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Abstract
Mesoporous silica (MS) particles have been explored for various healthcare applications, but universal data about their safety
and/or toxicity are yet to be well-established for clinical purposes. Information about general toxicity of hollow MS (HMS)
particles and about immunotoxicity of MS particles are significantly lacked. Therefore, acute toxicity and immunotoxicity of
HMS particles were experimentally evaluated. A systematic and objective literature study was parallelly performed to
analyze the published in vivo toxicity of MS particles. Lethal acute toxicity of MS particles is likely to arise from their
physical action after intravenous and intraperitoneal administrations, and only rarely observed after subcutaneous
administration. No clear relationship was identified between physicochemical properties of MS particles and lethality as well
as maximum tolerated dose with some exceptions. At sub-lethal doses, MS particles tend to accumulate mainly in lung, liver,
and spleen. The HMS particles showed lower inflammation-inducing ability than polyinosinic-polycytidylic acid and almost
the same allergy-inducing ability as Alum. Finally, the universal lowest observed adverse effect levels were determined as
0.45, 0.81, and 4.1 mg/kg (human equivalent dose) for intravenous, intraperitoneal, and subcutaneous administration of MS
particles, respectively. These results could be helpful for determining an appropriate MS particle dose in clinical study.

Graphical Abstract

1 Introduction

Universal data about the safety and/or toxicity of meso-
porous silica (MS) particles are yet to be well-established
in vivo. Especially, there is significant lack of information
about general toxicity of hollow MS (HMS) particles, and
about immunotoxicity of MS particles including HMS
particles. MS particles efficiently retain drugs and biomo-
lecules owing to their high surface areas, and controlled
internal structure, pore size, pore structure, and surface
functionality [1]. Thus, MS particles have been explored for
various healthcare applications including drug delivery
[2, 3], immunotherapy [4–6], tissue engineering [7], gene
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transfection [8], cell tracking [9], and food additive [10].
Before clinical applications, the toxicity level of MS parti-
cles needs to be established in order to ensure patient safety.
However, only limited information about the toxicity of MS
particles is available; even today, only limited information
about the in vivo toxicity of MS particles is available from
the viewpoint of clinical applications via i.p., i.v., and s.c.
routes. Murugadoss et al. [11] and Napierska et al. [12], for
examples, reviewed the toxicity of different types of silica
nanoparticles with or without mesopores in various sizes.
These research groups seemed to pay no attention to the
presence/absence of mesopores on the silica nanoparticles
in their reviews: they referred 13 papers in total for the cases
of i.p.-, i.v.-, and s.c.-administration of silica nanoparticles,
but in vivo toxicity of MS particles were discussed in only
three papers among them. In that situation, it is unable to
find the structure, size, or synthesis methods dependent
toxicity of MS from their reviews. Thus, to the best of our
knowledge, the in vivo toxicities of MS and HMS particles
have not been comprehensively well-summarized yet.

On the other hand, host immunity plays crucial roles in
anti-cancer therapies such as chemotherapy, radiotherapy, and
immunotherapy in which MS particles attract interests. In
chemotherapy, MS particles have been used as the carrier of
chemotherapeutic drugs including doxorubicin, paclitaxel,
and curcumin [13–15]. The drug-loaded MS particles
demonstrated advantages of drug uptake in tumor cells
in vitro and of anti-tumor effects in vivo as compared with the
drugs alone. Meanwhile, curative efficacy of chemotherapy is
linked to durable tumor-targeting immune responses [16, 17].
For example, a combination of the epifocal 2,4-dinitro-
chlorobenzene application with the systemic dacarbazine
administration showed therapeutic effects on treatment of
subcutaneous tumor in healthy C57BL/6 mice, but ineffective
in immunodeficient RAG-1−/− mice [18]. Systemic che-
motherapy with doxorubicin and subcutaneous administration
of B7-immunoglobulin G leads to cure of lymphoma in
healthy C57BL/6 mice, but not to show any therapeutic
effects in immunodeficient C57BL/6 severe combined
immunodeficient mice [19]. On the contrary, adequate che-
motherapy and radiotherapy can enhance the anti-tumor
immune response through induction of immunogenic cell
death [20]. In chemotherapy and immunotherapy, a series of
MS particles with different size, pore size, hollow structure,
etc., enhanced anti-tumor immune responses [4–6, 21–27].
The results show that MS and HMS particles are promising
immunoadjuvants for cancer therapy owing to superior depot
and immune-activating effects [26, 27]. About 20–30% of
adsorbed tumor antigens were slowly released from the HMS
particles over 1 week in vitro, indicating the HMS is a good
carrier for cancer antigens [26]. Furthermore, administration
of HMS particles loaded with tumor antigen prevented tumor
growth in mice compared with administration of tumor

antigens alone, or a mixture of tumor antigens and Alum that
is a conventional immunoadjuvant [26].

