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Abstract
Xyloglucan is a rigid polysaccharide that belongs to the carbohydrate family. This hemicellulose compound has been widely
used in biomedical research because of its pseudoplastic, mucoadhesive, mucomimetic, and biocompatibility properties.
Xyloglucan is a polyose with no amino groups in its structure, which also limits its range of applications. It is still unknown
whether grafting hydrophilic monomers onto xyloglucan can produce derivatives that overcome these shortcomings. This
work aimed to prepare the first copolymers in which N-hydroxyethyl acrylamide is grafted onto tamarind xyloglucan by
free-radical polymerization. The biocompatibility of these structures in vitro was evaluated using human dermal fibroblasts.
Gamma radiation-induced graft polymerization was employed as an initiator by varying the radiation dose from 5–25 kGy.
The structure of the graft copolymer, Xy-g-poly(N-hydroxyethyl acrylamide), was verified by thermal analysis, Fourier
transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. The findings indicate that the degree of
grafting and the cytotoxicity/viability of the xyloglucan-based copolymer were independent of dose. Notably, the grafted
galactoxyloglucan exhibited efficient support for human dermal fibroblasts, showing heightened proliferative capacity and
superior migration capabilities compared to the unmodified polymer. This copolymer might have the potential to be used in
skin tissue engineering.

1 Introduction

Polysaccharides (PSs) are carbohydrate macromolecules
that originate from animal and plant sources and are
abundant in nature [1]. Due to their high availability, non-
carcinogenicity, and biocompatibility, there is considerable
interest in using them as renewable sources to manufacture
functional materials [2]. Among PSs, xyloglucan (Xy), a
hemicellulose compound, has advantages of biodegrad-
ability, nontoxicity, and low cost to produce biomaterials
with good biointerface performance [3]. In addition,
galactoxyloglucan’s mucoadhesive, pseudoplastic, and
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mucomimetic properties make this compound suitable for
drug delivery systems [4]. However, two drawbacks of Xy
are the rigidity of the molecule and a lack of amino groups
in the structure. The absence of amino groups in the native
Xy might limit its direct reactivity or interaction with certain
functional moieties. Amino groups are commonly involved
in bioconjugation reactions, such as coupling with reactive
species for grafting or linking to other polymers or bio-
molecules. Therefore, chemical modification is necessary to
overcome these shortcomings and expand the application
fields of this polyose in biotechnology [5].

Grafting is among the most promising chemical mod-
ification methods for Xy [6]. In grafting, a monomer or
polymer is covalently attached to the PS, which allows the
synthesis of various hybrid biopolymers or multicomponent
systems of practical usefulness in biomedical applications
[7]. Several works have used graft polymerization to
improve the chemical properties of Xy using various
initiation methods or direct modification of PSs [8]. Octenyl
succinic anhydride (OSA) was used to generate Xy-OSA
amphiphilic molecules with potential application in drug
delivery [9]. The biocompatibility of Xy has been improved
by the grafting of polylactic acid (PLA) via ring-opening
polymerization (ROP), which has allowed the preparation
of composite materials in the form of reinforced fibers [10].
Grafting reactions with redox initiators have attracted
increasing scientific interest because of their simplicity and
minimal side reactions. Tamarind Xy has been grafted with
acrylamide (AAm) and polyacrylamide (PAAm) using ceric
ammonium nitrate (CAN) [11, 12]. Ammonium persulfate
(APS) has been used to graft polyacrylic acid (PAAc)/dia-
tomite (D) to create a superabsorbent Xy-g-PAAc/D [13].
Sorbents generated from Xy grafted via redox initiation,
such as poly(2-hydroxyethyl methacrylate) (pHEMA)
grafting, have applications in removing vanadium (V) ions
from aqueous solutions, which helps prevent carcinogenic
diseases derived from the ingestion of this metal above the
acceptable dose levels [14].

