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Abstract

Under whole body vibration, how the cement augmentation affects the vibration characteristic of the osteoporotic fusion
lumbar spine, complications, and fusion outcomes is unclear. A L1-L5 lumbar spine finite element model was developed to
simulate a transforaminal lumbar interbody fusion (TLIF) model with bilateral pedicle screws at L4-L5 level, a
polymethylmethacrylate (PMMA) cement-augmented TLIF model (TLIF-PMMA) and an osteoporotic TLIF model. A 40 N
sinusoidal vertical load at 5 Hz and a 400 N preload were utilized to simulate a vertical vibration of the human body and the
physiological compression caused by muscle contraction and the weight of human body. The results showed that PMMA
cement augmentation may produce a stiffer pedicle screw/rod construct and decrease the risk of adjacent segment disease,
subsidence, and rod failure under whole-body vibration(WBV). Cement augmentation might restore the disc height and
segmental lordosis and decrease the risk of poor outcomes, but it might also increase the risk of cage failure and prolong the
period of lumbar fusion under WBV. The findings may provide new insights for performing lumbar interbody fusion in
patients affected by osteoporosis of the lumbar spine.
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1 Introduction

Lumbar interbody fusion combined with bilateral pedicle
screw fixation has been used in facilitating arthrodesis and
improving clinical outcomes for many years [1-4]. How-
ever, lumbar spine osteoporosis may result in fixation fail-
ure, nonunion, or other complications [5—10]. Most patients
requiring lumbar interbody fusion are elderly with osteo-
porosis, and pedicle screw placement may lead to loss of
bone density and osteoporosis in fused segments [11-14].
There are some methods to increase bone mineral density
and enhance the fixation strength to improve the stability of
osteoporotic lumbar spine. Among the various approaches,
polymethylmethacrylate (PMMA) cement augmentation has
yielded favorable results in treating patients with osteo-
porosis [15, 16]. Previous studies have evaluated the effects
of PMMA cement augmentation on biomechanical proper-
ties of osteoporotic vertebral bone in fused segments. The
experimental study by Liu et al. [17] reported that PMMA
could significantly enhance screw stability, and there was a
significant positive correlation between screw stability and
volume of PMMA. A clinical study by Mo et al. compared
the safety and efficiency of cement-augmented pedicle
screw with a traditional pedicle screw technique applied to
patients with osteoporotic spine. They found better fusion
and lower pedicle screw loosening rates of the PMMA-
augmented pedicle screw group in the single segment
patients [18]. An experimental study by Tan et al. reported
that cage-vertebra interface properties were improved when
cement was used to augment vertebral and pedicle screws.
They found that cement augmentation of pedicle screws
might reduce interbody device subsidence [19]. Similarly,
there are also a lot of numerical results from the finite
element analysis. The finite element analysis by Ferris et al.
demonstrated that placement of cement influenced failure
load and toggle, with distal placement having the largest
increase in failure load and decrease in cephalad-caudad
toggle [20]. Polikeit et al. investigated the effect of cement
augmentation on an osteoporotic fusion lumbar spinal unit
by using finite element analysis. They found that cement
augmentation improved the strength of osteoporotic ver-
tebrae, but increased endplate bulge and the load in the
adjacent segments [21]. There are many valuable experi-
mental and numerical results about the effects of PMMA
cement augmentation on biomechanical properties of the
osteoporotic fusion lumbar spine, as well as the fusion
outcomes and complications. However, a few studies
focused on the effects of cement augmentation on the
osteoporotic vertebral bone in fused segments under WBYV.
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Long-time whole-body vibration might lead to low back
pain during driving a car or taking public transportation
[22, 23]. A lot of experimental, clinical and numerical
results attributed this to the fact that compared to static
loads, vibration loads might result in increases in stress,
intradiscal pressure(IDP) and disc degeneration in the
lumbar spine [24, 25]. In daily life, people usually suffer
from influence of WBYV, such as taking a bus or driving a
car, which might cause damage to the lumbar spine, espe-
cially to the osteoporosis elderly undergoing lumbar inter-
body fusion. Therefore, the role of cement augmentation in
dynamic behaviors of the osteoporotic spinal segment under
vibration has been widely concerned recently. Finite ele-
ment analysis by Su et al. examined the influence of cement
augmentation on the dynamics of pathologic and adjacent
vertebrae under vibration conditions [26]. Bostelmann et al.
assessed the fixation effect of percutaneous cement appli-
cation and investigated pedicle screw loosening under
physiological cyclic craniocaudal loading [27]. The purpose
of this study is to investigate the influence of cement aug-
mentation on the vibration characteristics of osteoporotic
vertebral bone in fused segments, including the effect on
adjacent segments and the fused segment, especially
regarding fusion outcomes and complications such as
adjacent segment diseases (ASD), pedicle screw fixation
failure, and subsidence.

