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Abstract
This study investigated novice mathematics teachers participating in an online teacher 
education course focused on covariational reasoning and understanding the behavior of 
functions. The analysis centered on documenting the emergence of participants’ socio-
mathematical norms for engaging in online asynchronous discussions. In this paper, we 
characterized participants’ initial mathematical discourse and documented two emergent 
sociomathematical norms, namely explaining why and emergent shape discourse. When 
participants explained why, they used specific quantities or symbolic representations of 
functions to justify why function graphs have particular visual features. When participants 
engaged in emergent shape discourse, they coordinated change between covarying quanti-
ties to justify why function graphs behave in certain ways. This study provides evidence 
that online settings can provide context for mathematics teachers engaging in legitimate 
collaborative mathematical activity and that activity can be enhanced by participation in 
discourse featuring specific sociomathematical norms. We discuss conjectures regarding 
the potential of reflective discussion activities paired with the Notice and Wonder Frame-
work to support the emergence of generative sociomathematical norms. We also discuss 
potential relationships between characteristics of participants’ mathematical discourse and 
their membership with the core and periphery of a social network.
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Introduction

Students reasoning about quantities and relationships between quantities is important 
for their success in understanding functions (Adu-Gyamfi, & Bossé, 2014; Ellis et al., 
2015, 2016; Ferrari-Escolá et al., 2016; Johnsons et al., 2020; Moore, 2014; Weber & 
Thompson, 2014). While research has highlighted the importance of teachers’ deep 
understanding of the concept of function (Byerley & Thompson, 2017; Thompson & 
Carlson, 2017; Thompson et al., 2017), there is little focus on how mathematics teachers 
can collaboratively develop such understandings in online contexts.

Social and the mathematics specific sociomathematical norms—accepted and 
expected regularities in mathematical discourse (Cobb et  al., 2001)—are powerful 
social mechanisms that can support generative mathematical activity in various con-
texts (McClain & Cobb, 2001; Fukawa-Connelly, 2012; Yackel et al., 2000), including 
in mathematics teacher education settings (Clark et al., 2008; Dean, 2005; Grant et al., 
2007; Güven & Dede, 2017; Sánchez & García, 2014; Tatsis & Koleza, 2008; Van Zoest 
et  al., 2012; Whitacre & Rumsey, 2018). The sophistication of emerging sociomath-
ematical norms can evolve over time (Clark et al., 2008; Dean, 2005; Whitacre & Rum-
sey, 2018), creating context for teachers’ mathematical development (Cobb & Yackel, 
1996). Further, mathematics teachers participating in sociomathematical norms in pro-
fessional learning contexts has implications for teachers building similar norms in their 
classrooms (Clark et al., 2008; Tsai, 2007).

Our work explores the use of online asynchronous collaboration to support math-
ematics teachers’ development of mathematics content knowledge. These efforts are 
informed by the documented effectiveness of online contexts for mathematics teacher 
learning (Araujo & Gadanidis, 2020; Beilstein et  al., 2020; Engelbrecht et  al., 2020; 
Lafferty & Kopcha, 2016; Martínez et al., 2020; Pape et al., 2015) and the potential of 
online asynchronous collaboration via threaded discussion forums, hereafter referred to 
as online discussions, to enhance opportunities for teachers’ extended reflection on and 
discussion of mathematical discourse (Llinares & Valls, 2010; Shumar, 2017). Under-
standing how online settings can support mathematics teachers’ content knowledge 
development is important because these settings can be scaled, potentially increasing 
teachers’ access to collaborative learning experiences. Despite the importance of par-
ticipation in sociomathematical norms for generative and collaborative mathematical 
activity and the increasing need for online contexts to support teacher learning, we are 
not aware of any studies documenting whether or how sociomathematical norms emerge 
in online contexts.

The purpose of this study was to better understand mathematics teachers’ participa-
tion in online mathematical discourse and document the emergence of sociomathemati-
cal norms propitious for individual and collective development of skills for examining 
and reasoning about functions. We conceptualize of collaborative learning as a reflex-
ive relationship between advances in individual mathematical discourse and emerg-
ing sociomathematical norms and collective mathematical practices (Cobb & Yackel, 
1996). Further, we conceive of advances in the sophistication of teachers’ mathematical 
discourse as critical moments, and we argue that these moments can provide insight into 
how sociomathematical norms emerge. Our research questions are as follows:

•	 What sociomathematical norms emerge in participants’ online discussions about 
functions?
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•	 What are the critical moments associated with the emergence of the documented socio-
mathematical norms?

Building on decades of research and practice (e.g., see Clark et  al., 2008; Cobb & 
Yackel, 1996; Fukawa-Connelly, 2012; Whitacre & Rumsey, 2018), this study contributes 
evidence that online contexts can support legitimate collaborative mathematics learning 
experiences that include teachers participating in sociomathematical norms for examining 
functions. An additional contribution of this study is a characterization of the process by 
which mathematics teachers collectively shift from discussing the shape of function graphs 
to discussing underlying quantitative relationships to justify the behavior of function 
graphs. Finally, we contribute a methodology for documenting the emergence of socio-
mathematical norms in online discussions.

Sociomathematical Norms in Mathematics Teacher Professional Learning

Social and sociomathematical norms can emerge and evolve as individuals interact in col-
laborative mathematical activity as part of a community (Cobb et al., 2001). Social norms 
represent accepted and expected discourse that is not specific to mathematical discourse 
such as explaining one’s reasoning or asking clarifying questions. Sociomathematical 
norms represent accepted and expected mathematical discourse such as sharing explana-
tions that focus on the meaning of mathematical ideas, providing justifications that empha-
size why and how methods work, or asking questions that push on the validity of another’s 
mathematical reasoning (Elliot et al., 2009; van Zoest et al., 2012). Participation in com-
munities where specific sociomathematical norms have emerged increases the likelihood 
that mathematics teachers’ ongoing discourse will be consistent with those norms (Clark 
et al., 2008; Dean, 2005). Sociomathematical norms can also provide insight into charac-
teristics of mathematical discourse that are improper or not accepted (Education Commit-
tee of the EMS, 2013). Moreover, as potential sociomathematical norms emerge, teachers 
can try out new mathematical discourse they access through interactions with colleagues, 
creating context for both collective and individual development (Cobb & Yackel, 1996).

The sophistication of sociomathematical norms around how teachers provide justifica-
tions can evolve over time (Clark et  al., 2008; Dean, 2005; Whitacre & Rumsey, 2018). 
A significant shift in the quality of a justification can include moving from describing 
observable patterns to articulating the logical necessity or reasons for why observable pat-
terns cannot be any other way (Simon et  al., 2010). As an example, Clark et  al. (2008) 
documented mathematics teachers shifting from procedurally based justifications for the 
behavior of functions to speaking with meaning, a sociomathematical norm where the nor-
mative discourse focused on relationships between quantities to justify function behavior. 
Furthermore, Dean (2005) documented shifts in normative aspects of mathematics teacher 
discourse from accurately representing data and calculating descriptive statistics to reason-
ing about part–whole relationships to investigate measures of center.

Learning environments can be designed to create contexts that are conducive for the 
emergence of increasingly more sophisticated sociomathematical norms. For example, 
Kynigo and Kalogeria (2012) argued that online discussions elicited differences in teacher 
educators’ reasoning patterns, which resulted in the emergence of more sophisticated 
norms. Furthermore, Grant et  al. (2007) used readings and mathematics tasks that favor 
non-traditional solution strategies to build norms for explaining and justifying conclu-
sions. These norms can create context for learners negotiating what constitutes acceptable 
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mathematical discourse (Yackel, 2002) and could support mathematics teachers in advanc-
ing the quality of their mathematical reasoning.