Furthermore, microwave-initiated grafting has been
widely used to assist redox synthesis [6]. PAAm has been
grafted onto tamarind Xy by microwave-assisted poly-
merization, and the generated derivative (Xy-g-PAAm) has
been used for nanofabricating wound dressings [15]. In
addition, mucoadhesive polymers (Xy-g-poly(n-vinyl pyr-
rolidone)) [16] and flocculating agents (Xy-g-poly-
acrylonitrile) have also been prepared by the above-
described method [17].

Moreover, atom transfer radical polymerization (ATRP)
has been demonstrated experimentally to achieve the
grafting of poly(methyl methacrylate) (PMMA) for use in
removing toxic dyes [18]. Our group has previously grafted
ethyl acrylate onto tamarind xyloglucans using free radicals
to generate biodegradable films [19]. To our knowledge,

gamma radiation has yet to be used to create copolymers of
these polysaccharides.

This work aims to synthesize and characterize copoly-
mers based on N-hydroxyethyl acrylamide (HEAA) grafted
onto the Xy of tamarind by radical polymerization and to
determine whether these structures have characteristics that
allow their future application in skin tissue
engineering (STE).

The radiation-induced graft polymerization method was
used in this work. The copolymers (Xy-g-PHEAA) were
characterized by solid-state carbon-13 nuclear magnetic
resonance (13C-CP/MAS NMR), differential scanning
calorimetry (DSC), Fourier transform infrared (FTIR)
spectroscopy, and thermogravimetric analysis (TGA). The
in vitro biocompatibility of Xy-g-PHEAA was evaluated by
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT) cytotoxicity, viability (calcein/ethidium
homodimer assay), and proliferation (KI67 expression by
immunofluorescence) studies involving human dermal
fibroblasts (HDFs).

The monomer HEAA has been used to generate super-
hydrophilic antifogging coatings in engineering applications
[20]. Grafting of HEAA has been shown to increase the
antibacterial efficacy of the generated derivatives, their
resistance to bacterial adhesion, and their bacterial killing
activity [21]. The hydrophilic properties and the presence of
an amino group that allows the formation of semi-
interpenetrated polymeric networks make this monomer a
suitable candidate for modifying Xy obtained from
tamarind seed.

The use of Xy for STE has yet to be well studied. The
application of Xy in treating corneal epithelial lesions has
been reported [22]. Previous research suggested that Xy
could promote human skin regeneration by influencing
fibroblast proliferation and migration [23]. The successful
use of Xy as an extracellular matrix for hepatocyte culturing
has also improved the biocompatibility of these biomaterials
[24]. In addition, polyvinyl alcohol grafting onto Xy to
prepare hydrogels for skin wound dressings has been stu-
died [25]. Therefore, in this work, it is hypothesized that it
is possible to graft HEAA onto Xy using gamma radiation-
induced graft polymerization to improve the hydrophilicity
and decrease the rigidity of the starting PS. The copolymers
obtained could have potential applications in skin
bioengineering.

The significance of this study, along with the innovative
xyloglucan grafted with HEAA, resides in unveiling the
potential of Xy. This research positions Xy as a valuable
asset for biomedical applications. The grafted Xy emerges
as a versatile and functional copolymer, showcasing aug-
mented thermal stability, heightened proliferative capacity,
and superior migration capabilities when contrasted with the
pristine polysaccharide.
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2 Materials and methods

2.1 Chemicals

Tamarind seeds, from which Xy is obtained, were obtained
from industrial waste in Mexico. The seeds were manually
separated from the pulp and briefly soaked in hot water
(90 °C). The testa was removed, and the seeds were first sun-
dried and later dried in an oven (Scorpion Scientific A50980)
at 35 °C for at least 5 h for each procedure. Then, the seeds
were milled, and a #80 mesh sieve was used to separate the
ground seeds by following ASAE standards [26]. The tamar-
ind kernel powder was treated with ethanol to obtain the Xy.
N-Hydroxyethyl acrylamide (HEAA, 7646-67-5), ethanol
(purity > 99.45%, CAS-No.: 64-17-5), and acetone (purity >
99.5%, CAS-No.: 67-64-1) were purchased from Merck
(Germany). The solvents were used as received, while HEAA
was distilled to eliminate the inhibitor.

