaks. In order to minimize the risk

of introducing assignment errors, solely assignment possi-

bilities of peaks for which at least three CS/RDC data

values are available can be removed. The refinement pro-

cedure uses a combined cost of the available CS (dexp) and

RDC (Dexp) data for each peak assignment possibility (peak

i to residue j):

Cði; jÞ ¼ 1

Ndata

X

Ndata

k¼1

wkjxexp
k;i � xtheo

k;j j

data xk ¼ CS, RDC; wk- normalization factors ð10Þ

For CS data, the normalization factors wk are set

according to the expected RMSD error ERMSD of the

employed prediction program ShiftX (Neal et al. 2003)

between experimental and predicted chemical shifts of a

given atom type k:

wk ¼ 1=ERMSD
k : ð11Þ

The absolute value range of the chemical shifts of a

given atom type is not the sole determinant for wk, as

differences between predicted and experimental chemical

shifts are normalized and these differences depend also on

the relative prediction accuracy. For example, the relative

prediction accuracy is better for 1Ha compared to 1HN.

Both, the absolute value range and the relative prediction

accuracy determine the Ek
RMSD values. The Ek

RMSD values

are taken from the ShiftX article—Table 10 (Neal et al.

2003) (validation data set): 15N: 2.53 ppm, 1HN: 0.52 ppm,
13Ca: 1.02 ppm, 13Cb: 1.10 ppm, 13CO: 1.17 ppm.

The RMSD error of RDC data is here estimated to be

ERMSD
RDC = 2 Hz and the RDC normalization factor is set

accordingly: wRDC ¼ 1
ERMSD

RDC

¼ 1
2Hz :

The refinement procedure removes iteratively peak

assignment possibilities with high costs, until a hole occurs

in the assignment list. The result of the iteration step before

the occurrence of a hole is returned to minimize further the

risk of introducing assignment errors.

Calculations

The runtimes indicated in the results section and in the

Supporting Information correspond to the use of a single
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core of a Intel Xenon Woodcrest CPU at 2.66 GHz with 1

gigabyte of RAM. Although NOEnet is not programmed in

a parallel manner, several cores or CPUs can be useful to

test several parameters in parallel.

Figures

The figures of protein structures in this article were pre-

pared with the program MOLMOL (Koradi et al. 1996).

Datasets

In this article we assume that all NOE data sets (simulated

or experimental) could have been obtained by a 4D

NOESY experiment. We thus removed from the NOE data

sets all NOEs, which involve an ambiguous [15N, 1HN]

HSQC peak, defined by the tolerance distances [tolN, tolH]

equal to [0.2 ppm, 0.02 ppm].

The description and analysis of the simulated datasets

are given in the supplementary material.

Experimental data for Lysozyme

The HN–HN NOE-data set deposited in the PDB (1E8L)

(Schwalbe et al. 2001) contains 190 HN–HN NOE-con-

straints obtained from a 3D NOESY-HMQC experiment

(Schwalbe et al. 2001). Ambiguous NOEs were removed

as described above reducing the number of NOEs to 169.

The average number of NOEs per residue is r = 169/

132 = 1.3. The NOE classification given by (Schwalbe

et al. 2001) was used. The 15N and 1H chemical shifts were

considered (taken from the BMRB: bmr4831.str (Schwalbe

et al. 2001) for 15N-CS and bmr4562.str (Wang et al. 2000)

for 1H-CS) as well as the 1H–15N RDC data in two align-

ment media (Schwalbe et al. 2001). Theoretical chemical

shifts were predicted using ShiftX (Neal et al. 2003). The

X-ray structure 193L (PDB code) (Vaney et al. 1996) was

used as the reference 3D-structure to build the theoretical

graph Gtheo and to predict the theoretical CS and RDC

values.

Experimental data for EIN

The structure of the 28 kDa protein EIN has been deter-

mined by X-ray crystallography (PDB 1ZYM (Liao et al.

1996)) and NMR (PDB 1EZA (Garrett et al. 1997a)). The

RMSD of the backbone heavy atoms between 1ZYM and

1EZA is equal to 1.55 Å. A large number of NMR

experiments have been recorded on EIN (Garrett et al.