A teacher educator can contribute to supporting the emergence of more sophisticated 
sociomathematical norms by, for example, challenging mathematics teachers to explain 
and justify their mathematical reasoning (Clark et al., 2008; Dean, 2005; Van Zoest et al., 
2012; Whitacre & Rumsey, 2018). Further, Whitacre and Rumsey (2018) documented how 
a teacher educator’s emphasis on comparing details of mental computation strategies sup-
ported the emergence of norms for distinguishing and communicating the details of strate-
gies (Whitacre & Rumsey, 2018). Clark et  al. (2008) also reported effective facilitation 
strategies for building norms such as modeling speaking with meaning, asking teachers to 
unpack pronouns when sharing reasoning, and encouraging teachers to critique colleagues’ 
reasoning. Lastly, there is potential that the influence of an instructor modeling specific 
mathematical discourse is greater in online discussions because discourse is permanent 
in discussion boards and learners pay particular attention to instructors’ posts (An et al., 
2009).

Online discussions

Collaboration is a feature of effective professional learning (Darling-Hammond et  al., 
2017) and is, by definition, necessary for building sociomathematical norms in online set-
tings. Online collaboration has supported mathematics teachers in developing mathematics 
content knowledge (Pape et al., 2015), enhancing professional noticing skills (Fernández 
et al., 2020; Llinares & Valls, 2010), learning from videos of classroom practice (Beilstein 
et al., 2020), and developing mathematical knowledge for teaching (Martínez et al., 2020).

Online discussions have affordances that create context for the emergence of socio-
mathematical norms. Specifically, online discussions afford text-based communication and 
archival of text in a public space. These affordances both elicit mathematics teachers’ dis-
course and enable records of teachers’ discourse to become objects for extended reflection, 
discussion, and improvement (Llinares & Valls, 2010; Shumar, 2017). In addition, online 
discussions can bridge individual and collaborative mathematical activity by supporting 
teachers in privately working on mathematics tasks, sharing mathematical discourse, as 
well as accessing, reflecting on, discussing, and revising one another’s mathematical dis-
course. Thus, online discussions can enhance access to and engagement with colleagues’ 
mathematical discourse, which can create context for the emergence of sociomathematical 
norms (Matranga & Silverman, 2021).

Further, there is evidence that the affordances of online discussions can support math-
ematics teachers’ collaborative learning. For example, Llinares & Valls (2010) argued that 
online discussions supported mathematics teachers in making meaning of their practices 
when they used text to reify mathematics teaching practices into objects (i.e., equitable 
practices) for reflection and discussion. Clay et  al. (2012) found that the use of screen-
casting software and online discussions supported teachers in reflecting on one another’s 
discourse, which scaffolded them in conceiving of algebraic expressions as quantities 
and relationships between quantities rather than sentences that are read from left to right. 
Pape et  al. (2015) documented mathematics teachers developing skills in operating with 
rational numbers and part of this growth was contributed to their online discussions about 
problem-solving strategies. We expand on this research by documenting the emergence of 
sociomathematical norms in online discussions that provided teachers with a context to 
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participate in generative mathematical discourse and potentially increase the sophistication 
of their reasoning about functions.

Covariational reasoning and shape thinking

Covariational reasoning is an important reasoning process for understanding func-
tions (Carlson et al., 2002), and we define covariational reasoning as learners coordinat-
ing change between varying quantities (Confrey & Smith, 1995; Saldanha & Thompson, 
1998). Covariational reasoning is foundational for students’ success with many topics in the 
K-12 mathematics curricula (Adu-Gyamfi & Bossé, 2014; Ellis et al., 2016; Ferrari-Escolá 
et al., 2016; Johnsons et al., 2020; Moore, 2014; Weber & Thompson, 2014). Neverthe-
less, students and teachers tend not to engage in covariational reasoning when examining 
functions (Thompson & Carlson, 2017). Thompson et al. (2017) argued that covariational 
reasoning is “nontrivial,” noting that most of the nearly 500 mathematics teachers in their 
study did not demonstrate covariational reasoning in their work. Thus, there is a need to 
create scalable mechanisms that support mathematics teachers in developing covariational 
reasoning skills, which can help disrupt the cycle of mathematics students leaving schools 
with underdeveloped reasoning skills for understanding functions.

Shape thinking is a framework that can be used to characterize the extent to which learn-
ers engage in covariational reasoning when constructing or interpreting function graphs 
(Moore & Thompson, 2015). There are two types of shape thinking, namely static shape 
thinking and emergent shape thinking. Static shape thinking includes focusing on percep-
tual objects and associating “equations, names, or analytic rules as facts of shape” (Moore 
& Thompson, 2015, p. 785). Vishnubhotla and Paoletti (2020) documented a pre-service 
teacher engaging in static shape thinking when using language such as “half of parabola” 
and “it started…close to zero and then increases very fast” to describe a quadratic rela-
tionship graphed in a coordinate plane (p. 1700). This explanation foregrounded a shape-
based description without addressing quantitative relationships to unpack why the graph 
has these visual features. Another example of static shape thinking is a case where math-
ematics learners associated “moving up” on a graph with corresponding positive changes 
in a quantity’s value even though the coordinate system was oriented so that “moving up” 
represented a negative change (Lee et  al., 2019). Lee et  al. (2019) also argued that rea-
soning that relies on perceptual objects (i.e., static shape thinking) can constrain learners’ 
potential to engage with novel quantitative scenarios or non-canonical coordinate systems.

In contrast to static shape thinking, Moore and Thompson (2015) posit emergent shape 
thinking, or “understanding a graph simultaneously as what is made (a trace) and how it 
is made (covariation)” (p. 785), as a more sophisticated way of reasoning about functions. 
Emergent shape thinking includes the logical necessity for why functions behave in par-
ticular ways by examining quantitative relationships. Further, there is evidence that emer-
gent shape thinking can generalize to novel functional scenarios (e.g., see Moore et  al., 
2019). While emergent shape thinking can include features of static shape thinking, it also 
includes conceiving of quantities, how quantities’ magnitudes vary individually, and how 
they covary to reason about function graphs (see Paoletti & Moore, 2017 for an example of 
emergent shape thinking).

We argue that static and emergent shape thinking represent two contrasting points along 
a spectrum from less to more sophisticated ways of reasoning about functions and to sup-
port their students’ movement along this spectrum, teachers need experiences at the emer-
gent shape thinking end of the spectrum. Sociomathematical norms are powerful social 
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mechanisms and supporting mathematics teachers’ participation in communities with dis-
course characterized by particular sociomathematical norms is one way to scaffold teach-
ers’ movement along this spectrum. The current study documents the emergence of socio-
mathematical norms in an online setting that represent mathematics teachers’ collective 
shift from examining visual features of graphs to the covariation of quantitative relation-
ships that underlie them.

Emerging sociomathematical norms in online discussions

The emergent perspective (Cobb & Yackel, 1996) frames our conceptualization of math-
ematics teacher learning. From this perspective, mathematics learning can be conceived 
as a reflexive relationship between individual advances in mathematical reasoning and the 
emerging social and sociomathematical norms that create context for these advances. Stud-
ies framed by the emergent perspective often focus on the “social side” and document the 
emergence of norms to better understand the social context within which individual math-
ematics learning occurs (e.g., see Clark et al., 2008; Cobb et al., 2001; Whitacre & Nicker-
son, 2016).