2.2 Preparation of Xy-g-PHEAA

HEAA was grafted onto xyloglucan Xy by gamma
radiation-induced graft polymerization using 400 mg of Xy,
2.5 ml of ethanol, and 500 microliters of monomer. Doses
from 5 to 25 kGy in increments of 5 kGy (D1, D2, D3, D4,
and D5) were used. A Transelektro-LGI-01 60Co-gamma-
ray source was used to irradiate the substances in Pyrex
tubes (1.52 kGy/h). An Amber 3042 dosimeter (Perspex
Harwell) was used to measure the doses accurately. For
easy classification of the grafted Xy, the resulting copoly-
mers were denoted according to the dose, namely,
XyM2D1, XyM2D2, XyM2D3, XyM2D4, and XyM2D5,
where M2 represents HEAA. Soxhlet extraction with acet-
one (250 ml) was used to purify the Xy-g-PHEAA from
HEAA and PHEAA residues for approximately 72 h.

2.3 Characterization methods

2.3.1 Degree of grafting

The following equation was used to calculate the degree of
grafting (WXy-g-PHEAA) of PHEAA onto Xy:

WXy�g�PHEAA ¼ ðmXy�g�PHEAA � mXyÞ
mXy

� 100

mXy�g�PHEAA was determined after the grafting and purifica-
tion processes, and mXy is the initial mass of tamarind Xy.

2.3.2 Nuclear magnetic resonance

Nuclear magnetic resonance (NMR) spectra of Xy and Xy-
grafted PHEAA were obtained on a Bruker Avance
400 spectrometer (400MHz) with a high-resolution magic

angle spinning (HR-MAS) probe. The PS samples were first
swollen in D2O, placed on a 4 mm zirconia rotor, and
rotated at 5 kHz. 1H and 13C NMR spectra were recorded
using tetramethyl silane (TMS) as a reference.

2.3.3 Infrared spectroscopy

Fourier transform infrared (FTIR) spectra of pristine (Xy) and
Xy-g-PHEAA samples were obtained by means of an atte-
nuated total reflectance (ATR) FTIR Bruker vector spectro-
meter equipped with a ZnSe ATR accessory. The powders
were scanned from 4000 to 600 cm−1 at 4 cm−1 resolution.
The samples were dried under vacuum before the analysis.

2.3.4 Thermal analysis

Thermal analysis (TA) of the chemical changes of Xy as a
function of temperature was performed by thermogravimetry
(TGA) using a thermoanalyzer (Q5000IR, TA instrument).
The energy required by the starting and Xy-based polymers to
increase the sample temperature was monitored by modulated
differential scanning calorimetry (MDSC Q100, TA instru-
ment). A 10 °C/min heating rate and a nitrogen atmosphere
(N2) were used for the thermal analysis with a gas flow of
25ml/min. The temperature range for TGA was 27–600 °C,
while MDSC required a range from−20 to 300 °C. Aluminum
crucibles were used to contain 5mg of the polysaccharides.

2.4 Cellular studies

2.4.1 Cytotoxicity

An MTT assay was carried out to determine the cytotoxicity
of neat Xy and the synthesized (Xy-g-PHEAA) samples.
Five milligrams of the control or modified hemicellulose
compound was added to each well, and dermal fibroblasts
were plated at a density of 103 cells per well. In this
experiment, the reduction of 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide to formazan was measured
with a microplate reader (Synergy™ HTX Multimode
reader, USA) at 540 nm. Cell survival below 70% was
considered cytotoxic (ISO 10993-5:2009).