As one of immunopotentiators, immunotoxicity of MS
particles needs to be clarified in more detail. Immunopo-
tentiators and immunoadjuvants, such as polyinosinic-
polycytidylic acid (Poly(i:c)) [28], Freund’s adjuvant [29]
and Alum [30] cause serious off-target effects. Poly(i:c) can
induce arthralgia, fever, erythema, and sometimes life-
threatening endotoxin-like shock [31]. Freund’s adjuvant
can induce granulomas in the administration site, liver, and
kidney [32]. Alum has allergy inducibility [33]. Thus,
higher immune-activating potential and fewer off-target
effects is an important focus when MS particles are applied
to immune-linked therapies such as chemotherapy and
radiotherapy of cancer, as well as immunoadjuvants for
vaccines for cancer and infectious disease.

This study had three aims. The first aim was to perform
experimental study to evaluate acute toxicity and immu-
notoxicity of HMS particles in mice in terms of the lowest
lethal dose (LDLo), the maximum tolerated dose (MTD),
the body weight change, cytokine, and IgE inducibility. The
second aim was to analyze the published in vivo toxicity of
MS particles through a systematic and objective literature
study. The third aim was to acquire current whole aspects of
toxicity of MS particles by the combination of the experi-
mental and literature studies.

2 Materials and methods

2.1 Synthesis of HMS particles

HMS particles were synthesized by hydrolysis of tetraethyl
orthosilicate in an ethanol aqueous solution containing
hexadecyltrimethylammonium bromide and ammonia fol-
lowed by structure transformation in hot ultrapure water,
according to a previously published protocol [26]. The
HMS particles have a size of 200 nm in diameter, a
Brunauer–Emmett–Teller surface area of 1154 m2/g, a shell
thickness of 30–40 nm, and mesopores of 3–6 nm [26].

2.2 Preparation of HMS particle suspension for
administration in mice

After dry sterilization at 180 °C, the HMS particles were
aseptically suspended in physiological saline by ultrasonica-
tion using an UT-105S (SHARP, Osaka, Japan) for over 4 h.

2.3 Single-dose toxicity testing as part of the safety
evaluation of HMS particles

Male albino B6 mice were obtained from Charles River
Laboratories Japan, Inc. (Tokyo, Japan). The mice were
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randomly grouped into s.c., i.p., and i.v. groups (n= 5–10),
and administered with 250–2000, 23–260, or 1–71 mg/kg of
HMS particles, respectively, as a single-dose. After the
administration, the mice were monitored every day
throughout the toxicological study. The body weights of the
mice were measured on predetermined dates and compared
with the body weights of those before administration to
detect unintentional significant weight loss. The MTD was
defined referring to previous papers [34, 35], as the max-
imum dose causing neither death nor serious adverse reac-
tions (e.g., irregular breathing, over 10% weight loss and
sluggish movement) in mice over 14 days post-
administration.

2.4 Cytokine and IgE inducibility of HMS particles
in vivo

Cytokine and IgE inducibility of HMS particles were tested
as part of the immunotoxicity evaluation. Cytokine levels in
plasma were measured after HMS administration according
to the previous report [31]. Briefly, 36 mg/kg of HMS,
36 mg/kg of Alum (LSL (Cosmo Bio), Tokyo, Japan), or
1.8 mg/kg of Poly(i:c) (FUJIFILM Wako Pure Chemical
Corporation, Osaka, Japan) were s.c. or i.p administered to
mice (n= 5). Blood was collected from the submandibular
vein 1, 3, and 6 h after the administration. The plasma TNF,
IL-6, and IL-10 levels were measured using the Cytometric
Bead Array (Becton, Dickinson and Company, NJ, USA),
according to the manufacturer’s protocol.

IgE titers in serum were measured according to the
previous report [33]. Briefly, 36 mg/kg of HMS, 36 mg/kg
of Alum, or 1.8 mg/kg of Poly(i:c) and endotoxin-free
ovalbumin (OVA; FUJIFILM Wako Pure Chemical Cor-
poration) were s.c. administered to mice at days 0, 14, and
21 for sensitization of mice with OVA (n= 5). The blood
was collected from the submandibular vein at day 28. Total
and OVA-specific IgE in plasma were measured using an
ELISA kit (FUJIFILM Wako Shibayagi, Gunma, Japan),
according to the manufacturer’s protocol.