2 Methods
2.1 FE modeling and materials

A previously validated three-dimensional nonlinear FE
model of an intact L1-L5 lumbar spine was used in this
study [28]. The intact model was composed of the vertebral
body, endplate, intervertebral disc, and various ligaments
such as anterior longitudinal, posterior longitudinal, cap-
sular, intertransverse, interspinous, supraspinous, and fla-
vum ligaments. The intervertebral disc consisted of annulus
fibrosus, annulus ground substance and nucleus pulposus,
as shown in Fig. 1. The elastic modulus of annulus fibrosus
decreased from the outside to the inside.

A lot of investigations indicated that the prevalence of
spinal diseases at L4-L.5 was the greatest among lumbar
intervertebral discs [29, 30], and transforaminal lumbar
interbody fusion (TLIF) might provide better biomechanical
stability and decrease the risk of complications [31, 32].
Therefore, an intact L1-L5 model was modified to simulate
TLIF at the L4-L5 level. To simulate TLIF, the nucleus
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Fig. 1 Finite element model of
the intact L1-L5 of human
lumbar spine
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Fig. 2 Finite element models for different conditions. a TLIF model b TLIF model with osteoporotic L4, L5 lumbar vertebrac ¢ PMMA cement
augmented TLIF model

pulposus, partial lamina, partial annulus ground substance,
fibrosus, and unilateral superior articular process were
removed at the L4-L5 level. A cage (length 28 mm, width ~ The material properties were assumed to be homogeneous

12 mm, height 10 mm) was inserted into the disc space by  and isotropic, the corresponding data [33-37] were given in
the oblique approach through the annulus incision (Fig. 2).  Table 1.

The endplate-cage interfaces, bone-screw interfaces and
pedicle screw-rod interfaces were assumed to be bonded.
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Table 1 Material properties of the finite element model

Component Element Young’s Poisson’s Density Cross-sectional
type modulus (MPa) ratio (e-6 Kg/mm3) area (mm?)

Bone

Cancellous bone C3D4 100(osteoporosis:34) 0.2 1.1(osteoporosis:0.37)

Cortical bone C3D8 12000(osteoporosis:8040) 0.3 1.7(osteoporosis:1.14)

Posterior bone C3D4 3500(osteoporosis:2345) 0.25 1.4(osteoporosis:0.94)