2.4.2 Viability

The viability of HDFs cocultured with Xy or Xy-g-PHEAA
was examined by a Live/Dead™ kit. By following the Calcein/
Ethidium Homodimer I dye (EthD-1) kit’s guidelines
(Thermo), 2 μM ethidium homodimer and 1 μM calcein diluted
in Dulbecco’s modified Eagle medium (DMEM) were used
and incubated for 1 h. Briefly, the cells were visualized with a
Carl Zeiss confocal microscope (LSM 780). Viable HDFs were
appeared green, while nonviable cells appeared red.
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2.4.3 Proliferation and immunophenotype assays

Immunofluorescence (IF) is a molecular technique used in
conjunction with fluorescence microscopy for light micro-
scopy and is primarily used for microbiological samples.
This technique exploits the specificity of antibodies to
antigens to direct fluorescent dyes to specific biomolecular
targets within cells, thereby visualizing the distribution of
target molecules in a sample. Here, the anti-Ki67 antibody
(ab16667, Abcam, UK) was coupled to AF488 (A11008,
1:500, Invitrogen) to visualize the nuclear protein (ki67)
expression associated with cell proliferation.

Additionally, anti-fibroblast surface protein [ab11333,
1B10, 1:100, Abcam, UK] was mixed with AF594 (sec-
ondary antibody, Catalog # A11005, 1:500, Invitrogen,
USA) to determine whether the HDF lineage remained
unchanged after 24 and 48 h of culture for the control and
Xy-based copolymer with PHEAA.

2.4.4 Migration assay

HDFs were cultivated in 12-well plates, with a seeding density
of 2.0 × 10^6 cells per well and nurtured at 37°C with 5% CO2

until confluency was achieved. To impede cell proliferation,
the medium underwent substitution with mitomycin-
containing serum-free DMEM for a 4-h period. A uniform
monolayer was then meticulously disrupted through a scratch
using a sterile 1mL pipette tip. Post-scratching, the culture
milieu experienced renewal with fresh serum-free DMEM.
Thereafter, an Axio Observer A1 (Carl Zeiss), featuring an
LED light source Colibri and a Carl Zeiss digital camera,
captured images (n= 10 per treatment) from the well centers
at time points 0, 24, 48, and 72 h post-scratching.

2.5 Statistical analysis

Origin 9.0 software (Origin Lab, USA) was used for plot-
ting the results of spectroscopic and thermal analyses.
Conversely, GraphPad Prism (GraphPad Software, USA)
was used to plot the results of biological experiments.
Within a group of values (n= 10), statistical significance
(*) was defined for outcomes with P values less than 0.05.
One-way analysis of variance (ANOVA) was used for
viability experiments (n= 10, α= 0.05).

3 Results and discussion

3.1 The synthesis, proposed mechanism, and degree
of grafting of Xy-g-PHEAA

Figure 1 shows a schematic of the preparation of Xy-g-
PHEAA based on radiation-induced grafting of PHEAA

onto Xy. First, primary ethanol radicals are produced. The
incidence of gamma rays also yields Xy and HEAA primary
radicals in the initiation step. The Xy primary radicals are
necessarily distributed in the alcohol groups by the scission
of hydrogen (Xy•). HEAA’s primary radical can be posi-
tioned at any α, β, γ, or δ carbon of the monomer with
similar opportunities to react (HEAA•). HEAA precursors
can initiate polymerization by reacting with the monomer to
yield PHEAA macroradicals (PHEAA•). In the last step,
Xy• may be deactivated by recombination with any radical
in the graft reaction. The deactivation of the PS by the
homopolymer’s growing radical chain can form the Xy-
grafted PHEAA copolymer.