2.5 Literature study

The literature search was conducted on the PubMed® data-
base at the timepoint of June 18, 2020 (Fig. 1). The fol-
lowing keywords were applied to “All Fields” in
combination: “silica nanoparticles” OR “silica particles”
OR “silica NPs” AND “mesoporous” NOT “review” in the
first-step screening. The retrieved literatures were screened
for the following keywords applied to “All Fields”: “toxi-
city” OR “inflammation” OR “distribution” OR “biodis-
tribution” OR “compatibility” OR “biocompatibility” in the
second-step screening. Then the literatures were further
screened for the following keywords applied to “All

Fields”: “intraperitoneal” OR “i.p.” OR “intraperitoneally”
OR “intravenous” OR “i.v.” OR “intravenously” OR
“subcutaneous” OR “s.c.” OR “subcutaneously” OR
“injection” in the third-step screening. Duplication of lit-
eratures was eliminated.

Then, literatures that satisfied all the following inclu-
sion criteria were subjected to in-depth study: (1) MS
being monolithic particles consisting of either pure silica,
pure hydrated silica, or those plus labeling agents for
pharmacokinetic evaluation, (2) MS examined in vivo in
healthy or tumor-bearing animal model, (3) MS admini-
strated by injection via i.p., i.v., and/or s.c. routes, (4) MS
dose and follow-up period being disclosed, (5) adminis-
tration schedule being disclosed in the case of repeated
administration, and (6) diameter or length of MS particles
being disclosed as their particle size. Note that the cri-
terion (1) excludes literatures only on non-pure silica
materials including metal-doped MS, mesoporous silicate,
organic-modified MS, metal oxide coated with MS, and
MS loaded with medicinal products or molecules. The
doses of MS particles were converted to human equivalent
doses (HED) in mg/kg [36].

2.6 Statistical analysis

Numerical data for the experimental study were expressed
in mean ± standard deviation. Student’s t test was used to
analyze the statistical significance of differences. To detect
unintentional significant weight loss, individual mice body
weight data before and after administration of HMS parti-
cles were paired and analyzed. p < 0.05 was considered to
indicate statistical significance.

3 Results

3.1 Acute toxicity of s.c. administration of HMS
particles

To evaluate the toxicity of s.c.-administered HMS particles,
250, 500, 1000, or 2000 mg/kg of HMS were administered
by s.c. injection into mice. No significant body weight loss
was observed in all groups (Fig. 2A). Neither death nor
unusual behavior was observed in any groups (Fig. 2B, C).
Nodule formation was observed at the administration site in
the groups administered with high doses (1000 and
2000 mg/kg) of HMS particles (Fig. 2D). Daily activities of
the mice were not limited with the nodules. These nodules
became smaller with time and disappeared in ~2 months
after administration (data not shown). Thus, the LDLo and
MTD were estimated to be higher than 2000 mg/kg
(163 mg/kg HED) for s.c. administration of the HMS
particles.
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3.2 Acute toxicity of i.p. administration of HMS
particles

To evaluate the toxicity of i.p.-administered HMS particles,
23, 50, 100, 200, or 260 mg/kg of HMS particles were
administered by i.p. injection into mice. The body weight
significantly decreased by day 1 in the 100 mg/kg or higher
administration groups (Fig. 3A). Part of mice died 3 days
after administration at HMS doses of 100 mg/kg or higher
(Fig. 3B). Constipation, anal redness, and hypoactivity were
observed in all the administration groups except 23 mg/kg
administration group (Fig. 3C). Necropsy of the dead mice
revealed that HMS particles were aggregated on the outside
of the intestine in the 200 and 260 mg/kg administration
groups (Fig. 3D). The LDLo and MTD were estimated to be
100 mg/kg (8.1 mg/kg HED) and 50 mg/kg (4.1 mg/kg
HED), respectively, for i.p. administration of HMS
particles.

3.3 Acute toxicity of i.v. administration of HMS
particles

To evaluate the toxicity of i.v.-administered HMS particles,
1, 5, 11, 24, 40, or 71 mg/kg of HMS particles were
administered by i.v. injection into mice. The body weight
was significantly decreased in the 71 mg/kg administration
group 1 day after injection (Fig. 4A). Half of mice died
within 20 min after administration in the 71 mg/kg admin-
istration group while no mice died in other administration
groups with doses of 40 mg/kg or less (Fig. 4B). Hypoac-
tivity was observed immediately after administration of
HMS particles at a dose of 24 mg/kg or more (Fig. 4C). The
survived mice recovered from hypoactivity within 1 day
after the HMS particles administration. Necropsy was per-
formed for all the dead mice; no gross aberrations, such as
bleeding in organs or aggregation of HMS particles, were
observed. Thus, the LDLo and MTD were estimated to be
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71 mg/kg (5.8 mg/kg HED) and 11 mg/kg (0.89 mg/kg
HED), respectively, for i.v. administration of HMS
particles.