1997a), especially a 4D 15N/15N-separated NOESY exper-

iment on perdeuterated EIN with a mixing time of 170 ms

(Garrett et al. 1997a) and a 3D 15N-separated NOESY with

a mixing time of 100 ms (Garrett et al. 1997a). The two

experiments permitted the extraction of 555 HN–HN NOE-

constraints (PDB 1EZA). Since the X-ray structure is

truncated at the C-terminal end by 10 residues, we removed

by hand the NOE-constraints involving residues 250–259,

which left 535 out of the 555 HN–HN NOE-constraints.

Removal of ambiguous NOEs reduced the number of

NOEs to 407. The NOE data completeness is higher for

EIN than for lysozyme (average number of NOEs per

residue r = 407/250 = 1.6). Experimental 15N and 1HN

chemical shifts (Garrett et al. 1997a) were included sys-

tematically as assignment constraint. Theoretical chemical

shifts were predicted using ShiftX (Neal et al. 2003) on the

X-ray structure 1ZYM. Carbon chemical shifts (13Ca(i-

1), 13Cb(i-1), 13CO(i-1)) were taken from the data set

included in the distribution of MARS (Jung and Zweck-

stetter 2004). The results that make use of this carbon

chemical shift data set are labeled with ‘CScarbon’, while

‘CS’ indicates the use of 15N and 1HN chemical shifts.

NOE constraints were classified in three classes (strong,

medium and weak). Crosspeaks, which appear only in the

4D NOESY with a long mixing time of 170 ms and which

have an intensity below 11% of Imax(4D) were classified as

weak. All crosspeaks from the 3D NOESY with a mixing

time of 100ms were classified as strong, if their intensity was

greater than 14% of Imax(3D). All other crosspeaks were

classified as medium. The 407 experimental NOEs finally

consisted in 36 strong, 208 medium and 163 weak NOEs.

No RDC are available for EIN free in solution. In order

to test the impact of RDCs, we simulated two sets of
1H–15N RDCs that would be obtained in two independent

alignment media by using two different alignment tensors.

The X-ray structure of the free form of EIN (PDB 1ZYM

(Liao et al. 1996)) was used to calculate the theoretical

RDC values sets Dtheo(1) and Dtheo(2) for two different

alignment tensors. A gaussian random error of r = 1 Hz

was added to each data set for the simulated data sets:

Dsimð1Þ ¼Dtheoð1Þ þ egaussian

Dsimð2Þ ¼Dtheoð2Þ þ egaussian

: ð12Þ

Results

Introduction

We first analyzed the results of NOEnet for the medium size

protein lysozyme using various simulated data sets, from

ideal to more realistic ones (see supplementary material for

details). This allows us to investigate more generally the

impact of experimental data sets features, such as NOE

sparseness and addition of chemical shifts and RDCs, on the

capability of the 3D-structure-based assignment method.
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The optimization of NOEnet parameters and the results are

detailed in the supplementary material. The use of an ideal

NOE data set (same crystal structure used for simulated data

and reference structure, same thresholds for calculated NOE

distances and crystal structure distance network) yields an

assignment ensemble with a unique assignments complete-

ness of 95% and an accuracy of 100%. This first shows that

there exists almost only one possibility to match graph Gexp

onto Gtheo if the two graphs are identical. However, even in

that case, it should be noted that 5% of the peaks still have

several assignment possibilities. These peaks all have a SAR

value below 10 Å and the multiple assignments mostly

correspond to swaps in helices. As soon as more realistic

data sets are used (different thresholds or/and different

crystal structures for NOE data simulation and 3D-structure

graph), the number of uniquely assigned peaks drops con-

siderably. It appears then essential to use both NOEs clas-

sification (short, medium and long distances) and NOE

outliers (restricted number of distances in the upper limit

range) to reduce the matching possibilities down to a usable

degree.

Sparse experimental NOE data in combination

with RDC data on lysozyme

The sparseness and fragmentation of the NOE experi-

mental network considerably degrades the quality of the

assignment ensemble (case 1 of Table 2). The peaks that

are uniquely assigned or that have a SAR below 10 Å are

all localized in the larger experimental NOE network

(black and violet/blue zone in Fig. 3a). The presence of

small, disconnected NOE networks precludes here the

obtaining of low SAR assignments (see (Stratmann et al.

2009)). Adding CS helps to reduce the SAR values, without

increasing significantly the number of unique assignments,

whereas adding CS and RDCs reduces considerably the

assignment ambiguity in all NOE-networks (Fig. 3, cases 2

and 3 in Table 2). The NH bonds orientation appears to be

here a key complementary information to HN–HN dis-

tances. RDCs can thus be efficient to circumvent the

problem of fragmentation of the NOE networks. The

application of the individual peak refinement procedure

(see ‘‘Methods’’) applied on the assignment ensemble

obtained using NOE, CS and RDC data happens to be

highly efficient here (case 4, Table 2). It considerably

improves the precision of the assignment (unicity com-

pleteness C1 increased from 44 to 73% and C2 (\10 Å)

from 75 to 83%) without degrading its accuracy.