On the other hand, the degree of grafting (WXy�g�PHEAA)
ranged from 82 to 94%, with no significant difference
between the groups, indicating that it is independent of the
dose (Fig. S1). Some earlier works on Xy-g-PAAc did not
show data to compare the degree of grafting [13]. The
degree of grafting for Xy-g-AAm (45.6% on average),
initiated by ceric ions and prepared from tamarind mucilage,
was lower than that of Xy-g-PHEAA [11]. Conversely,
when tamarind seed was used with ceric ammonium nitrate
as the initiator, the degree of grafting increased to more than
140% and reached a maximum of 667.8% [27]. The same
degree of grafting (80% on average) was observed for Xy-
grafted poly(ethyl acrylate) initiated by gamma radiation
[19]. Therefore, the degree of grafting was the first evidence
of the grafting of PHEAA onto Xy. However, our work was
limited to one type of gravimetric measurement, while
others have reported the grafting efficiency and conversion
parameters to enhance understanding of the synthesis [15].

3.2 Structure and properties of Xy-g-PHEAA

3.2.1 Searching for evidence of grafting using NMR

The 1H-NMR spectrum of the Xy-grafted PHEAA copo-
lymer is shown in Fig. 2. The signals at 4.53/4.55 ppm
(–CH2–OH), 3.90/3.50/3.33 ppm (–O–CH2), 2.05/1.96 ppm
(–CH2), and 1.74/1.60 ppm (–CH3), which are highlighted
in purple, were attributed to Xy. This signal assignment was
based on the previous work reported for the copolymer-
ization of poly(ethyl acrylate) onto tamarind kernel powder
(Fig. S2) [19]. New signals were observed at 5.16/4.94 ppm
(–C-OH), 3.54/3.20 ppm (–O–CH2), and 2.22 ppm (–CH2),
which confirmed the grafting of PHEAA. The signal typi-
cally observed at 5.27 ppm for Xy shifted in the high field
direction to 4.53/4.55 ppm for Xy-g-PHEAA. The integra-
tions for the copolymer signals were 2H (–NH), 1H
(–C–OH), 1H (–O–CH2), and 3H (–CH2). The peaks in the
spectrum attributed to the grafting positions and the
attached molecule were identified in red for improved
clarity.
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Fig. 2 NMR of Xy-g-PHEAA

Fig. 1 Schematic of Xy and Xy-graft HEAA copolymers prepared via the simultaneous irradiation method
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The above-described 1H NMR control signals aligned with
those reported for Xy extracted from apple pomace [28]. The
positions of the PHEAA peaks were compared to those of the
poly(2-(methacryloyloxy) ethyl trimethyl ammonium-g-N-
hydroxyethyl acrylamide) nanogels and PHEAA-grafted
polystyrene (PSt), with substantial similarity in the –C-OH,
–O-CH2, and -CH2 proton signals [29, 30].

3.2.2 Searching for evidence of grafting using FTIR

The FTIR spectra of the starting polymer (Xy or TKP), the
grafted polymer (PHEAA or M2), and the copolymer (Xy-
g-PHEEA) are shown in Fig. 3. The spectra included the
dose effect for the graft copolymer. First, the Xy spectrum
showed bands at 3315 cm−1, 2900 cm−1, 1631 cm−1, and
1006 cm−1, which were ascribed to hydroxyl (–OH)
stretching, –CH asymmetric stretching, -OH bending
vibrations, and –CO stretching frequencies [13]. The bands
observed at 1156–1435 cm−1 were attributed to –CH
angular deformations. The characteristic absorption peaks at
1645 cm−1, 1549 cm−1, and 1067 cm−1 were attributed to
the –C=O group (amide I), –NH bending vibrations
(amide II), and –CO/–CN stretching of PHEAA [31]. The
peaks in the Xy-g-PHEEA spectra provided the first
experimental evidence that PHEAA grafting did not depend
on the dose. The –OH stretching band shifted to a higher
wavenumber (3265 cm−1), suggesting a new type of inter-
action. The –CH asymmetric stretching gave rise to two
bands (2930 and 2879 cm−1), suggesting novel vibrational

interactions for grafted Xy. The more striking grafting
evidence was the appearance of a band at 1552 cm-1, which
was clearly attributed to grafted PHEAA –NH bending [32].
Finally, the peaks attributed to –CO stretching shifted to a
lower wavenumber (1053 cm-1), consistent with the above
findings. As illustrated in Fig. 3, the spectral comparison of
the pristine and treated samples confirmed that PHEAA was
grafted onto Xy, affecting the hydrogen bonding formation
(broader –OH stretching bands) and –OH vibrational
spectroscopy. Due to its enhanced intermolecular forces,
this grafted structure may be helpful as a biomimetic
material for tissue adhesion functions and STE [33].