3.4 Cytokine inducibility of HMS particles

The cytokine inducibility of HMS particles was compared
with those of two well-known adjuvants, Alum and Poly(i:
c). HMS particles and Alum unchanged cytokine levels
after i.p. and s.c. administration (Fig. 5A, B). The HMS
particle administration group showed significantly lower IL-
6 levels than the Poly(i:c) administration group at 1 h after i.
p. administration (Fig. 5A). The Poly(i:c) administration
group also showed higher TNF and IL-6 levels than the
HMS particle administration group after s.c. administration
(Fig. 5B). These results showed that HMS particles was less
toxic in vivo than Poly(i:c) and as toxic as Alum from the
viewpoint of cytokine induction.

3.5 IgE inducibility of HMS particles

Total and OVA-specific IgE levels were analyzed for
mice sensitized with OVA in the presence or absence of
HMS particles, Alum or Poly(i:c). Total IgE level in
serum increased only when OVA was administered

regardless of being administered with HMS particles,
Alum or Poly(i:c) via s.c. or not. (Fig. 6A). These adju-
vants alone unchanged total IgE levels (Fig. 6A).
Administration of HMS particles or Alum in combination
with OVA (HMS+ OVA and Alum+ OVA) via s.c.
significantly increased the OVA-specific IgE level in
serum compared with administration of OVA alone (Fig.
6B). The OVA-specific IgE levels were comparable
between the HMS+ OVA and Alum+ OVA groups.
These results showed that the toxicity level of HMS
particles was the same as that of Alum from the viewpoint
of total or antigen-specific IgE induction.

3.6 Literature study of MS particles on in vivo
toxicity

Thirty-four papers that reported in vivo responses to MS
particles were retrieved after the keyword-based and
content-based screening (Table S1). Ten of 34 papers adopt
tumor-bearing animal models. Twenty-three, 12, and 4
papers report i.v., i.p., and s.c. administration studies,
respectively. The earliest and latest dates of publication
were October 2008 and May 2020, respectively. The dia-
meters or long axes of MS particles ranged from ~50 to
50,000 nm.
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Fig. 2 Observation results of the
mice after subcutaneous
administration with hollow
mesoporous silica (HMS)
particles. A Body weight
changes. *p < 0.05 Student’s t
test (vs. BA). B Overall survival.
The survival curves for all the
groups were overlaid because no
mice were dead in these groups,
and because the rates of overall
survival maintained 100%
throughout the single-dose
toxicity test. C Summary of
gross observation. D Photograph
of hollow mesoporous silica
nodule (arrow) 14 days after
administration of 2000 mg/kg
HMS particles. BA before
administration of HMS particles
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3.6.1 Lethality (LDLo)

Fifteen papers reported the lethality of MS particles. One of 15
papers employed a tumor-bearing and immunodeficient animal
model. As shown in Fig. 7 and Table S1, the ranges of the
reported LDLo for a single administration of MS particles
were 4.1–81mg/kg HED in i.v. administration, 16–65mg/kg
HED in i.p. administration, and 146mg/kg HED in s.c.
administration. No animal death was reported in repeated
administration of 3.3–32mg/kg HED of MS in i.v.,
3.3–6.5mg/kg HED of MS in i.p., and 0.49mg/kg HED of
MS in s.c. administrations (Fig. 7). Although the MS particles
are tunable in size, shape (sphere or rod), internal structure
(dense or hollow), the presence and absence of labeling agents,
and process parameter (calcined or refluxed when surfactant
was eliminated), no clear impacts of these factors were iden-
tified on lethality for both single and repeated administration
except for the internal structure (Figs. 7 and S1–5S). LDLo of
HMS particles (65–81mg/kg HED) tended to be higher than
that of dense MS particles (4.1–20mg/kg HED) in i.v.

administration (Fig. S4). Remarkably, the LDLo value of the
i.v.-administered HMS particles was determined at 5.8 mg/kg
HED in the present study (see “Cytokine inducibility of HMS
particles”), and the value was comparable to the lower limit of
the LDLo for the i.v.-administered MS particles obtained in
the literature study.