Error detection

A crucial point of any automated assignment method is its

capability to assess its accuracy. In the case of NOEnet, the

appearance of holes in the assignment list clearly brings to

the fore the presence of inconsistencies between experi-

mental data and structure-derived constraints. However, it

can happen that the correct assignment for a peak is

removed from the list without the appearance of a hole, as

seen in the case of EIN in which two assignments are

swapped, or in the case of lysozyme when RDCs are added

without modifying the number of NOE outliers (see Tables

S1 and S3). A way to test the capability of NOEnet to

detect assignment errors is to introduce experimental con-

straints that are inconsistent with the 3D-structure. For that,

we generated biased experimental data sets, which com-

prised the experimental data plus an increasing number of

randomly simulated NOEs whose classification was

incorrect (see Fig. 4). A wrong classification is only one

possible type of inconsistencies using NOE data, but this

example should demonstrate the general properties of the

error detection in NOEnet. We then defined the success

rate of error detection of the program as Nhole/Nerror, with

Nhole being the number of runs for which holes occurred in

the assignment list and Nerror the total number of runs

yielding assignment errors (with holes or not) due to the

badly classified NOEs. One run consisted in the random

generation of badly classified NOEs and the subsequent

search for assignment possibilities by NOEnet on this

erroneous dataset. In order to obtain precise estimations of

the average values of the error detection success rate, we

performed 8293 runs overall. Despite the use of erroneous

datasets, a small number of runs did not yield any assign-

ment error and therefore also no hole. These runs were not

counted in Nerror. In the case of lysozyme shown in the

Table 2 Lysozyme with experimental NOE data set from BMRB

Case Trial #

(Table S2)

Npeaks Runtime Additional data NNOEs dmax
theo (Å) Ndist

Nunique

Npeaks
(%) NSAR\10A

Npeaks
(%) Accuracy (%)

1 6 132 5 h 169 7 528 17 23 100

2 19 132 10 min CS 169 7 528 20 33 100

3 31 132 30 s CS ? RDC 169 7 528 44 75 100

4 31 132 \1 s Refined 169 7 528 73 83 100

NNOEs experimental unambiguous NOEs have been used. The X-ray structure 193L was used, yielding Ndist distances below dmax
theo. NOE classes

and NOE outliers have been used. For case 4, see paragraph ‘‘Individual peak assignment refinement’’ in methods
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Fig. 4, the success rate of error detection increases with the

number of errors and the data density, as expected.

In general the greater the number of inconsistencies, the

higher will be the probability that a hole occurs in the

assignment list. For a low data density (NOE only in

Fig. 4), the assignment ensemble is still so large, that a

limited number of inconsistencies does not necessarily lead

to holes in the peak assignment lists, but simply to the

removal of the correct assignment possibility in the lists of

some peaks. For a high data density (NOE ? CS ? RDC in

Fig. 4), the success rate of error detection is near 100%,

even if only a low number of inconsistencies is present

(Fig. 4). As already 60% of the peaks have only one

assignment possibility here, the assignment ensemble

cannot be adapted to the added inconsistent NOE

constraints.

Thanks to this error detection, accuracies below 90% are

very unlikely (see Fig. 5). For the rare cases were the

assignment of uniquely assigned peaks is wrong, the

assignment error is limited spatially: The distance between

the correct residue and the residue to which a peak is

wrongly assigned range from 2 to 5 Å for most cases,

meaning that these peaks are mainly assigned to a neighbor

residue of the correct residue. The maximum value of

assignment error distances of all uniquely assigned peaks

in an assignment ensemble can be used to quantify the

assignment error one could make by using an erroneous

assignment ensemble. This value is named here maximum

spatial assignment error (SARmax). Its distribution among

the few runs for which the presence of errors was not

detected by NOEnet is shown in Fig. 6.