3.2.3 Study of the Xy and Xy-g-PHEAA thermodynamic
properties

The thermal analyses of Xy and Xy-g-PHEAA synthesized
at different doses are shown in Figs. 4–6. TGA was used to
study the degradation behavior of Xy compared with that of
the grafted derivatives (Fig. 4). The control PS (Xy) showed
high thermal stability from approximately 270 °C to
approximately 340 °C. Other xyloglucans have shown
similar stability in the 300–370 °C range [34]. The chain
packing and stiff cellulose backbone of Xy endow this
molecule with an unusual thermal stability, often compar-
able to that of cellulose [35]. The control decomposed in
one step, while Xy-g-PHEAA underwent two decomposi-
tion steps. It follows that the decomposition steps are the
first thermodynamic evidence of grafting.

Fig. 3 FTIR spectra of Xy and
Xy-g-PHEAA

Fig. 4 TGA of Xy and Xy-g-
PHEAA copolymers synthesized
at different doses
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Additionally, the copolymers showed higher thermal
stability than the control. With PHEAA as the grafted
polymer, the weight loss began at approximately 270 °C
and ended at 400 °C. The first derivative (DTGA) showed
that Xy had a Td at 300 °C, and the copolymers exhibited
two decomposition peaks at increased temperatures, 330
and 411 °C, confirming PHEAA grafting (Fig. 5).

The DSC plots of Xy and Xy-grafted PHEAA products are
shown in Fig. 6. The data on thermodynamic properties are
summarized in Table 1. The DSC analysis was carried out
without prior treatment (ΔHm1(J/g), Tm1/(°C), Fig. 6) and
after eliminating the thermal history of the PS (ΔHm2(J/g),
Tm2/(°C), ΔHc2(J/g), Tc2/(°C), Tg2/(°C), Figs. S2–S7, sup-
plementary information).

The first approach allowed us to observe the decreases in
ΔHm1 and Tm1 for Xy-g-PHEAA relative to those of native
Xy. This method showed several endotherms for the poly-
saccharides directly heated in the DSC instrument (Fig. 6).
This decrease was also observed for thiolated Xy and was
indicative of PHEAA grafting [36]. The heating was stop-
ped at 300 °C; therefore, the exotherms were not compared
initially. Presumably, the changes in melting enthalpies can
be attributed to modifications in the degree of crystallinity
due to grafting copolymerization [37]. The second approach
showed endothermic and exothermic valleys (Figs. S2–S7,
supplementary information). The melting temperature (Tm2/
(°C)) trend coincided with the first method in the 5–15 kGy
range. The Tm2 of Xy-g-PHEAA increased in relation to Xy

Fig. 5 DTGA of Xy and Xy-g-
PHEAA copolymers

Fig. 6 DSC of Xy and Xy-g-
PHEAA copolymers

Table 1 Data describing the
thermodynamic properties
obtained from the thermal
analyses