Following Cobb, Yackel, and colleagues, we argue that teachers participating in an 
online course can be considered a community that engages in collaborative mathemati-
cal activity. In online asynchronous discussions, where text is the primary mode of com-
munication, teachers use mathematical discourse to share aspects of their mathematical 
reasoning with colleagues. Mathematical discourse is a special kind of discourse because 
in it, everyday words take on meanings specific to the discipline of mathematics (Sfard, 
2008). Mathematical discourse can include words associated with mathematical objects 
such as “quantity,” “function,” and “graph” (Sfard, 2007). Mathematical discourse that 
reflects static and emergent shape thinking includes words such as “straight,” “curved,” and 
“shape” or “varies,” “as x increases/decrease,” and “as x increases by,” respectively.

In designed learning environments, certain tools, task structures, collaboration struc-
tures, and discourse scaffolds can come together to support specific learning outcomes 
(Sandoval, 2014). These design features can increase the likelihood that teachers’ contri-
butions to the mathematical discourse enable and/or support shifts in the sophistication of 
their mathematical discourse (Pea, 2004). We borrow from Schwarz et al. (2018) and refer 
to these (spontaneous) shifts as critical moments—initial advances in the sophistication 
of teachers’ mathematical discourse. Critical moments can provide insight into both how 
teachers begin engaging in more sophisticated mathematical discourse and learning envi-
ronment design features that create context for emerging norms.

An affordance of online discussions is that critical moments can become objects for 
reflection and discussion (Shumar, 2017). In contrast to in-person discussions, where utter-
ances are ephemeral, discourse in online discussions is both permanent and public and 
teachers maintain access to their colleagues’ mathematical discourse for the duration of 
the learning experience. Therefore, activities can be designed to support teacher examina-
tion of past discussion board conversations with the Noticing and Wondering Framework 
(Hogan & Alejandre, 2010). This framework can scaffold teachers’ attention to mathemati-
cal details of critical moments and development of generative feedback (Matranga et al., 
2018). Such access to and engagement with critical moments can increase the likelihood 
of individual utterances impacting others’ discourse and, ultimately, their mathematical 
development (Borba et al., 2018). Further, teachers continuing to engage with colleagues’ 
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mathematical discourse can influence their conception of the community’s expected and 
accepted mathematical discourse (Lave & Wenger, 1991; Valente, 1995) and create context 
for teachers negotiating these expectations (McClain & Cobb, 2001)—contributing to an 
evolution in the sophistication of the community’s mathematical discourse. Accordingly, 
seeding novel mathematical discourse into a community can result in the discourse diffus-
ing through the network and becoming normative.

As teachers contribute novel mathematical discourse to an online discussion, the mathe-
matical discourse can reflect a shift in both what teachers attend to and what the community 
accepts and expects from one another. While teacher participation in sociomathematical 
norms does not guarantee they will engage in reasoning that reflects the sociomathemati-
cal norms independently (Cobb & Yackel, 1996), Sfard (2008) argued that communication 
and thinking are interrelated. This suggests that as teachers begin to use mathematical dis-
course that reflects, for example, coordinating change between quantities, there is potential 
for their individual ways of reasoning to evolve and include covariational reasoning. Thus, 
documenting the emergence of sociomathematical norms can provide insight into the qual-
ity of teachers’ collective mathematical discourse and ways of reasoning that individual 
teachers may engage in when working with mathematics on their own.

Methodology

We conducted an analysis of norms (Cobb et al., 2001; Rasmussen & Stephan, 2008) to 
document mathematics teachers’ collaborative development of more sophisticated math-
ematical discourse for examining functions in an online teacher education course. This ana-
lytical approach comes from a qualitative tradition of research that aims to better under-
stand collaborative mathematical development (Cobb & Whitenack, 1996). The following 
presents the online course, participants, data sources, and data analysis procedures.

The online course

We studied a 10-week online course part of a mathematics education master’s program 
offered by a private university in the Northeast region of the USA. This study was approved 
by the second author’s Institutional Review Board. Participants were recruited through 
social media and at local, regional, and national conferences. All participants in the course 
consented to participate in this study by completing the approved consent process before 
any data were collected. The mathematical goal of the course was to support participants 
in reasoning covariationally about quantitative relationships to understand the behavior of 
functions. We aimed to support the emergence of sociomathematical norms for analyzing 
quantitative relationships and justifying why function graphs have particular shapes.

We used the online asynchronous collaboration model (Silverman & Clay, 2009)  to 
structure participants’ collaboration. This model capitalizes on the affordances of online 
discussions to promote extended reflection, discussion, and improvement of math-
ematical discourse and has five phases: (1) privately working on a mathematics task, 
(2) sharing a response to the task in an online discussion, (3) reviewing and providing 
feedback on at least two colleagues’ work, (4) revising initial responses to a task, and 
(5) collectively reflecting on and discussing this mathematical activity. This collabo-
ration structure can bridge individual and collaborative mathematical activity, creating 
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opportunities for regularities in mathematical discourse to emerge (see Duval et  al. 
(2020) for an example online discussion).

We incorporated specific scaffolds for building norms into each phase of the online 
asynchronous collaboration model. Phase one included interactive applets intended to 
scaffold participants in connecting quantitative relationships to function graph shapes. 
Phase two included discussion prompts designed to elicit participants’ reasoning about 
quantities, relationships between quantities, and why functions have certain visual fea-
tures. Phase three supported participants in using the Noticing and Wondering Frame-
work to provide feedback to their colleagues. We used critiquing guidelines to focus 
participants’ feedback on their colleagues’ mathematical discourse that was around 
quantitative relationships and graph shapes (Table  1). Further, the course instructor 
consistently challenged participants to explain why function graphs have particular vis-
ual features. In phase four, we prompted participants to reflect on the feedback they 
received and incorporate it into a revised post. Phase five included activities that asked 
participants to return to past week’s discussions and reflect on the effectiveness of their 
mathematical discourse at communicating why function graphs have particular visual 
features. These phase five activities are designed to support participants in talking about 
their mathematical activity and, thus, placing mathematical activity in the background 
while foregrounding discussions about what constitutes accepted and expected math-
ematical discourse.

Participants and data sources

Participants in this study were 21 practicing mathematics teachers who participated 
in our online course. Participants had between one and three years of teaching experi-
ence at the secondary level and their geographical locations varied across the USA. The 
racial and ethnic background of participants was unknown, and 62% of the participants 
identified as female and 38% identified as male. Data for this study included partici-
pants’ mathematical discourse in the 1014 course discussion board posts. We extracted 
these posts from the learning management system and organized them into a spread-
sheet. The spreadsheet had ten columns with the following labels: week, forum, activity, 
thread title, post name, author from, author to, and content of post. The spreadsheet was 
imported into NVivo 11 for the initial analysis.

Table 1   Critiquing Guidelines from the online PD course

• Did the author mention which quantities they are focusing on in their analysis? If they did, highlight this 
aspect of their work and note anything you may have noticed or wondered.

• Did the author explain why the graphs look the way they do as a result of underlying quantitative relation-
ships? Point out to your partner specific aspects of their explanation that were particularly effective in 
conveying why the graph looks the way it does.

• Did the author explain WHY certain important points are important? For example, did they note a change 
in the direction of the variation of quantities? Did they note specific values in which this change occurred?

• Compare your work to your partner’s response. Identify at least one aspect that you noticed is the same 
and one aspect that you noticed is different and tell your partner how/why these parts of the solution were 
similar/different [for this criterion try to focus on aspects of mathematical thinking/reasoning as opposed 
to surface level details].
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Data analysis procedures

The goal of our analysis was to understand how participants collaboratively developed 
more sophisticated ways of examining functions by participating in emerging sociomath-
ematical norms. Our research questions focused our investigation on emerging sociomath-
ematical norms and critical moments in participants’ mathematical discourse. The analysis 
included three phases: We (1) documented regularities in participants’ mathematical dis-
course, (2) examined for whether these regularities were socially accepted and expected, 
and (3) identified initial shifts in the sophistication of participants’ mathematical discourse. 
As such, our analysis focused on participant mathematical discourse and, therefore, does 
not formally investigate individual mathematical reasoning.