For the errors induced by too tight threshold parameters,

Tables S1–S3 show that the number of assignment errors

Ne (of all peaks) and Neu (of uniquely assigned peaks) is

quite small for the rare cases for which the inconsistencies

remained undetected (Status = ‘finished’ or ‘not finished’

and Ne [ 0). The worst case (trial 20 in Table S1) yields

incorrect assignments for 8 out of 132 peaks, 6 peaks were

uniquely but incorrectly assigned to spatially nearby resi-

dues (SARmax \ 4.5 Å). Moreover, the few assignment

errors remain spatially restricted, like the swap of residue

207 with 208 for their corresponding peaks of EIN (see

below).

The case of a larger protein: EIN

The results on EIN using only NOE data are described in

(Stratmann et al. 2009). We present here the results

obtained on EIN using the same NOE data set in con-

junction with the 15N–1H chemical shift (CS) and simulated

RDCs. Additionally, we show results on the inclusion of

carbon chemical shifts and on the use of sequential con-

nectivities by a combination of NOEnet with MARS (Jung

and Zweckstetter 2004).
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Fig. 3 Assignment results on

lysozyme using experimental

data obtained by (Schwalbe

et al. 2001). a Results

represented on the NMR

structure 1E8L (Schwalbe et al.

2001), using NOE data only

(left, case 1 of Table 2), NOE ?

CS data (middle, case 2 of

Table 2), NOE ? CS ? RDC

data (right, case 3 of Table 2).

The black lines on the left

structure correspond to the

experimental NOEs network.

Proline residues are shown in

gray. The color code represents

the spatial assignment range

(SAR), as depicted in the

colorbar below the structures.

Unique assignments are shown

in black. b Spatial assignment

range (SAR) for each peak and

for each case. The peaks are

ordered by increasing SAR

values. The SAR-value of 10 Å

that has been chosen as

maximum for the class of

exploitable peaks is depicted

(dashed red line)
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The size of EIN (28 kDa) is quite challenging for a

complete search algorithm: The sampling of all possible

graph matches of a NOE network with 407 edges onto the

3D structure with 1,034 edges and 243 nodes is not a trivial

problem. A full convergence is only obtained after 6 days

of calculation time (case 4, Table 3). On the other hand,

thanks to the stop search procedure of NOEnet (see

(Stratmann et al. 2009)), the result obtained after only 6

hours of calculation time (case 3, Table 3) is almost as

good as the final result. Despite the sparseness of the input

data (1HN–1HN NOEs and 15N and 1HN chemical shifts

only), 70% of the peaks have a SAR value below 10 Å

(Table 3). This result is already sufficient to characterize

the interface between the protein and its partner HPR

(Fig. 7) and to obtain good docking results for the complex

EIN-HPR (see next subsection).

The accuracy for EIN is here below 100%, because of

two assignment errors: residues 207 and 208 are inter-

changed for their corresponding uniquely assigned peaks.

This small assignment error remained undetected as no

hole occurred in the assignment list. A higher number of

allowed NOE outliers of TNOE = 3 yields a 100% accurate

but less precise assignment ensemble (see trial 4 in Table

S3). The chemical shift information does not significantly

improve here the assignment result, but it reduces the

runtime by a factor of three (compare case 1 with case 3 in

Table 3). The chemical shift filter seems to cut branches of

the search tree which do not lead to successful assignments

and which have to be traversed completely if only the NOE

data are available.

As for lysozyme, the RDC information greatly improves

both the runtime and the quality of the assignment

ensemble (case 5 in Table 3). Moreover, the accuracy of

the result is now equal to 100%.This is due to the necessity

to increase the number of NOE outliers from 2 to 3 to get

results without holes (see Table S3). The addition of RDC

data shows that the number of allowed NOE outliers TNOE

was too low for the given NOE data, which probably

caused the assignment swap between residue 207 and 208.
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Fig. 4 Error detection success in % for lysozyme. The impact of

errors in the classification of NOEs is tested here. Erroneous NOEs

were generated by adding to experimental data randomly simulated

NOEs corresponding to medium or long distances in the lysozyme

X-ray structure 193L and classified incorrectly as short or medium

NOEs, respectively. The number of erroneous NOEs introduced is

shown on the x-axis. The error detection success, shown on the y-axis,

is the ratio between the number of runs for which holes occurred in

the assignment list and the total number of runs for which the

erroneous NOEs caused the removal of correct assignment possibil-

ities. One run consists in the random generation of erroneous NOEs,

as described above, and the search for assignment possibilities by

NOEnet

(a)

(b)