Sample Td/°C ΔHm1(J/g) Tm1/°C ΔHm2(J/g) Tm2/°C ΔHc2(J/g) Tc2/°C Tg2/°C

Xy 324 235.40 104.73 5.74 303.81 18.97 321.35 258.50

XyM2D1 330/411 204.15 83.01 30.58 297.97 68.47 326.41 132.32

XyM2D2 330/411 161.60 82.55 49.59 299.87 59.47 326.09 157.85

XyM2D3 330/411 212.50 94.45 21.71 293.71 27.67 351.15 106.18

XyM2D4 330/411 216.50 77.90 28.94 326.74 72.55 326.74 144.34

XyM2D5 330/411 248.80 83.20 27.83 328.08 40.83 328.08 129.65

Td decomposition temperature, ΔHm1 melting enthalpy (first heating without previous treatment [FHWPT]),
Tm1 melting temperature (f FHWPT), ΔHm2 melting enthalpy (thermal history eliminated [THE]), Tm2
melting temperature (THE), ΔHc2 enthalpy of crystallization (THE), Tc2 crystallization temperature (THE),
Tg2 transition temperature (THE)
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after 15 kGy, suggesting possible crosslinking at high doses
[38]. Notably, after thermal history elimination, the Xy
melting enthalpy (ΔHm2) decreased to 5.74 J/g and
increased after grafting for all copolymers [8]. The results
suggested that after PHEAA grafting, the heat energy
necessary to melt the biopolymer was higher for the deri-
vatives than for the unmodified PS [39]. The enthalpy of
crystallization (ΔHc2/(J/g)) followed the trend as ΔHm2.
However, a higher temperature was needed for the crys-
tallization of the grafted hemicellulose than for that of Xy,

which is consistent with previous findings [34]. Finally, the
shift in the glass transition temperature (Tg2/°C) to lower
values for grafted molecules indicated a decrease in chain
rigidity and less restricted polymer mobility. This outcome
was indicative of intermolecular interactions more char-
acteristic of graft polymerization than a crosslinked network
[40]. The DSC results corroborated that Xy-g-PHEAA
copolymers were formed with improved thermal stability
and the least limited structure mobility, which may be
helpful in further preparation of scaffolding for STE [41].

3.3 Cytotoxicity and viability assays

Figure 7 shows the results of the MTT test for HDFs
cocultivated separately with Xy-g-PHEAA and Xy. HDFs
cultivated in monolayers were used as the primary control.
The metabolic activity of the groups of cells cocultivated
with Xy-g-PHEAA at different doses was not significantly
different from that of the controls at 24 and 48 h. A trend
toward increases in the optical density (OD) with the dose
and compared to the controls was observed when compar-
ing the data at 48 h. Fibroblast proliferation was higher at
48 h than at 24 h. The HDF survival rate of over 100% for
all samples in the studied periods is consistent with that of
biocompatible and nontoxic biomaterials [42].

The calcein/EthD-1 assay was also carried out to
complement the MTT results (Fig. 8). From the micro-
graphs, it was observed that most HDFs were alive, with
excellent proliferation for Xy and the graft copolymers
(representative image of Xy-g-PHEAA). The Live/
Dead™ kit did not detect any dead cells when the EthD-1

Fig. 7 MTT assay for the monolayer (Ctrl+), Xy, and Xy-g-PHEAA
after 24 and 48 h of culture. The positive control (Ctrl+) is represented
as C+, and the copolymers Xy-g-PHEAA, previously denoted as
XyM2D1, XyM2D2, XyM2D3, XyM2D4, and XyM2D5, are labeled
as D1, D2, D3, D4, and D5 due to space limitations in the graphs

Fig. 8 The percentage of live
and dead cells for each period
was estimated by using a
calcein/EthD-1 kit
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dye was used within 48 h from the start of the experiment.
In previous work, the cytotoxicity of Xy hydrogels was
evaluated using L929 cells. The authors observed 100%
fibroblast viability after 48 h of incubation, and the con-
centration ranged from 1 to 100 μg/ml [43]. Moreover,
Xy-based hydrogels prepared from the combination of
this PS with honey-loaded Gantrez® showed low cyto-
toxicity toward NHF cells [44]. The increase in hydro-
philicity and chemical modifications allowed the
formulation of patches for wound care. Furthermore,
investigations were previously conducted with extracts of
tamarind at different concentrations (1–10 μg/ml) and
normal human dermal fibroblasts (NHDFs), and it was
concluded that these cells exhibited no cytotoxic effects
[23]. In addition, PHEAA has been identified as a
hydrogen-bond donor and acceptor and a biocompatible
polymer with good bacterial adhesion resistance and
capacity to support fibroblast growth in vitro [45].