In phase one of the analysis, we employed constant comparative coding procedures 
(Strauss & Corbin, 1990) to chronologically examine the dataset and develop themes 
that characterized regularities in participants’ mathematical discourse. We used the 
shape thinking framework (Moore & Thompson, 2015) and Simon et al.’s (2010) notion 
of logical necessity—justifications for why certain observable patterns that follow log-
ically cannot be any other way—to conceptualize differences in the sophistication of 
mathematical discourse. Specifically, we attended to features of participant mathemati-
cal discourse that reflected “equations, names, or analytic rules as facts of shape” (static 
shape thinking) or quantities, the variation of quantities, and the covariation between 
quantities (emergent shape thinking). Further, we focused on whether and how partici-
pants justified why certain observable patterns could not by any other way.

This framing allowed us to distinguish mathematical discourse such as “the graph 
has a parabolic shape” from discourse such as “as the length of the vertical distance 
from the x-axis to the unit circle’s circumference varies…” because the former uses 
“parabolic shape” as a fact of shape while the latter reflects discussion of how a quantity 
(“the length of the vertical distance from the x-axis to the unit circle”) varies. Attending 
to participant justifications was also important because, as argued above, discourse that 
reflects emergent shape thinking could also include features of static shape thinking. 
Therefore, when we observed discourse such as “the graph has a parabolic shape,” we 
further scrutinized the discourse for whether and how it was justified, and specifically 
whether the justification reflected emergent or static shape thinking.

With this framing, while also maintaining an open stance to allow themes to emerge 
from the data, we individually reviewed the dataset to gain familiarity with participant 
mathematical discourse. This was followed by weekly data sessions that included develop-
ing short codes describing participant mathematical discourse, comparing data and emerg-
ing codes to existing codes and associated data, condensing codes into categories, and then 
identifying themes with descriptive titles that represented commonalities in the categories.

The goal of the second phase of analysis was to further analyze themes in partici-
pants’ mathematical discourse identified in phase one to document whether the themes 
represented sociomathematical norms. Consistent with Dean (2005), we used two forms 
of evidence to determine whether these regularities in mathematical discourse were 
accepted and expected and represented sociomathematical norms: (1) evidence of par-
ticipants explicitly discussing expectations for and value of mathematical discourse, and 
(2) occasions of participants collegially challenging one another to engage in particular 
mathematical discourse. The second form of evidence is grounded in the assumption 
that norms are valued and participants violating a norm might be pressed to align their 
mathematical discourse with class expectations (Sfard, 2000).
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To prepare for phase two of the analysis, we organized the coded data into a norms 
and practices chart—an adaptation of Rasmussen and Stephan’s (2008) mathematical ideas 
chart. The chart’s columns included the week of the online PD course, the thread number, a 
link to posts in the thread, participants who contributed to the thread, the mathematics task 
of focus in the thread, theme(s) identified in that thread (if any), and annotations regarding 
posts with explicit discussion or challenge in the thread (Table 2). We went row by row 
through the chart and examined for explicit discussion and challenges related to the identi-
fied themes in mathematical discourse during additional data sessions. This included look-
ing at rows in the chart that were and were not labeled with the identified themes to investi-
gate whether participants challenged colleagues when their discourse did not align with the 
emerging theme. We documented participant interactions identified as explicit discussion 
and challenge in the chart with annotations in the appropriate column and row.

The purpose of the final phase of analysis was to identify critical moments and the 
associated mathematical task that provided context for critical moments and emerging 
sociomathematical norms. We conceptualized characteristics of a critical moment as the 
first time we observed participants engaging in, challenging a colleague to engage in, or 
explicitly discussing the mathematical discourse that constituted participation in the class’s 
norms. We went back through the data using the norms and practices chart to identify the 
first instance of data that was connected to the emergent sociomathematical norms while 
noting the mathematical activity that created context for the critical moment.

Findings

Overview of themes in mathematical discourse

We identified four broad themes in participant mathematical discourse (Table  3). These 
themes included static shape discourse, explaining why, action orientation, and emergent 
shape discourse. Table 3 introduces each theme and its frequency in our data.

These themes characterized approximately 50% of the 687 posts in the course discus-
sion boards that included participants engaging in mathematical activity. Posts not included 
in the table above included participants praising their colleagues’ work, making agreement 
statements, and sharing and comparing information not related to the core mathematics 
task. While posts of this type are common in teacher education and can have implications 
for community-building (Zhang et  al., 2017), they are not pertinent to the focus of this 
study.

The second phase of our analysis began with identifying candidates for sociomathemat-
ical norms by identifying occurrences of explicit discussion and occasions of challenge 
related to these themes. In our analysis, we observed both explicit discussion and occasions 
of challenge for both explaining why and emergent shape thinking. As we did not observe 
explicit discussion or occasions of challenge related to static shape discourse or action ori-
entation, we focus on the themes explaining why and emergent shape discourse and seek to 
document how each can be characterized as (emerging) sociomathematical norms.

Before introducing the sociomathematical norms, we briefly discuss aspects of partici-
pants’ mathematical discourse that were prevalent during the initial weeks of the course. It 
is against this background that we document both the emerging sophistication of partici-
pant mathematical discourse and the critical moments that catalyzed them.
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Participants’ initial mathematical discourse: static shape discourse

There is consensus that mathematics learners tend to approach functions by associating 
function names, equations, or rules with shapes of graphs and, as we discussed above, 
such approaches have been referred to as static shape thinking (Moore & Thompson, 
2015). As expected, our initial observations of participants’ discourse were consistent 
with this approach; therefore, we refer to participants initial mathematical discourse as 
static shape discourse. The following presents the initial mathematics task of our online 
course and features of static shape discourse to set the stage for documenting the emer-
gence of participants’ sociomathematical norms.

The goal of the initial week’s mathematics task (adapted from Saldanha and Thomp-
son (1998)) was to support participants in examining functions by coordinating change 
between two covarying quantities. The quantitative scenario includes two points (City 
A and B) that can be placed in a two-dimensional plane and a third point (a car) that 
moves along a linear path (a road) through this plane (Fig.  1). An interactive applet 
models this scenario and allows participants to investigate the covarying quantities.

The task scaffolds participants in visualizing how the quantities’ magnitudes vary 
and covary in the coordinate plane. The quantities’ magnitudes are superimposed along 
horizontal and vertical axes. The blue segment represents the distance from the car to 
City B, and the red segment represents the distance from the car to City A. As the car 
travels from left to right, for instance, the distance from the car to City B decreases, 
resulting in an equivalent change in the length of the blue segment along the vertical 
axis.  The correspondence point traces a record of the covariation between quantities. 
The activity prompts participants to (1) pick locations for the cities, (2) move the car 
along the road, (3) examine how the distance from the car to each city varies individu-
ally and covaries, and (4) explain why the graph looks the way that it does. Participants 
worked privately on this task, submitted their responses to a discussion board, and then 
asynchronously discussed their work.

In their online discussions, participants engaged in static shape discourse when they 
described their observations from the car problem with discourse of (1) shapes, (2) familiar 
function graph shapes, (3) a moving correspondence point, and (4) a connection between 
the context and graph shape. Table 4 provides representative samples of these features.