Endplate C3D8 500 0.25 1.2

Intervertebral disc

Nucleus pulposus C3D8 1 0.49 1.02

Annulus ground substance C3D8 4.2 0.45 1.05

Annulus fibers T3D2 357-550 0.3 1.0

Ligaments

Anterior longitudinal T3D2 7.8(<12.0%) 20.0(>12.0%) 1.0 63.7

Posterior longitudinal T3D2 10.0 (<11.0%) 20.0 (>11.0%) 1.0 20

Capsular T3D2 7.5(<25.0%) 32.9 (>25.0%) 1.0 30

Intertransverse T3D2 10.0(<18.0%) 58.7 (>18.0%) 1.0 1.8

Interspinous T3D2 10.0 (<14.0%) 11.6 (>14.0%) 1.0 40

Supraspinous T3D2 8.0 (<20.0%) 15 (>20.0%) 1.0 30

Ligamentum flavum T3D2 15.0 (<6.2%) 19.5 (>6.2%) 1.0 40

Implants

TLIF cage(PEEK) C3D8 3600 0.25 1.32

Screw and rod(Ti) C3D4 110,000 0.28 4.5

Lumbar vertebral bodies fixed by bilateral pedicle screws
were prone to osteoporosis. In this study, the L4 and L5
vertebrae were assumed to be osteoporotic, and other ver-
tebral bodies were healthy in the “TLIF model with osteo-
porosis” (TLIF-OST). To simulate the TLIF with
osteoporosis, the elastic moduli values of the osteoporosis
based on calculations relating bone mineral density mea-
surements in healthy and osteoporotic bones were collected
[21, 38]. The fusion model with osteoporosis (Fig. 2) was
defined as follows. The Young’s Modulus and density of
the cancellous bone in L4 and L5 were reduced by 66%,
and those of cortical bone and posterior elements in L4 and
L5 were decreased by 33% [26, 39]. To simulate the
PMMA cement augmented TLIF model (TLIF-PMMA), all
the cancellous bone of the augmented L4/5 vertebrae was
replaced by PMMA (Young’s Modulus: 3000 MPa, Pois-
son’s Ratio: 0.41), and other parameters were the same as
the TLIF-OST model [40].

2.2 Boundary and loading conditions

In this study, Abaqus 6.14(Dassault Systemes Simulia Corp)
was used to analyze the effect of PMMA cement augmenta-
tion on the osteoporotic vertebral bone in fused segments. For
boundary conditions, the lower surface of L5 vertebral body
was fixed in all directions throughout the simulation process.
A 400N compression preload and a 40 N sinusoidal vertical
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load at 5SHz were applied to the models to simulate the
physiological compression load of the whole lumbar spine
caused by muscle contraction and the weight of human body
and vibration load of human body in many vehicle trans-
portations, respectively [25, 41-43]. A 40 kg mass point was
designated on the top of L1 to simulate the effect of human
upper body mass on the lumbar spine [44-46].

3 Results

The numerical results about dynamic characteristics of the
models including the vibration amplitude and maximum
value of von Mises stress in L4/L5 endplates, cage, pedicle
screw, AGS and IDP were collected. Some significant
indexes related to fusion outcomes and complications, such
as segmental lordosis, disc height and compressive stress in
L4/5 endplates were also analyzed. The results were peri-
odic, and a representative period of 0-0.8 s was chosen
from the entire vibration process (2 s) in this study.

3.1 Effect of cement augmentation on adjacent
segments

At the adjacent segments, there are some indexes related to
ASD such as disc bulge, IDP, and von Mises stress in the
annulus fibrosus. The disc bulge was defined as the lateral
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Fig. 3 The dynamic response at the adjacent segments for fusion models. a L2-L3 disc bulge b L3-L4 disc bulge ¢ the maximum values of L2-L3
and L3-L4 disc bulge d vibration amplitudes of L2-L.3 and L3-L4 disc bulge

deformation of the annulus fibrosus, and the IDP and von
Mises stress were assumed to be the average stress in the
elements. It was found that TLIF-PMMA exhibited the
smallest dynamic response in the disc bulge of L.2/3 and L3/
4 levels among the three models in Fig. 3. For example, the
maximum values (vibration amplitudes) of L2/3 and L3/4
disc bulge were 0.78(0.21) mm, 0.37(0.09) mm for TLIF-
PMMA, 0.88(0.23) mm, 0.52(0.14) mm for TLIF, 1.14
(0.27) mm, and 0.79(0.21) mm for TLIF-OST. It was
observed that no matter the maximum values or vibration
amplitudes in Fig. 4, there was no obvious difference in IDP
and stress in AGS of L2/3 and L3/4 levels among TLIF,
TLIF-OST and TLIF-PMMA models.