3.4 Proliferation assays and surface detection

Ki67 immunofluorescence staining was performed to assess
the role of Xy and Xy-g-PHEAA in HDF proliferation
(Fig. 9). The 48-h Ki67 staining results succeeded in
showing cell proliferation. A visual inspection of the
micrographs revealed a high amount of cell proliferation,
with no significant difference in intensity between the
grafted Xy and the controls (Ctrl+, Xy). Additionally, the
variation in the number of Ki67-positive HDFs per field was
unimportant [46–49]. Furthermore, 48 h 1B10 staining
revealed that cells cocultivated with Xy and Xy-g-PHEAA

recognized, with the same specificity of fibroblasts as the
culture plate cells. This finding indicated that the fibroblast
phenotype was not affected.

3.5 HDFs migration experiment

HDFs (monolayer, Ctrl+), HDFs (monolayer) + Xy, and
HDFs (monolayer) + Xy-g-PHEAA, were used in the
migration experiments (Fig. 10). After 72 h, HDFs
cocultivated with Xy-g-PHEAA exhibited a smaller
remaining closure area than the sample cocultivated with
Xy, clearly demonstrating accelerated migration. These
findings support the idea that the introduction of amino
groups through gamma radiation-induced graft poly-
merization of HEAA onto Xy leads to the creation of new
molecules with improved properties for biomedical use. In
this case, it results in a greater stimulation of migration,
which is a crucial process in tissue regeneration. Dutta et
al. reviewed the use of Xy hydrogel in the neural cell
migration model of a scaffold implanted in mice Parkin-
sonian brain [50]. According to Deters et al., Xy enhanced
fibroblast and keratinocyte proliferation, accelerated
fibroblast migration and intracellular enzyme activity
following endosomal uptake, and supported the cell cycle
[23]. Additionally, special wound healing patches made of
honey loaded Gantrez®/Xy hydrogel were prepared,
motivated by the high efficiency of Xy in stimulating
fibroblast migration [44]. Certainly, the ungrafted Xy
exhibits remarkable properties in stimulating fibroblast
migration, establishing a solid foundation. The findings
for Xy-g-PHEAA signify a significant advancement,

Fig. 9 IF staining of HDFs using
anti-fibroblast surface protein
(1B10) and AF594 (cell
membrane-red, nuclei-blue
counterstained with Hoechst)
and fluorescent labeling of anti-
Ki67 and AF488 (green channel
in nuclei): a, d well plates
(control+), b, e Xy, and c, f
representative Xy-g-PHEAA
after 24 and 48 h of culturing
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opening avenues for the development of novel formula-
tions tailored for dressings and patches in the treatment of
burn induced wounds.

4 Conclusion

In summary, Xy was successfully grafted with PHEAA by
radical polymerization using gamma radiation as an initia-
tor. The analysis of the proposed reaction mechanism
indicated that the grafting reaction necessarily occurred on
Xy hydroxyl groups. The chemical changes that verified the
introduction of PHEAA moieties onto Xy were observed by
spectroscopic and thermal studies. The graft copolymer Xy-
g-PHEAA showed no adverse impact on HDF cytotoxicity,
viability, or proliferation. The Xy subjected to grafting
exhibited migration capabilities superior to those of the
pristine polymer. The biocompatibility of the grafted Xy
suggested that the new molecules had good properties for
application in STE. An interactive molecule was designed
with more capacity for forming hydrogen bonds and poly-
mer networks than pristine xyloglucan. However, the work
was limited to experiments with HDFs cocultivated with the
copolymer. Further preparation of graft copolymer hydro-
gels is needed to produce scaffolds with adequate
mechanical properties and resistance to bacterial adhesion
for clinical practice.
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