Fig. 1    The car problem interactive applet
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The first aspect to notice in these samples is that participants treated the function 
graph and interactive applet as the primary source of their examination. For example, 
participants referenced “the graph” and used names of shapes such as “U shape” and 
“rectangles” or familiar function graph shapes such as “parabolic features” and “abso-
lute value (‘V’) function” to describe the graph. In addition, participants described the 
direction (“down and to the left”) and/or speed (“begins to move more slowly”) of the 
correspondence point’s movement when it traced the graph. Participants also connected 
the car problem context and function graph by using names of familiar function shapes 
to describe graphs that correspond to particular orientations of the cities (“When two 
cities are close the graph is more like a parabola”).

These representative samples of participants’ discourse focus on perceptual objects 
from the car problem such as the graph itself, the correspondence point, or the loca-
tion of the cities and appear to include names as claims about shape such as “parabola” 
or “absolute value.” These features of discourse are similar to explanations reflecting 
static shape thinking documented in Vishnubhotla and Paoletti (2020). While partic-
ipants’ examination of the car problem was accurate, their discourse did not include 
focus on covarying quantities to explain why the car problem graphs had particular 
shapes. Although some participants did connect the context to the graph shape, their 
explanations foregrounded broad generalizations of the context and names of functions 
to describe the graph. Thus, we use static shape discourse to characterize participants’ 
initial mathematical discourse with the acknowledgment that it may not be completely 

Table 4   Features of static shape discourse

Features of mathematical discourse Representative samples from our data

Shapes The graph will create a short and wide rectangle which 
morphs into a tall and skinny rectangle. (Hank)

The “U shape” or the curve of the graph can be explained 
because of the way the two lengths of the segments decrease 
then increase at the same rate. (Nina)

Familiar function graph shapes When the correspondence point was added, I noticed the 
graph has parabolic features instead of features of an 
absolute value ("V") function. Both are similar shapes, so 
I’m not sure if I am correct. I just saw more of a curve at the 
bottom as compared to that sharp turn. (Jazmine)

The movement of the correspondence point Initially, the point moved down and to the left. The cor-
respondence point begins to move more slowly in both 
directions, but slows down more quickly in the horizontal 
direction until the graph is only moving down. The graph 
then begins to move and accelerate to the right as it slows 
down vertically, thereby moving down and to the right for a 
brief while. Once the car reaches the minimum distance to 
city B, the correspondence point is only moving horizon-
tally. Finally, the correspondence point begins to accelerate 
upward again and moves up and to the right. (Charles)

Connecting the context and graph shape When two cities are close to each other the graph is more like 
a parabola. However, when the cities are further apart from 
each other, the graph becomes a polynomial of a higher 
even degree because it flattens out. (Taylor)
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aligned with Moore and Thompson’s (2015) conceptualization of static shape thinking 
because of these signs of participants connecting the context and graph shape.

It is important to note that our documentation of static shape discourse does not indi-
cate that participants could not reason covariationally about quantitative relationships in 
the car problem. Instead, it is evidence that participants’ mathematical discourse did not 
reflect covariational reasoning. Nevertheless, as static shape discourse was an overwhelm-
ingly common theme in participants’ initial mathematical discourse, we use it as a starting 
point for documenting increases in the sophistication of their mathematical discourse.

The following sections document the emergence of two increasingly more sophisticated 
sociomathematical norms. We provide an overview of our coding and the context within 
which each norm emerged, critical moments in participant discourse, themes in their dis-
course, and evidence of participants discussing their engagement in discourse that reflected 
each theme and challenging one another to engage in such discourse when these details 
were not included.

The first emerging sociomathematical norm: explaining why

Throughout the course, we observed each of the 21 participants in 87 discussion board 
posts (12.7% of posts) engage in mathematical discourse reflecting the theme explaining 
why. Furthermore, we found evidence of repeated challenges (48 occasions) and explicit 
discussion (13 posts) associated with explaining why, both of which are examples of evi-
dence of the emergence of sociomathematical norms (Dean, 2005).

It is important to note that initial discourse in the course was not characterized as 
explaining why (see Sect. 4.2); however, as the course progressed, the mathematical dis-
course evolved to include justifications for why function graphs have particular visual fea-
tures. Specifically, features of explaining why included (1) relating symbolic representa-
tions of functions to specific visual features of function graphs, and (2) relating quantities 
to specific visual features of function graphs. We observed each participant using at least 
one of these discourse features when engaging in a reflective discussion activity or the 
introduction to trigonometry activity.

Because explaining why included justifying why graphs must have certain visual fea-
tures by drawing from mathematical objects (i.e., quantities) other than the graph itself, we 
argue that it became normative for participants  to communicate a logical necessity with 
their mathematical discourse, that is, they were articulating why certain observable pat-
terns must be the case and cannot be any other way. Shifting from describing observable 
patterns to articulating a logical necessity is evidence of an increase in the sophistication of 
mathematical discourse (Simon et al., 2010). Thus, explaining why represented a collective 
shift from static shape discourse toward a more sophisticated approach to examining the 
behavior of functions.

A reflective discussion and the trigonometry activity

The reflective discussion activity included reading an  article about conceptual conversa-
tions (see Thompson et al., 1994), returning to the week one discussion of the car prob-
lem, treating past mathematical discourse as objects for reflection, and considering whether 
this mathematical discourse was conceptual (e.g., by focusing on reasons, relationships, 
and meanings). Concurrently, participants worked on a trigonometry activity where they 
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extended their work with the car problem by examining the behavior of y = sin(n*x) using 
an interactive applet.

The applet was designed to scaffold focus on quantities from the unit circle to under-
stand the behavior of the y = sin(n*x) graph (Fig.  2). The applet works as follows: The 
left portion of the applet is a unit circle. Users can vary the openness of the circle’s cen-
tral angle by dragging a point around the circle’s circumference. Two quantities of focus 
include the angle measured in radians and the sine of the angle. The magnitudes of these 
quantities are mapped onto the coordinate plane. A correspondence point traces a record 
of how the quantities’ magnitudes covary in the coordinate plane when the openness of the 
central angle varies. The activity prompts teachers to (1) move a point along the circle, (2) 
examine how the arclength along the circle and the horizontal and vertical components of 
the point’s coordinates vary individually, (3) examine how the arclength and these compo-
nents covary, and (4) explain why the graph looks the way that it does.

A critical moment

We observed the initial shift in participants’ mathematical discourse toward explaining 
why during the reflective discussion activity. Riley was the first participant to initiate a 
discussion about examining functions by justifying why graphs have particular visual fea-
tures. Specifically, Riley appeared to consider an alternative approach to examining func-
tion graphs that did not include using her knowledge of familiar graph shapes to “describe 
the graph.” Riley described this alternative approach: “I could focus on why the graph 
was the shape that it was by describing in detail the relationship of the distances between 
the cities.” Her approach included using relationships between quantities (e.g., “distances 
between the cities”) to describe “why the graph was the shape that it was.” Thus, Riley’s 
mathematical discourse reflects a shift from static shape discourse to considering the use 
of mathematical objects other than the graph itself to understand the function’s behavior.

Features of explaining why

During the introduction to trigonometry activity, participants used mathematical discourse 
indicating that they analyzed the symbolic representation of trigonometric functions and 
underlying quantities from the unit circle to justify why function graphs have particular 

Fig. 2   Trigonometry interactive applet



341Documenting two emerging sociomathematical norms for examining…

1 3

visual features. Table  5 provides representative samples of discourse features reflecting 
explaining why.