3.2 Effect of cement augmentation on adjacent
segments

For the fused L4-L5 level, the stresses in endplates, cage and
pedicle screw were pertinent with complications such as
subsidence, cage and fusion failure. The stresses in endplates
and cage were the average stress in the elements. As illu-
strated in Fig. 5, the TLIF-PMMA decreased the maximum
values of the L4 inferior and L5 superior endplates compared
with TLIF-OST and TLIF models. For example, the max-
imum values of the L4 inferior and L5 superior endplates
were 0.342 MPa, 0.302 MPa for TLIF-PMMA, 0.359 MPa,

0.325 MPa for TLIF, and 0.369 MPa, 0.332 MPa for TLIF-
OST, respectively. It was found, in Fig. 6a, b, that TLIF-
PMMA generated the greatest cage stress among the TLIF,
TLIF-OST, and TLIF-PMMA models. The maximum cage
stresses of TLIF-PMMA, TLIF-OST, and TLIF models were
2.21 MPa, 1.61 MPa and 1.83 MPa, respectively.

The von Mises stress distribution of the bilateral pedicle
screw in TLIF-PMMA, TLIF-OST and TLIF models (Fig.
6¢) indicated that TLIF-PMMA reduced the high stress
concentration intensity compared with other models, and
the high stress concentration regions were mainly at the rod
and the neck of pedicle screw. It was found (Fig. 6d,e) that
the maximum stresses in the pedicle screw or the rod of
TLIF-PMMA were smaller than those of TLIF-OST and
TLIF models. The maximum values (vibration amplitudes)
of the maximum stress in the pedicle screw were 42.26
(12.28)MPa for TLIF-PMMA, 62.59(18.40) MPa for TLIF,
and 89.90(25.40) MPa for TLIF-OST.

3.3 Effect of cement augmentation on disc height,
segmental lordosis and compressive stress at
the fused level

The disc height, segmental lordosis and compressive stress at

the interfaces between the cage and endplates were closely
related to complications and outcomes. A disc height

@ Springer
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measurement method reported by Drain et al. was adopted in
this study [47]. The segmental lordosis was measured only at
the fused level (L4-L5). The compressive stress was assumed
to be the average stress of elements. As illustrated in Fig. 7
the disc height and segmental lordosis of TLIF-PMMA were
greater than those of TLIF-OST and TLIF models during the
entire simulation process. The maximum disc height (vibra-
tion amplitude) of TLIF-PMMA, TLIF and TLIF-OST
models were 0.316(0.001) mm, 0.313(0.002) mm, and
0.310(0.002)mm, respectively. The dynamic responses (the
maximum values and vibration amplitudes) in segmental
lordosis were 14.14°(0.035) for TLIF-PMMA, 14.05°(0.069)
for TLIF, 13.88°(0.104) for TLIF-OST. As illustrated in Fig.
8, TLIF-PMMA model generated greater compressive stres-
ses in the L4 inferior and LS superior endplates compared
with TLIF-OST and TLIF models. The maximum compres-
sive stresses (vibration amplitude) in the L4 inferior and
L5 superior endplates were 0.481(0.119) MPa and 0.457
(0.113) MPa for TLIF-PMMA, 0.417(0.110) MPa and 0.388
(0.102) MPa for TLIF-OST, 0.379(0.100) MPa and 0.348
(0.093) MPa for TLIF.