3.6.2 MTD

Three papers reported MTDs of five types of MS particles
in i.v. administration with one of three papers employing a
tumor-bearing and immunodeficient animal model. MTDs
for 500 nm MS particles were 7.7 and 3.3 mg/kg HED for
female and male mice, respectively [34]. MTDs for 120,
190, and 1028 nm MS particles were 2.4, 2.4, and 5.3 mg/
kg HED, respectively [35]. MTD for ~120 nm MS particles
was 4.1 mg/kg HED [37]. One paper reported that MTD for
35 nm MS particles in i.p. administration was 3.3 mg/kg
HED [38]. MTD increased by a 1.5–5-fold by modifying
MS particles with primary amine groups [35].
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23 and 50 mg/kg administration groups were overlaid because no mice
were dead in both, and because the rates of overall survival maintained

100% throughout the single-dose toxicity test. C Summary of gross
observation. D Photograph of hollow mesoporous silica aggregates
(arrow) and constipation (dashed arrow) 3 days after administration of
260 mg/kg HMS particles. BA before administration of HMS particles
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3.6.3 Body weight

Fourteen papers reported body weights of animals after i.v.
or i.p. administration of MS particles, among which 12
papers disclosed the concrete numerical data of body
weights. Three of 14 papers employed tumor-bearing ani-
mal models [37, 39, 40]. Decreases in body weight within
3 days were reported in response to i.v. or i.p. single
administration of 3.3–104 mg/kg HED or ≥12 mg/kg HED,
respectively [34, 41, 42]. The i.v. single administration at
104 mg/kg HED was associated with suppressed weight-
gain after 4 days [42]. Nine papers, including three tumor-
bearing animal models, reported that the body weight gra-
dually increased after single or repeated administration of
MS particles dosed with 0.45–8.1 mg/kg HED [35, 37–
40, 43–46] in i.v. or i.p. administration.

3.6.4 Biodistribution

Seventeen papers reported distribution of MS particles
after i.v., i.p., and s.c. administration. Although five of 17

employed tumor-bearing animal models [40, 47–50], no
clear differences in distribution were identified between
the healthy and tumor-bearing animal models. MS parti-
cles were distributed in almost all organs after i.v.
administration. MS particles were accumulated mostly in
liver and spleen, fairly in lung, and slightly in other
organs [34, 40, 42, 44, 48–56]. In liver, spleen and lung,
the MS particles were accumulated within 5–30 min after
i.v. administration [57, 58]. The accumulated MS parti-
cles remained longer in liver and spleen with a half-life of
~1 month [34, 40, 41, 57] while shorter in lung with a
half-life of ~1–7 days [37, 57–59]. Distribution of MS
particles after i.p. administration is reported in tumor-
bearing animal models [13, 47]. The studies reported that
MS particles were accumulated in liver, spleen, stomach,
and intestine in 24 h after i.p. administration. These
organs retained MS particles at least 1 week after
administration [47]. S.c. administration of MS particles
led to a slight increase in Si level in spleen 24 h after the
administration, suggesting distribution of MS particles in
spleen [52].
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these groups, and because the rates of overall survival maintained
100% throughout the single-dose toxicity test. C Summary of gross
observation. BA before administration of HMS particles
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MS particles were excreted with the urine and feces
[37, 44, 52, 57–59]. Interestingly, MS particles with the
same appearance as those before administration were found
in urine and feces at day 1 after administration [52, 59]. The
results demonstrate that MS particles are excreted even
without complete degradation for at least 1 day from
administration.

3.6.5 Histology

Nineteen papers reported histological changes after admin-
istration of MS particles. After i.v. administration of
3.3–43 mg/kg HED of MS particles, histological aberrations
were observed in liver [34, 35, 42], kidney [34, 35], lung
[34, 35, 60], heart [34, 35], spleen [34, 60], and eye [34].
These papers showed that the typical aberrations caused by
i.v. administration were embolism and inflammation-related
damages, such as infarction and fibrosis. Notably,
Mohammadpour et al. reported that histological aberrations
in liver, lung, and spleen were apparently observed at day
10 after i.v. administration of ~3.3–7.7 mg/kg HED of MS
particles 500 nm in diameter [34]. Increase in dose of MS
particles in i.v. administration (~33–43 mg/kg HED)
induced infarction-related abnormal lesions in lung, kidney,
eye, and heart [34]. No aberrations were observed after i.v.
administration of 0.45–4.1 mg/kg HED of MS particles
[37, 39, 40, 44, 52, 57, 59, 61, 62].

After i.p. administration of 2.0–98 mg/kg HED of MS
particles, histological aberrations were observed in liver
[45, 46, 63], kidney [41], lung [60, 64], heart [64], and
spleen [45]. These papers showed that the typical aberra-
tions caused by i.p. administration were inflammation-
related damages, such as fibrosis and increase in number of
Kupffer cells in liver. However, in immunodeficient mice,
no aberrations were observed in lung, kidney, liver, and
intestine after i.p. administration of 4.1 mg/kg HED of MS
particles [37].