The first aspect of participants’ mathematical discourse to notice is their explicit inten-
tion to explain why function graphs have certain visual features. For example, Rose noted, 
“we can predict the behavior of the sine graph” and then discussed the “waves.” Ava also 
stated, “the graph looks the way it does because….” The second aspect to notice is how 
participants related mathematical objects to particular visual features of the function graph. 
Rose described a relationship between a parameter of the symbolic representation of the 
function (“the number in front of x”) and a specific visual feature of the sine graph (“the 
amount of waves”). Similarly, Ava described a relationship between quantities in the unit 
circle (“the radius of the circle”) and a specific visual feature of the sine graph (“constant 
height in [the graph’s] waves”). This provides evidence that participants’ attention shifted 
from the function graph itself toward reasons for why the function graph has a certain 
shape.

Occasions of challenge

We observed 48 occasions where participants collegially challenged their colleagues 
to explain why graphs have particular visual features when these details were not included. 
In their challenges, participants referenced a specific visual feature of a function graph and 
requested explanation of why the function has this visual feature. Further, participants used 
the discourse of noticing and wondering to frame a large proportion of these challenges. 
Consider the following representative interaction between Nina and Paul.

Nina: This graph appears as it does because of the Unit Circle. Essentially as the val-
ues of sin (x) make their way around the circle, they start again at zero.

Table 5   Features of explaining why

Features of mathematical discourse Representative samples from our data

Relating the symbolic representation of functions to specific visual 
features

I believe that we can predict the 
behavior of the sine graph…The 
amount of waves for one period 
is equivalent to twice the number 
in front of x. So, w = 2n (where w 
represents the amount of waves per 
period). (Rose)

Relating underlying quantities to specific visual features I believe the graph looks the way it 
does because the range is restricted 
by the radius of the circle. I was 
looking at a unit circle and I 
knew that the range for sin(x) is 
-1 < x < 1. It matches the radius, so 
I thought it might have something 
to do with that. Also, the radius 
is the hypotenuse of the trian-
gle, which is in the ratio of sine, 
which relates the sides together 
(opposite/hypotenuse). That is why 
the graph stays at a constant height 
in its waves. (Ava)
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Paul: I noticed that you wrote: “This graph appears as it does because of the Unit 
Circle. Essentially as the values of sin(x) make their way around the circle, they start 
again at zero.” I wonder... if you could elaborate on this concept more. Why do the 
values start again at zero? Why does the graph have hills and valleys?

Nina reasoned about why the sine graph “appears as it does” by referencing the unit 
circle and the values of sine. However, Nina did not relate specific quantities from the unit 
circle or the symbolic representation of the function to specific visual features of the sine 
graph. Instead, Nina’s mathematical discourse reflects static shape discourse because the 
unit circle, in this case, is a perceptual object from the interactive applet (Fig. 2) that scaf-
folded participants in reasoning about the sine function. Nina’s discourse of “make their 
way around” suggests she was describing how the intersection point of the unit circle’s 
arc length and vertical distance from this arc length to the x-axis moved around the circle, 
without explicitly connecting this to particular visual features of the sine graph. Thus, from 
our perspective, Nina’s mathematical discourse appeared to align more with static shape 
discourse than the emerging regularity in participants’ discourse for explaining why func-
tion graphs have certain visual features.

In his response, Paul noticed a specific aspect of Nina’s mathematical discourse and 
then used an “I wonder” statement to challenge her to explain why. Paul’s wondering 
appeared to press Nina to focus on quantities in the unit circle to explain why the “val-
ues start again at zero” and then to relate this discourse to specific visual features (“hills 
and valleys”). Thus, Paul’s challenge possibly scaffolded by the Noticing and Wondering 
Framework intended to push Nina to explain why the sine graph looks a particular way. 
This suggests that Paul may have interpreted Nina’s mathematical discourse as violating 
what he perceived as accepted and expected mathematical discourse.

Explicit discussion

We observed three online discussions where participants explicitly discussed their focus on 
what they referred to as “the why.” The following representative sample conversation was 
initiated by Nina and included responses from Ava and Cindy.

Nina: Looking at the function of sin(x) is something I have done many times. Instead 
of telling you that it crosses 0 at these points, and equals 1 at these points, I had to 
look at WHY [authors did not add emphasis] it did this…I found that for so long, I 
knew how to answer questions on sin(x) but I really did not have a full understanding 
as to why.
Ava to Nina: I know about sine functions, but never considered the why or reasoning 
before. Now I want to understand and be able to explain not just do.
Cindy to Ava:  It was very difficult for me to see the whys of this week’s activity 
initially. The last time I encountered trigonometry was in high school, and I only 
remembered...SOH CAH TOA. After discovering what it is that we were trying 
to find, I realized how much more valuable my learning experience was this time 
around.

In this conversation, each participant referenced a focus on why or “the why.” Nina 
explained that she was beginning to examine why the sine graph has particular features 
such as crossing zero and one at specific points. Ava and Cindy referenced “the why” and 
a value for this approach to examining trigonometric functions. Given Nina’s initial post 
in the thread, our observations of participants’ mathematical discourse, and participants’ 
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challenges of one another to explain why, we argue that “the why” emerged as participants’ 
short hand for the expectation to explain why function graphs have certain visual features.

In sum, participants’ explicit discussions about “the why” and the occasions of chal-
lenge provide evidence supporting our conjecture that explaining why was a sociomath-
ematical norm in the online course. Central to this sociomathematical norm was partici-
pants articulating a logical necessity for why function graphs have certain shapes and their 
reasons included relating symbolic representations of functions and underlying quantities 
to visual features of function graphs. González (2021) documented similar features in 
mathematics teachers’ reasoning when they examined a quantitative scenario around global 
warming (p. 12), while DeJarnette (2018) showed that students’ “empirical conception” 
included adjusting parameters of the symbolic representation of a sine/cosine function to 
produce specific graph shapes. Because participants did not coordinate change between 
varying quantities when they explained why, our analysis suggests that participants were 
collectively moving toward the course goal of examining the covariation between quanti-
ties to justify the behavior of functions.

The second emerging sociomathematical norm: emergent shape discourse

Throughout the course, we observed 19 of the 21 participants in 95 discussion board posts 
(13.8% of posts) engaging mathematical discourse reflecting the theme emergent shape dis-
course. Furthermore, we found evidence of repeated challenges (29 occasions) and explicit 
discussion (26 posts) associated with emergent shape discourse, both of which are exam-
ples of evidence of an emerging sociomathematical norm (Dean, 2005).

It is important to note that initial discourse in the course was not characterized by emer-
gent shape discourse (see Sect.  4.2); however, as the course progressed, the mathemati-
cal discourse evolved from static shape discourse to include explaining why (see Sect. 4.3) 
and then further evolved to include mathematical discourse reflecting covariational reason-
ing to justify why function graphs behave in particular ways—a key feature of emergent 
shape thinking (Moore & Thompson, 2015). The features of emergent shape discourse 
included approaches to coordinating change between varying quantities. This mathematical 
discourse emerged as participants engaged in a discussion about their quiz and composite 
trigonometric functions.

Consistent with explaining why, emergent shape discourse included using mathematical 
objects other than the function graph itself to justify why graphs behave in certain ways—
indicating that participants continued to articulate a logical necessity. Because emergent 
shape discourse included coordinating change between covarying quantities to justify why 
function graphs behave in certain ways, participants articulated a logical necessity that 
is more aligned with the broader mathematical community’s approach (e.g., see Carlson 
et  al., 2002; Moore & Thompson, 2015). Thus, we argue that emergent shape discourse 
represented a collective shift in the sophistication of participants’ mathematical discourse 
beyond explaining why.