Fig. 5 The response of NOEnet to erroneous constraints is shown on

the corrupted NOE data set introduced in Fig. 4. All runs that were

done for Fig. 4 are taken together, independent of the number of

erroneous NOE-constraints, as their amount is not known in advance

in real situations. The gray bar shows the number of runs for which

the presence of erroneous NOE-constraints is detected successfully

through the appearance of holes in the assignment ensemble. The

black bars show the number of runs for which the detection is not

successful, as no hole occurred. The distribution of assignment

accuracies of these runs is shown in form of a histogram. a The NOE-

only data set. b The NOE?CS?RDC data set
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Even very loose thresholds for the RDC data already yield

holes in the assignment ensemble with TNOE = 2 (see case

17, Table S3). Only for TNOE = 3 ‘hole-free’ assignment

ensembles can be obtained. Without RDC data and with

TNOE = 3, the assignment ensemble is less precise but at

least 100% accurate (see case 2 in Table 3). The compro-

mise between precision and accuracy of the assignment

ensemble can be solved by additional data. The addition of

RDC data yields a precise and 100% accurate assignment

ensemble at the same time. Due to the completely different

nature of information brought by NOEs and RDCs (con-

nections among peaks through proximity information vs

labeling of peaks with angular information), the conjunc-

tion of both data appears highly effective to avoid unde-

tected assignment errors.

If a doubly 15N, 13C-labeled protein is available, a triplet

of 13C chemical shifts (13Ca, 13Cb, 13CO) can also be used

instead or together with the doublet of RDC-values. The

‘CScarbon’ data set includes only 13C(i-1) chemical shift

values, i.e. no sequential connectivity is used at this stage.

The results that were obtained using sequential connec-

tivities (case 10 and 11 of Table 3) are discussed in the last

results section below. Replacing the RDC data with

‘CScarbon’ data gives similar results (compare case 7 with

case 5 in Table 3). The combination of RDC and CScarbon

data allows 80% of the peaks to be assigned uniquely (case

9 in Table 3). The accuracy of the assignment ensemble is

quite close to 100%, with 99.6 and 99.2%. Here, the

assignment errors are not due to the number of NOE out-

liers TNOE = 3, but to the individual peak assignment

refinement procedure (see ‘‘Methods’’). The refined

assignment ensemble generally yields a much higher

number of unique assignments. However, the results of this

procedure should always be taken cautiously, since outlier

values in the CScarbon data set can generate assignment

errors, and the precision of the assignment can thus not be

guaranteed.

Assignment ensembles and docking

To demonstrate the usability of ambiguous assignments

having a limited spatial assignment range (typically SAR

\10 Å), the assignment ensemble obtained on EIN was

used to model the EIN-HPR complex using the software

HADDOCK (Dominguez et al. 2003; de Vries et al.

2007). The starting structures were those of the free

proteins (1ZYM for EIN (Liao et al. 1996) and 1POH for

HPR (Jia et al. 1993)). Interfacial residues were defined

from 15N–1H chemical shift perturbation (CSP) data

previously published for each protein (Garrett et al.

1997b; van Nuland et al. 1995), using the unique and

correct assignment of chemical shifts for HPR and an

assignment ensemble obtained from NOEnet for EIN.

The less well defined assignment ensemble obtained from

only NOE and 15N–1H chemical shifts was used (Case 4

of Table 3). All perturbed peaks of EIN that have a

SAR-value up to 30 Å were used to define the interac-

tion zone on EIN (see Fig. 7b). Only 6 out of the 21

perturbed peaks have a unique assignment (shown in

black in Fig. 7b).

Two docking runs using the HADDOCK-server (default

parameters) have been performed: one with the unique and

correct assignment of all peaks of EIN and one with the

assignment ensemble described above (see Fig. 8). The

first run (Fig. 8a) is the reference case, whose best scored

(a)

(b)

Fig. 6 The assignment errors of uniquely assigned peaks are

quantified here by the maximum spatial assignment error (SARmax),

i.e. the maximum distance to the correct residue among all uniquely,

but erroneously assigned peaks of one assignment ensemble. All runs

are taken together, independent of the number of introduced

erroneous NOE-constraints, like in Fig. 5. a NOE-only data set. b
NOE?CS?RDC data set
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structure is rather close to the reference EIN-HPR complex

structure (3EZA, (Garrett et al. 1999)) with an interface

RMSD of 1.8 Å. The second run (Fig. 8b) gives similar

results, especially for the best scored structure (interface

RMSD = 2.1 Å). This test demonstrates that the use of an

assignment ensemble, even with low precision, does not

degrade the quality of docking solutions.