After s.c. administration of 16 mg/kg HED of MS par-
ticles, red pulp expansion by foamy macrophages was
observed in spleen [60]. After s.c. administration of 4.1 mg/
kg HED of MS particles (110 nm in diameter), inflamma-
tion was observed at the administration site, while no
aberrations were observed in spleen, lung, and liver [52].
After s.c. administration of 0.49 mg/kg HED of MS parti-
cles, no aberrations were observed [61].

3.6.6 Biochemical analysis

Thirteen papers reported biochemical analysis after i.v. or i.
p. administration of MS particles. One of 13 papers
employed a tumor-bearing and immunodeficient animal
model [37]. Liver damage markers (ALT, AST, and ALP)
after administration of MS particles are reported somewhat
controversially. Five papers showed increases in the liver
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damage markers caused by i.p. administration of
0.81–49 mg/kg HED of MS particles, and by i.v. adminis-
tration of 1.6–104 mg/kg HED of MS particles
[37, 41, 42, 46, 65]. It should be noted that the lowest HED
value of 0.81 mg/kg was recorded for extremely large MS
particles (>50 µm) compared with other MS particles
(110–198 nm). When this lowest value was excluded, i.p.
administration of 4.1–49 mg/kg HED led to the increases in
the liver damage markers. Dense and calcined MS tended to
increase AST level in i.p. administration compared with
refluxed MS [41, 65]. On the contrary, seven papers
reported that no significant change was observed in the liver
damage markers with doses ranging from 1.3 to 17 mg/kg
HED after i.p. or i.v administration [34, 35, 43–45, 59, 66].

Kidney damage markers after administration of MS particles
are also reported controversially. Two papers found increases
in kidney damage marker (BUN) caused by i.p. administration
of 24–49mg/kg HED of MS particles, and by i.v. adminis-
tration of 1.6mg/kg HED of MS particles [41, 59]. However,

eight papers reported that the kidney damage markers remained
unchanged (2.0–104mg/kg HED) [34, 35, 37, 42–46].

Thus, i.v or i.p. administration of MS particles may cause
liver and kidney damages. The conjecture is consistent with
the papers on biodistribution and histology after adminis-
tration of MS particles. One paper evaluated cardiotoxicity,
reporting increases in lactate dehydrogenase, total choles-
terol and triglycerides after repeated i.p. administration of
MS particles for 4 weeks (>4.0 mg/kg HED) [64].

3.6.7 Complete blood count

Eight papers reported changes in complete blood counts
caused by MS particle administration. One of eight papers
employed a tumor-bearing and immunodeficient animal model
[37]. These papers reported contradictory results, being diffi-
cult to summarize them reasonably. For example, counts of
white blood cells (or some of their main types like neutrophils,
monocytes) increased in four papers [37, 42, 44, 64], while
decreased in two papers [34, 59] after i.v. administration of
MS particles. For another example, counts of platelets
increased in two papers [34, 44] while decreased in one paper
[64]. Two papers reported that blood counts remained
unchanged after i.v. administration of MS particles [35, 43].

3.6.8 Cytokine inducibility

Collectively, MS particles are prone to activate inflammation
pathway. Three papers reported increases in levels of inflam-
matory cytokines such as TNFα and IL-1β in serum 3–24 h
after i.v. administration (0.45mg/kg HED), and 4–8 week after
i.p. administration (>2.0–4.0 mg/kg HED) of MS particles
[40, 46, 64]. The increase after i.v. administration was that in
tumor-bearing and immunodeficient mice.

Regarding cytokine levels in organs, one paper reported
time-course changes in expression level of inflammatory
and anti-inflammatory cytokines in liver, spleen, and lung
after i.v. administration (3.3–7.7 mg/kg HED) of MS par-
ticles [34]. No increases were reported in TNFα and IL-6
levels in spleen 30 h after i.v. administration (1.3–1.7 mg/kg
HED), and in IFN-γ level in splenocytes after s.c. admin-
istration (0.20 mg/kg HED) of MS particles [61, 66].

3.6.9 Antibody inducibility

One paper reported increases in IgG and IgM levels in
serum after i.p. administration of MS particles (~98 nm;
20–50 mg/kg HED) [45].

3.6.10 Oxidative stress induction

Two papers reported oxidative stress induction after i.p.
administration of MS particles. In heart and lung, reactive
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oxygen species and malondialdehyde were increased, while
glutathione, catalase, superoxide dismutase, and glutathione
peroxidase were decreased after repeated i.p. administration
of MS particles (~50 nm; >4.0 mg/kg HED) [64]. In liver, 8-
hydroxy-guanosine increased after repeated i.p. adminis-
tration of MS particles (~50 nm; >2.0 mg/kg HED) [46].