The quiz and composite functions

The quiz included participants discussing the behavior of the functions y = cos(2x) and 
y = cos(4x). The composite functions activity included participants examining the graph of 
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y = sin(x2) or y = sin(2/7x) in Desmos and participating in an online discussion about why 
these functions behave in certain ways.

A Critical moment

We observed a shift in participants’ expectations for how to examine functions when dis-
cussing their quiz. Specifically, the instructor pressed a participant who was  explaining 
why to examine the covariation between quantities to explain why. Consider the following 
interaction between Ava and the instructor:

Ava: Please let me know what you think on my thoughts: cos(2x) has 2 graphs in 
the period from 0-2pi and the period of 1 graph is ½ as long as cos(x). cos(4x) has 4 
graphs in period 0-2(pi).
Instructor to Ava: … we want to push for you to be able to explain WHY “cos(2x) 
has 2 graphs in the period 0-2(pi).” You might think: (1) I remember if its cos(ax) 
and a > 1, the period will be 1/a as long as cosx; (2) I looked at the graph and saw 
there were 2 graphs in the period 0 to 2pi; (3) I examined the covariation. Either 
of these perspectives provides insight into WHY the period was 1/2 as long….I’m 
pushing you to describe why from the third perspective.

In this post, Ava described the relationship between the symbolic representation of 
the function and the “number of graphs,” which we interpreted as the number of times 
the function cycled through its range of values, to explain why the function has particu-
lar visual features. The instructor challenged Ava to explain why, outlined three possi-
ble ways to do so, and one of those ways included examining the covariation. While the 
instructor challenged participants to refine their mathematical discourse multiple times, 
this  critical moment was the first occasion where  “examining covariation”  emerged in 
participants’ online discussions as an approach to justifying why functions have particular 
visual features.

Features of emergent shape discourse

We observed participants engage in emergent shape discourse during online discussions 
around the composite trig functions task. Features of this discourse included descriptions 
of (1) changes in the value of one quantity with respect to changes in the other quantity, (2) 

Table 6   Features of emergent shape discourse

Features of mathematical discourse Representative samples from our data

Describing changes in the value of one quantity with 
respect to change in the other quantity

As x varies, x2 also varies, and sin(x2) varies until 
x2 reaches a value of pi/2 (when x = (pi/2)^0.5). 
(Chloe)

Describing the direction of change between quantities As x increases from 21pi/4 radians to 7pi radians, 
2x/7 increases from 3pi/2 radians to 2pi radians 
and sin(2x/7) increases from -1 rad to 0 radians. 
(Cindy)

Describing the amount of change in one quantity with 
respect to the other quantity

As x increases by 1 rad from 0 to 1, 2x/7 increases 
by 2/7 radians from o to 2/7, sin(2x/7) increases 
by .28 rad from 0 to .28. (Hank)
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the direction of change between quantities, and (3) the amount of change in one quantity 
with respect to the other quantity. Table 6 includes representative data samples of these 
features.

One import aspect to notice in this discourse is how participants described the quanti-
ties as dynamic using discourse such as “as x varies” and “as x increases.” Participants 
also described the change of at least two different quantities in proximity to one another 
(“as x varies, x2 also varies,” “as x increases…2x/7 increases…and sin(2x/7) increases…,” 
and “as x increases by 1 rad…2x/7 increases by 2/7 radians…sin(2x/7) increases by 0.28 
radians…”), illustrating their focus on relationships between changing quantities. What 
distinguishes these features of participants’ mathematical discourse is the specificity with 
which they coordinated change between quantities by using discourse such as “varies,” 
“increases,” and “increases by.” “Varies” indicates change, “increases” indicates the direc-
tion of change, while “increases by” indicates the direction and amount of change. These 
features of mathematical discourse and associated distinction between them are consistent 
with what is outlined in Carlson et al. (2002) as indicators of coordinating change between 
quantities and, thus, mathematical discourse that reflects covariational reasoning.

Each of the 19 participants who used mathematical discourse reflecting covariational 
reasoning also stated that their examination of the covariation between quantities was a jus-
tification for why the function graph has a particular look. For example, Chloe connected 
the covariation between quantities (x, x2, and sin(x2)) to a visual feature of the function’s 
graph: “this is shown in the graph; the graph travels up and down at an increasing rate.” 
Thus, coordinating change between quantities emerged as participants’ approach to justify-
ing why functions behave in certain ways.

Occasions of challenge

We observed 28 occasions where participants challenged their colleagues to examine 
the covariation between quantities when these details were not included in their discus-
sion post. Although there were three different features of emergent shape discourse, the 
observed challenges requested a focus on the covariation between quantities. Further, par-
ticipants used the discourse of noticing and wondering to frame a large proportion of these 
challenges. The following presents a representative sample where Summer examined the 
function y = sin(x2) by explaining why  and Cindy pressed her to examine the covariation 
between quantities.

Summer: The graph looks like an “m” shape because of the ratio of the opposite 
side over the hypotenuse (radius), because on the positive side both signs are posi-
tive so the graph will stay above the x-axis, but then on the negative side because 
both signs will be negative so the result will be positive therefore staying above the 
x-axis.  Also  as the x-values get farther away from the origin the graph waves get 
closer and closer together, and I believe this is because of the x2 part, the inputs are 
getting so large so fast that the graph needs to “move” faster.

Summer began by mentioning the shape of the graph (“m shape”) and then justified why 
this is the case by referencing the unit circle (“the ratio of the opposite side over the hypot-
enuse”). Then, she further discussed the behavior of the “waves:” “as the x-values get far-
ther away from the origin the graph waves get closer together…” and justified this behavior 
by relating it to the function’s symbolic representation (“x2 part”). Summer explained why 
because she used the symbolic representation of the function to justify why the graph has 
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a particular shape. Thus, her mathematical discourse was not consistent with the emerg-
ing regularity in the class’s mathematical discourse because she did not coordinate change 
between varying quantities to formulate justifications.

Cindy provided Summer with feedback by noticing a portion of Summer’s explana-
tion and then wondering about how Summer could examine covariation between quanti-
ties to explain why the graph has a particular look.

Cindy’s feedback:  I noticed that you wrote “As the x-values get farther away 
from the origin the graph waves get closer and closer together” …and I wondered 
if you can explain this using the relationship and covariation between the underly-
ing quantities instead of just describing what the graph looks like.

Cindy’s noticing referenced Summer’s description of a visual feature of the func-
tion’s graph: “waves get closer together.” Then, Cindy used a wondering to press Sum-
mer to examine “covariation between the underlying quantities” to provide justification 
for this visual feature. This challenge possibly scaffolded by the Noticing and Wonder-
ing Framework suggests Cindy perceived Summer’s mathematical discourse as violating 
what she was beginning to understand as an accepted and expected approach for exam-
ining the behavior of functions.

Explicit discussion

Participants also discussed the importance of examining covariation between quantities 
to reason about why functions behave in certain ways. In a representative example con-
versation, Paul raised covariation to explain why as a topic for discussion:

Paul (initial):  I am gaining a greater appreciation as to why we are focusing so 
heavily on covariation - the fact that we need to talk about covariation in order to 
get at the ‘why.’
Chloe to Paul: I am also gaining a greater appreciation for these ideas of covaria-
tion because prior to these activities, I would only be able to explain the different 
properties of the sine function and not why these properties are true.

Paul suggested that covariation is one way to explain “the why.” Chloe agreed and 
implied that covariational reasoning can be used to explain why when examining the 
sine function. Our interpretation of Paul’s use of “the why” is that he was referring 
to explaining why. This suggests that Paul was arguing that one needs to examine cova-
rying quantities to explain why. We observed repeated occasions where participants ref-
erenced and discussed covariation as a way to explain “the why.”