4 Discussion

Cement augmentation in treating the osteoporotic vertebral
bone in fused segments under static load has been widely

investigated, but a few studies dealt with WBV. Therefore,
this study evaluated the effects of cement augmentation on
the vibration characteristics of osteoporotic vertebral bone
in fused segments, including the influence on adjacent
segments and fused segment, to investigate the relationship
between cement augmentation, fusion outcomes and com-
plications under WBV. In this study, an intact L1-L5 lum-
bar spine model was developed to simulate TLIF-PMMA,
TLIF-OST, and TLIF models with bilateral pedicle screw
fixation at L4-L5 level. For the TLIF-PMMA model, all the
cancellous bone of L4/5 vertebrae was replaced by PMMA.
The Young’s Modulus and density of L4 and L5 vertebral
bodies were reduced in the TLIF-OST model. Most patients
undergoing lumbar fusion surgery were elderly with
osteoporosis. The vibration load of this study was a 40N,
5 Hz vertical sinusoidal vibration load, similar to other
studies [25, 48, 49].

For the adjacent segments, there was no difference
among the TLIF-PMMA, TLIF-OST, and TLIF models in
the dynamic responses of IDP and stress in AGS. Further-
more, the TLIF-PMMA decreased the maximum values and
vibration amplitudes of L2/3 and L3/4 disc bulge compared
with the TLIF-OST and TLIF models. The findings imply
that PMMA cement augmentation may give no increase of
incidence of adjacent segment diseases, and it may leave the
adjacent segments in a more stable condition and decrease
the risk of ASD. A clinical study by Kim et al. reported the
same trend that PMMA augmentation did not increase the
nonunion rate and incidence of ASD [50].

For the fused segment (L4-L5 level), the stresses in the
cage, pedicle screw, and endplates are related to cage fail-
ure, fixation failure and subsidence. The TLIF-PMMA
decreased the maximum values of stress in L4/5 endplates
compared with TLIF-OST and TLIF models. Based on this
result, we believe that PMMA cement augmentation may
decrease the risk of cage subsidence under WBV. A similar
conclusion reported by Park et al. and Kim et al. that
PMMA cement augmentation in vertebral bodies could
resist cage subsistence [51].

In this study, the TLIF-PMMA model generated the
maximum value and vibration amplitude of stress in the
cage than TLIF-OST and TLIF models. This result was
consistent with the research by Polikeit et al. who reported
that the greater Young’s Modulus of cancellous bone, the
more the stress was concentrated underneath the cage, while
the remaining regions were unloaded [52]. In this study, the
results showed high stress concentration regions were at the
rod and neck of pedicle screw, and TLIF-PMMA could
decrease the high stress intensity compared with TLIF-OST
and TLIF models. Some researchers predicted the same
trend about the stress concentration region in rods and
pedicle screws [53, 54]. The TLIF-PMMA model decreased
the maximum values (vibration amplitudes) of stress in the
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fixator compared with other models. The mechanical ana-
lysis of the cage and fixator was as follows. After instru-
mentation, the load was shared by the cage, vertebral body
and bilateral pedicle screw fixator, as shown in Fig. 9. Due
to osteoporosis decreasing the strength of vertebrae, the
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load shared by the fixator was increased in the fused lumbar
spine with osteoporosis. When the load was on the top of
L4, there was the height difference (Ah,) between the disc
height of L4-L5 in TLIF-PMMA model and TLIF-OST
model, as shown in Fig. 9. The motion center (yellow point)
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was the region where the rod (fixator) was more prone to
failure in TLIF-OST model. PMMA cement augmentation
restores the strength of the fused vertebrae. The load shared
by the cage was increased in the TLIF-PMMA model.
Therefore, the cage stress of TLIF-PMMA model was
greater than that of TLIF-OST model. Based on above
results, we infer that PMMA cement augmentation might
provide a stiffer pedicle screw/rod construct and decrease
the risk of rod failure (fixator failure), but increase the risk
of cage failure under WBV.