Exploiting both structure based and sequential triple

resonance experiment based assignment

Some proteins are difficult to assign, because of their size

or of the lack of sufficient connectivity data. The main

connectivity data that is usually employed is the sequential

connectivity between residue i and i - 1 which is obtained

from triple resonance experiments, like the CBCANH

experiment. These type of experiments are often not very

sensitive on large proteins, so that an important number of

connectivities can be missing. It would therefore be helpful

to fill the gaps by an independent data source. Structure-

based assignment allows the use of other, independent data

sources, like HN-HN NOEs, chemical shifts or RDCs. The

integration of structure-based assignment approaches with

the existing automated assignment approaches that are

based on sequential connectivities can lead to a more

robust assignment approach which would be less dependent

on the completeness of a single data source.

As a first step towards this goal, we combined NOEnet

with the existing automated assignment approach MARS

(Jung and Zweckstetter, 2004) that exploits mainly sequen-

tial i ? i - 1 connectivities of CA and CB, as well as the

chemical shift values of H(i), N(i), CA(i), CB(i) and C’(i). As

MARS can make use of a list of reduced assignment possi-

bilities for each peak, we gave the output of NOEnet, i.e. the

assignment ensemble, as input to MARS. We tested this

approach on the protein EIN. In order to get 100% assign-

ment of EIN in MARS, it is necessary to give an extensive set

of H(i), N(i), CA(i), CB(i), CA(i - 1), CB(i - 1), C’(i - 1)

chemical shifts. Fortunately, this data set is included in the

distribution of MARS.

Table 3 EIN with experimental NOE data set from BMRB

Case Trial # Table S3 Npeaks Runtime TNOE Additional data
Nunique

Npeaks
(%) NSAR\10A

Npeaks
(%) Accuracy (%)

1 – 243 18 h 2 28 53 99.2

2 4 243 107 h 3 CS 19 34 100

3 5 243 6 h 2 CS 30 53 99.2

4 6 243 6 days 2 CS 31 70 99.2

5 26 243 50 min 3 CS ? RDC 63 84 100

6 30 243 5 min 3 CS ? CScarbon 42 80 100

7 31 243 1 s 3 –‘‘–, refined 66 83 99.6

8 33 243 5 min 3 CS ? CScarbon ? RDC 67 84 100

9 34 243 1 s 3 –’’–, refined 80 85 99.2

10 – 253 – – CA(i ? i - 1) with MARS 7 – 100

11 – 253 – – NOE ? CS with NOEnet and CA(i ? i - 1)

with MARS

97.2 – 99.2

NNOEs = 407 experimental unambiguous NOEs have been used. The X-ray structure 1ZYM was used, yielding Ndist = 1034 distances below

dtheo
max ¼ 7:5Å: NOE classes and NOE outliers have been used. Two sets of RDCs were simulated from 1ZYM as described in material and

methods. TNOE: maximum number of allowed NOE outliers for an arbitrary matching. Case 1 was reported in (Stratmann et al. 2009)

Fig. 7 Interaction site estimation of EIN-Hpr using 15N–1H chemical

shift perturbation (CSP) data (Garrett et al. 1997b) with a the correct

assignment and b the assignment ensemble obtained by NOEnet
(Case 4 of Table 3). The NMR structure of the complex EIN-Hpr

(PDB 3EZA (Garrett et al. 1999)) is shown here. EIN is shown by its

backbone ribbon and Hpr is shown in yellow by its solvent accessible

surface (including side chains). a Using the correct assignment, the

corresponding residues of the perturbated peaks are colored in red. b
The ensemble of assignment possibilities of the same perturbed peaks

are colored in red and in black. The unique assignments are colored in

black, while the assignment possibilities of the perturbed peaks with a

SAR value below 30 Å are colored in red
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In order to simulate a case with a less complete data set

of sequential connectivities, we reduced the EIN-data set to

only the H(i), N(i), CA(i), CA(i - 1) chemical shifts. We

ran MARS on it, using the default parameters and obtained

assignments only for 18 out of the 253 peaks (Case 10 of

Table 3). This is due to high ambiguity in sequential

connectivities, if only CA without CB connectivities are

available. At least all 18 assignments are the right ones,

showing the robustness of MARS against assignment

errors.