3.6.11 Summary of MS dose that can induce adverse effects

MS dose ranges that can induce adverse effects were
summarized for every routes of administration in Table 1.
The MTD for i.v. administration and the LDLo for i.p.
administration of the HMS particles in this experimental
study were lower than those of MS particles reported in 34
papers. The literature study disclosed a fatal case of mice
dosed 146 mg/kg HED MS particles via s.c. route although
no mice were dead in our experiment even at 163 mg/kg
HED HMS particles by s.c. administration. Taking the
experimental and literature studies into account (Table 1),
universal lowest observed adverse effect levels (uLOAEL)
were found to be defined as the levels above which some
adverse event occurs. The uLOAEL were estimated as 0.45,
0.81, and 4.1 mg/kg HED for i.v., i.p., and s.c. adminis-
tration of MS particles, respectively.

4 Discussion

Universal information about the safety and/or toxicity of
MS particles was successfully obtained in this study. MS
particles have been studied for various healthcare applica-
tions including drug carriers, cancer cell tracking tools, and
immunoadjuvants for vaccines. Depending on the clinical
applications, MS particles are assumed to be administered
in the i.v., i.p., or s.c. route. The corresponding adminis-
tration routes are, for example, i.v. for general drug carriers,
i.p. for chemotherapy carriers for specific cancer like
ovarian cancer, and s.c. for immunoadjuvants for vaccines.
In general, safety and/or toxicity of a material depends on
the administration routes. Previously, different MS particles
were subjected to the safety and/or toxicity study in dif-
ferent administration routes depending on intended clinical
purposes. Thus, the safety and/or toxicity data were
applicable only to the specific MS particles in the specific
administration route. To the best of our knowledge, there
was no paper to show the universally available maximum
safety dose of MS particles for i.v., i.p., and s.c. adminis-
trations. The present uLOAEL for the MS particles are the
universal information determined by collecting dose data
causing any kinds of adverse effects in various parameters
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(Table 1). The ranges of LDLo that indicate acute toxicity
of the MS particles were estimated as 4.1–81, 16–65, and
146 mg/kg HED for i.v., i.p., and s.c. administrations,
respectively. On the other hand, the uLOAEL were esti-
mated as much lower values compared with the ranges of
LDLo like 0.45, 0.81, and 4.1 mg/kg HED for i.v., i.p., and
s.c. administrations of MS particles, respectively. The dif-
ference between the uLOAEL and LDLo suggests that
various adverse effects caused by MS particle administra-
tion are unrelated to lethality. The uLOAEL could be useful
to estimate the no observed adverse effect level that is
described in the International Council for Harmonisation of
Technical Requirements for Pharmaceuticals for Human
Use guideline as important information for estimation of the
first dose in humans.

Lethal acute toxicity of MS particles after i.v and i.p.
administrations is likely to arise not from chemical but
physical action of MS particles. In the mice death cases
after administration of the HMS particles, most of the mice
died within 20 min after i.v. administration while they were
dead 3 days after i.p. administration (Figs. 3 and 4). The
difference was probably caused not by chemical but by
physical behavior of the HMS particles in vivo. The Si level
in the mammalian body is significant [67], but whether Si
has some essential function in vivo is not clear [68]. The
toxicity of Si in animals has not been reported in the
meaning of its chemistry. Thus, the acute toxicity is likely
to be caused not by the immediate degradation of MS
particles but by the physical action. It was reported that i.v.-
administered MS particles immediately accumulated in
liver, spleen, and lung within 30 min [57, 58]. I.v. admin-
istration of MS particles induced infarctions relating to
abnormal lesion in organs, pulmonary embolism, and vas-
culature congestion [35, 36]. These results suggested that
i.v. administration of MS particles has a risk to cause
capillary embolism in a short period and subsequent
immediate death. In mice death cases after i.p. administra-
tion of MS particles, some inflammatory lesions were also
observed in lung [60, 64] or liver [46], but accumulation of
MS particles in these organs tended to progress much
slower (over 1 day [13, 47]) than the cases after i.v.
administration. Thus, the cause of immediate death after i.p.
administration could be somewhat different from that after
i.v. administration. We found, after i.p. administration,
HMS aggregated on the intestine and constipation (Fig.
3D). Similarly, MS aggregates were found on the intestine
after i.p. administration; the authors similarly reported
mortality of mice, but they mentioned no other signs or
symptoms occurred on the mice [60]. These results sug-
gested that formation of aggregates of MS in the intraper-
itoneal cavity is related to the death of mice. The occurrence
of constipation in our experimental study suggests that
HMS particles or their aggregates affect the intestine andTa
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defecation, but the mechanism and the relation to the death
of mice is unclear.