In summary, these explicit discussions about using covariation to explain “the why” 
and occasions of challenge supported our conjecture that emergent shape discourse was 
a sociomathematical norm. A central feature of emergent shape discourse was analyz-
ing covariation between quantities to justify why graphs have certain visual features. 
While we documented several features of participants’ mathematical discourse reflect-
ing covariational reasoning, there was no evidence of participants making similar dis-
tinctions in their discussions or challenges. Further, it was unclear whether participants 
imagined the trace of the function graph emerging while examining the covariation 
between quantities (a feature of emergent shape thinking Moore & Thompson, 2015). 
This suggests that participants may have experienced emergent shape discourse as an 
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expectation to coordinate change between quantities to explain why functions behave 
in certain ways, which suggests movement along the continuum toward emergent shape 
thinking.

Discussion

This study investigated mathematics teachers’ participation in online mathematical dis-
course and documented the emergence of two sociomathematical norms. We provided evi-
dence that participants engaged in static shape discourse at the onset of the online course. 
Whitacre and Nickerson (2016) argued that teachers’ existing approaches to participat-
ing in mathematical activity can shape commonalities in their initial mathematical prac-
tice during a collaborative learning experience. While this initial mathematical practice or 
discourse in our case can be a resource for teachers’ collaborative learning (Smith et al., 
1994), it suggests that static shape discourse may have been part of participants’ existing 
ways of engaging with functions. We argued above that mathematical activity that relies on 
perceptual objects and shape-based associations can constrain learners’ potential to engage 
with novel mathematics tasks. Thus, this study adds to research indicating the need for 
mathematics teacher professional learning opportunities focused on engaging in emergent 
shape thinking when working with function graphs (e.g., see Thompson et al., 2017).

A contribution of this study is evidence of an online course creating context for shifts in 
teachers’ collective mathematical discourse. We documented our participants’ mathemati-
cal discourse evolve from emphasizing visual features of function graphs to understand 
the behavior of functions (statics shape discourse) to providing a logical necessity for why 
function graphs have certain visual features (explaining why) and, finally to coordinat-
ing change between covarying quantities to explain why functions behave in certain ways 
(emergent shape discourse). Static shape discourse, explaining why, and emergent shape 
discourse characterize a process by which mathematics teachers can collectively develop 
more sophisticated approaches to examining functions. This characterization of partici-
pants’ learning process (Table 7) can function as an instructional tool that supports teacher 
educators in noticing and capitalizing on critical moments in mathematics teachers’ dis-
course about functions in collaborative learning contexts. Future work is needed to test, 
revise, and refine this documented collaborative learning process.

The second contribution of this study is that it extends research on norms in general 
(e.g., see Cobb et al., 2001; Fukawa-Connelly, 2012) and in mathematics teacher profes-
sional learning in particular (e.g., see Clark et al., 2008; Dean, 2005; Whitacre & Rumsey, 
2018) by providing evidence of the emergence of sociomathematical norms in an online 
asynchronous course for teachers. Our study suggests that online courses can increase 
mathematics teachers’ access to legitimate collaborative mathematics learning experiences 
that are so important for effective professional learning (Darling-Hammond et al., 2017). 
Additionally, the online nature of online courses increases the potential for scalability of 
these learning experiences. This increased access to professional learning opportunities 
and community support may be important for supporting novice teachers who are leaving 
the profession at high rates (Carver-Thomas & Darling-Hammond, 2017). Novice teachers 
participating in sociomathematical norms in online courses can have implications for their 
individual mathematical development (Cobb & Yackel, 1996) and their potential to support 
the emergence of similar norms in their classes (Clark et al., 2008; Tsai, 2007), which can 
potentially lead to improvements in their instruction and potential to persist in the career.
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We also extend the work of Cobb et al. (2001), Dean (2005), and Rasmussen and Ste-
phan (2008) by contributing a methodology for analyzing mathematical discussions in 
online settings, which includes identifying themes in teachers’ mathematical discourse and 
providing evidence that these themes represent norms by documenting whether the dis-
course was accepted and expected. It is important to note that this methodology focuses 
on teachers’ mathematical discourse in online discussions. Thus, an application of this 
methodology does not allow one to make claims about individual teacher’s reasoning or 
understandings. While Sfard (2008) argues convincingly that discourse and reasoning are 
interrelated, it will be important to investigate this interrelationship in online contexts to 
better understand features of learning environments and sociomathematical norms that can 
support teacher collaborative learning.

To conclude, we offer conjectures to the following question: How did certain course fac-
tors, events, and conditions come together to support the emergence of sociomathematical 
norms? We conjecture that the reflective discussion activity and Noticing and Wondering 
Framework were important design features that potentially contributed to the emergence 
of explaining why and emergent shape discourse. In our theoretical framework, we argued 
that seeding discourse into online discussions has potential to result in the emergence of 
sociomathematical norms and we showed, for example, that Riley’s critical moment seeded 
discourse characteristic of explaining why into the community. This critical moment 
emerged as a result of the reflective discussion activity that asked participants to reflect on 
their mathematical discourse from the car problem and consider whether it was conceptual. 
Thus, similar to past research (e.g., see Llinares & Valls, 2010), we found that supporting 
teachers’ engagement with colleagues’ previous contributions to the discussion boards con-
tributed to shifts in their discussions.

Our past work has shown that the Noticing and Wondering Framework can support 
mathematics teachers in focusing on the details of their colleague’s mathematical discourse 
and providing generative feedback (Matranga et al., 2018). The current study documented 
participants noticing specific aspects of their colleagues’ mathematical discourse and using 
“wonderings” to challenge colleagues to justify why function graphs have particular vis-
ual features. Thus, scaffolding collaboration with the Noticing and Wondering Framework 
may have supported participants in attending to colleagues’ discourse that violated their 
expectations for how to examine functions, pressing one another to refine this discourse, 
and developing emerging regularities in their mathematical discourse. Our findings my 
also have implications for other modalities of collaboration as, for example, the Noticing 
and Wondering Framework and reflective discussion activity could be applied to synchro-
nous courses by having teachers notice and wonder about records of colleagues’ reasoning 
from online discussions during a synchronous meeting.

We also conjecture that the core of a course social network may create conditions propi-
tious for the emergence of sociomathematical norms in online discussions. In this study, 
we documented critical moments that included Riley, Ava, and the instructor. In Matranga 
and Silverman (2022), we examined these same 21 participants’ interactional patterns and 
found that their social network had a core-periphery structure and resembled a community. 
Further, we found that Riley, Ava, and the instructor were three of the five participants who 
remained in the network’s core for the entire course. This suggests that the mathematical 
discourse in these critical moments and subsequent interactions associated with the emer-
gence of explaining why and emergent shape discourse had increased visibility to the class, 
which increases the potential of the mathematical discourse to influence what the commu-
nity perceived as accepted and expected (Lave & Wenger, 1991; Valente, 1995).
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We also note that participants’ positioning within the community may have an impact 
on their participation in mathematical discourse and the extent to which they encounter 
discourse consistent with emerging sociomathematical norms. In looking across this study 
and Matranga and Silverman (2022), we noticed that the three participants who did not 
participate in emergent shape discourse were members of the periphery. We are currently 
exploring the use of social network analysis to identify the core and periphery of a net-
work and then scaffold interaction between teachers who are members of these groups to 
increase access to participation in sociomathematical norms. Further research is needed to 
understand “where” mathematical discourse reflected in critical moments originates, how 
it diffuses through teachers’ networks, and begins to constitute emerging sociomathemati-
cal norms.
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