In a second run we added to the same reduced data set

the assignment ensemble, obtained by NOEnet on EIN

using NOE-data and 15N–1H chemical shifts (Case 4 of

Table 3). Even though this assignment ensemble contains

only a low number of unique assignments (30%) and the

number of unique assignments obtained by MARS in the

previous run is even lower (7%), the combination of both

gives very good results: 97.2% of the peaks are assigned

uniquely with an accuracy of 99.2% (Case 11 of Table 3).

The only assignment error is the swap between residue 207

and 208 that already occurred in the assignment ensemble.

This result shows that the combination of the structure-

based and the classical sequence-based assignment meth-

ods is more robust against missing data than each approach

taken alone.

Discussion

One reason for the fact that many proteins are still assigned

manually, is that the majority of NMR spectroscopists do

not trust the results given by automated assignment pro-

cedures. Therefore, it is very important that an automated

assignment procedure ensures a nearly 100% accurate

result to be accepted widely. The input data should be

translated reproducibly by the automated procedure into

exactly one assignment ensemble corresponding to the

information that can be extracted from the input data, not

more and not less. The precision of this assignment

ensemble should be the highest possible one under the

maintenance of a 100% accurate result.

We demonstrate in this article that our structure-based

assignment program NOEnet (Stratmann et al. 2009)

translates reproducibly several types of input data (NOE,

CS, RDC) into assignment ensembles having in the vast

majority an accuracy of 100% and a precision near to the

optimum. Erroneous assignment ensembles can be detected

by NOEnet, the better the more errors they have, so that the

accuracy of all ensembles that are not ruled out is guar-

anteed to be above at least 90%. The extensive tests of

NOEnet’s error detection feature presented in this article

show first that the probability to miss errors is quite low.

And secondly, they show that the undetected errors have a

limited impact, as often the wrong assignment is done to

spatially neighboring residues of the correct residue.

Especially for structure-based assignment, such a strong

guarantee of high accuracy is novel, as the input data used

are often quite sparse, sparser than the input data available

through triple resonance experiments. We handle the

sparseness of the input data by searching for an assignment

ensemble instead of a unique but possibly erroneous

assignment. This ensemble was found useful for many

applications, for example the localization of binding sites

on the protein structures (Fig. 7) and the subsequent

modeling of protein–protein complexes.
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Fig. 8 Docking results using HADDOCK on EIN-HPR. The scoring

results of the final 200 water-refined EIN-HPR complex models are

shown here. The interaction zone (active residues) is defined using
15N–1H chemical shift perturbation (CSP) data on EIN(Garrett et al.

1997b) and HPR (van Nuland et al. 1995). a The correct assignment

of EIN and HPR is used to define the active residues from the CSP

data (see Fig. 7a). b The assignment ensemble of EIN, obtained by

NOEnet using NOE-data and 15N–1H chemical shifts (Case 4 of

Table 3), is used to define the active residues on EIN (see Fig. 7b)

170 J Biomol NMR (2010) 46:157–173

123



In order to obtain the most precise assignment ensemble,

the various input data sources require adapted threshold-

parameters which restrict the search space as well as the

size of the resulting assignment ensemble. While fixed

parameter values could be used, they are in general not

optimal. We showed in this article that the threshold-

parameters can be optimized thanks to two principles. First,

NOEnet is capable to indicate too tight thresholds by the

appearance of holes in the resulting assignment list. A hole

in the list means that a peak has no assignment possibility

left under the given constraints, indicating an inconsistency

in these constraints. The second principle is simply that too

relaxed thresholds will yield a huge search space as well as

a large resulting assignment ensemble. The huge search

space can be detected by too long runtimes without waiting

till the end of the run. Using these two principles, we

proposed an optimization protocol for the threshold-

parameters used in NOEnet. We showed its application to

different data sets (ideal and realistic simulated and

experimental data) of two proteins—lysozyme and EIN.

We show here that the general filter strategy incorpo-

rated in NOEnet allows a straightforward incorporation of

additional experimental data, such as 15N and HN chemical

shifts (CS) and 1H–15N residual dipolar couplings (RDC).

While it is possible to obtain a well constrained assignment

ensemble using only NOE data (Stratmann et al. 2009), a

similar approach using CS and/or RDC data only is likely

to remain elusive for many reasons. First, individual CS

and RDC data points are independent from each other and

do not benefit from the network character of the NOEs, that

constrains the assignment possibilities of several HSQC

peaks simultaneously. Second, a very high correlation

coefficient between experimental and predicted CS or RDC

data points is not achievable, because of the structural

differences between the template 3D-structure obtained

from X-ray or from modeling and the dynamic solution

state structure observed in NMR. The number of assign-

ment possibilities, that satisfy the commonly found corre-

lation coefficients for this type of data, remains then very

high. RDC data have the additional problem that the

alignment tensor can only be accurately estimated, once at

least five (in practice [15) HSQC peaks have been

assigned. CS and RDC data proved however invaluable

assignment constraints in combination with the NOEs.