Many studies have shown that loss of lordosis and disc
height may lead to some complications such as poor fusion
outcomes, ASD, disc degeneration, etc [55-57], the com-
pressive stress of the interface between cage and endplates
might inhibit the growth of vertebral cells and result in poor
outcomes [58]. After cement augmentation, the TLIF-

PMMA model restored the disc height and segmental lor-
dosis of the fused segment (L4-L5 level) compared with
TLIF-OST model. The vibration amplitudes of the disc
height and segmental lordosis in TLIF-PMMA model were
the smallest among TLIF-OST, TLIF and TLIF-PMMA.
These imply that cement augmentation might restore the
disc height and segmental lordosis and decrease the risk of
adjacent segment and poor outcomes under WBV. Mo et al.
[18] came to the similar conclusion that the cement aug-
mented technique was effective and safe in the osteoporotic
spine with lumbar degenerative diseases, with better fusion
and less screw failure incidence. The TLIF-PMMA model
exhibited larger compressive stress (vibration amplitude) of
the interfaces between the endplates and cage than TLIF-
OST and TLIF models during the entire vibration process.
The stress-growth curve of vertebral cells indicated that the
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greater compressive stress, the more inhibition of the ver-
tebral cell growth [59]. A lot of studies demonstrated that
cement augmentation was capable to improve the stability
of instrumentation and achieve satisfactory fusion with a
rate from 92.5 to 100% in poor spinal bone [60—63]. All in
all, the fusion outcomes were affected by a lot of factors
such as the stability of instrumentation (stable environment)
and a suitable growth environment for vertebral cells. The
poor stability of instrumentation might directly lead to poor
fusion outcomes, but the unsuitable growth environment
(compressive stress) only increased the period of lumbar
fusion. Many researches have demonstrated that cement
augmentation might increase the stability of instrumenta-
tion, including this study. Therefore, this finding suggests
that cement augmentation may prolong the period of lumbar
fusion under WBV.

There are a few potential limitations inherent in this
study. The material properties, including viscoelastic char-
acteristics of intervertebral disc, non-linear behavior of
spinal ligaments, degenerative changes caused by osteo-
phytes, and the possible time-varying changes in disc
properties were neglected, and the replacing the whole
vertebral cancellous bone with PMMA in the model was an
over-approximation, as only part of it was replaced with
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cement during vertebroplasty/kyphoplasty in the real clin-
ical setting. In addition, a 400 N follower preload applied to
the model could not entirely replace the complex con-
tribution of muscles to the spine. However, in fact, these
simplifications did not make a large influence on the results
of this study.

5 Conclusions

In this study, we investigated the effects of cement aug-
mentation on the vibration characteristics of osteoporotic
fusion lumbar spine to analyze the relationship between
cement augmentation, fusion outcomes and complications
under WBV. The results showed that PMMA cement aug-
mentation might leave the adjacent segments in a more
stable condition, and it might provide a stiffer pedicle
screw/rod construct and decrease the risk of ASD, sub-
sidence and rod/screw failure (fixator failure). Cement
augmentation may restore the disc height and segmental
lordosis and decrease the risk of poor outcomes under
WBYV, but it may increase the risk of cage failure and
prolong the period of lumbar fusion. The findings may help
us understand the effect of cement augmentation on the



Journal of Materials Science: Materials in Medicine (2022) 33:52

Page 11 of 13 52

Load

Posterior Anterior

Cyclic load
I ( ) \ 7 Load l Load l
L Moment arm ( Moment arm J ) l Moment arm J )
( 1 |
e | | |
L4 L4 | | _l L4 |
_____ __:_::_“I]'i‘: —_— C:___,__.._—/_“ 'j
( Motion center —:"’:: ______ I Ah1 ,::::::::: ______________ —‘l—; Ah2
B [ Ter \ - [Motion ceTzr )
('4 <)
Pedicle|screw Pedicle|screw o Pedicle|screw
L5 L5 \ L5
TLIF-PMMA TLIF ) TLIF-OST )

Fig. 9 The schematic diagrams to illustrate the load-transferring mechanism of the TLIF-PMMA, TLIF, and TLIF-OST models at the fused (L4-

L5) level

vibration characteristics of osteoporotic lumbar spine with
cement augmentation.
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