RDCs markedly improve the assignment ensemble preci-

sion when used in complement to NOE data, especially if

two or more RDC data sets are available.

The parameter optimization procedure of NOEnet

allows the use of any kind of CS/RDC input data, inde-

pendently of their quality in terms of RMSD values

between predicted values from the template 3D-structure

and experimental values. This unique feature of NOEnet is

only possible through the search for an assignment

ensemble instead of a unique assignment for all peaks.

While the precision of the assignment ensemble depends of

course on the quality of the input data, the accuracy of the

ensemble is generally independent from it.

Compared to RDCs, 15N and HN chemical shifts do not

yield a significant improvement of the assignment ensem-

ble, because of the difficulty to predict accurately 15N and

especially HN chemical shifts from the 3D structure. They

help at least to speed up the search process of NOEnet by

ruling out impossible assignments at an earlier stage. On

the contrary, 13C chemical shifts bring a clear improve-

ment. Since 13C chemical shifts are more accurately pre-

dicted than 15N and HN chemical shifts, their use constrains

the assignment ensemble much better. The carbon chemi-

cal shifts (13Ca, 13Cb, 13CO) of the preceding residue i - 1

can be connected to the 15N–HN peaks by two of the most

sensitive triple resonance experiments, the CBCA(CO)NH

and the HNCO.

Other surely efficient additional constraints could come

from selective labeling strategies. The inclusion of methyl-

methyl or methyl-amide NOEs can also be exploited, and

should be particularly helpful for the assignment of large

perdeuterated, methyl protonated proteins. Finally, NOEs

are an independent data source from the J-coupling used in

triple resonance experiments. The combination of NOEs

with sequential connectivities obtained from triple reso-

nance experiments yields an even more robust structure-

based assignment approach, especially for difficult cases.

The unique ability of NOEnet to handle NOE networks

combined with its general filter approach represents a

straightforward avenue to combine both sources. This is

demonstrated here in the case of the protein EIN, for which

the combination of NOEnet with the robust automated

assignment program MARS (Jung and Zweckstetter 2004)

yielded a unique assignment for almost all 253 peaks

(97.2%), whereas each program yielded only a low number

of unique assignments when used separately (30% for

NOEnet and 7% for MARS).

Conclusion

The growing number of available protein 3D structures,

obtained mainly by X-ray crystallography, makes the

structure-based assignment concept particularly interesting

for the protein NMR community. It is especially interesting

in the case of protein functional studies involving protein–

protein interactions, protein-ligand interactions or protein

dynamics for which the backbone assignment is usually

sufficient to bring key answers. Also the cross-validation or

extension of assignments obtained by classical methods

could be an application of structure-based assignment, as

independent data sets compared to the classical triple
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resonance experiments can be used, like in the case of

NOEnet.

While NOEnet is primarily based on unambiguous
1HN–1HN NOEs (Stratmann et al. 2009), it has evolved to a

quite flexible method by the introduction of the general

filters concept associated with the facilitated parameter

optimization protocol presented in this article. We intro-

duce here two such filters for the inclusion of 15N and HN

chemical shifts (CS) and 1H–15N residual dipolar couplings

(RDC) and demonstrate their efficiency in the assignment

process. This can be particularly useful in high-throughput

processes, in which proteins are usually produced 15N

labeled. We show here that the quality of the assignment

ensemble produced by NOEnet is sufficient to delineate

protein–protein interaction surfaces and even to obtain

good quality models of protein–protein complexes. When

higher precision is required, or for difficult proteins, a third

carbon chemical shift filter can be used, if a (15N, 13C)-

labeled sample is available. The assignment ensemble

obtained by NOEnet can then also be used as input for

automated assignment procedures based on sequential

connectivities. This combination yields an automated

assignment approach which is highly robust against miss-

ing or erroneous data sets and should greatly improve the

precision and the completeness of the assignment espe-

cially for difficult proteins.

Availability

The NOEnet program will be available under: http://www.

icsn.cnrs-gif.fr/download/nmr.
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