Lethal acute toxicity was observed only rarely after s.c.
administration of MS particles. Neither animal death nor
serious adverse effects were observed after s.c. adminis-
tration of HMS particles even at the dose of 163 mg/kg
HED in our experimental study (Fig. 2). Although one
paper reported animal death after s.c. administration of
146 mg/kg HED of MS particles [52], the dose was 2–35
times higher than that of i.v and i.p. administrations (Table
1). These results suggest that MS particles are administered
more safely via s.c. route than via i.p. and i.v. routes. After
s.c. administration of HMS particles, nodules were formed
at the administration site, became smaller over time and
finally disappeared a few months after the administration.
This observation agreed with that of previous report on MS
particles [69]. After s.c. administration of MS particles, Si
level slightly increased in liver and spleen [52]. However,
there is no histological evidence showing migration of MS
particles in these organs [52]. These results suggested that s.
c.-administered MS particles were gradually degraded and
only degradation products were migrated to organs.

No clear relationship was identified between physico-
chemical properties of MS particles and lethality as well as
MTD. Effects of size and shape of MS on lethality are
somewhat controversial. Although some papers reported
that smaller MS particles were more lethal than larger MS
particles due to the higher risk of embolization [35, 58, 70],
the literature study could not identify clear dependency of
the lethality of MS particles on their shapes or the sizes.
Regarding process parameters, surfactant molecules used
for making mesoporous structure show toxicity in vitro
[63, 71]. The surfactant molecules were removed by reflux
with hydrochloric acid in 25 papers, or by calcination in ten
papers including this study. It was suggested that methods
of surfactant removal did not affect lethality of MS particles
(Fig. S3). It should be noted that the reflux method is
associated with difficulty to confirm complete elimination
of surfactant from their MS particles. Additionally, MS
particles modified by labeling agents such as fluorochrome
or isotope showed no difference in lethality as compared
with plain MS on i.v. administration (Figs. S1 and S2).
Although only small number of data points are available in
the literature study, it is suggested that sizes, shapes, pre-
paration methods, and with/without modifications for
labeling of MS particles do not largely, such as more than
ten times, change toxicity of MS particles (Figs. S1–5S).

At sub-lethal doses, MS particles tend to accumulate
mainly in lung, liver, and spleen, which can lead to organ
damages. Typical damages in the organs with i.v. admin-
istration related to embolus and inflammation (thrombi,
infarction, fibrosis). For i.p. administration, MS particles
mainly induced inflammation-related damage, such as

fibrosis and increase in Kupffer cells in liver. After s.c.
administration, red pulp induced by foamy macrophages
was observed in spleen. Tissue damage was observed after
3.3–98 mg/kg HED single MS particle administration and
2.0–4.1 mg/kg HED repeat administration (Table 1). How-
ever, in many cases, doses as low as 2 mg/kg HED of MS
appear not to induce serious tissue damage. When the dose
of MS particle increases, capillary embolization and
saturation of phagocytosis by macrophages are likely to
occur. Capillary embolization causes ischemia following
local hypoxia (resulting in acute toxicity) and/or necrosis of
tissue (chronic toxicity). Capillary embolization is probably
accompanied with thrombosis, as some papers reported that
platelets well adhere to silica particles to form aggregates
potentially leading to platelet-mediated thrombosis.
Saturation of phagocytosis by macrophages causes forma-
tion of silicotic lesions in tissues of the reticuloendothelial
system [46, 63]. Although the formation of silicotic lesions
is a rare event, it may be a typical toxic response to silica
particles. However, there were no reports that the formation
of silicotic lesions in organs caused death in the dosed
animals. Thus, it is unlikely that the formation of silicotic
lesions is directly related to the acute toxicity of MS par-
ticles, although it could relate to chronic toxicity, like
necrosis of organs, as shown by some histological results.

Immunotoxicity of MS particles is at the same level as
that of the immunoadjuvant, Alum, although MS particles
induce inflammation-related cytokines. HMS particles were
found to be inert for cytokines secretion after either i.p. or s.
c. administration in mice although the cytokine levels of the
mice significantly increased after Poly(i:c) administration
via the same routes. One paper reported no increase in
inflammation-related cytokines after MS particle adminis-
tration [66] while others reported that MS particles have
inflammation-related cytokines inducibility [34, 40, 46, 64].
We found that immunotoxicity of HMS is the same level as
that of Alum from the viewpoint of cytokine induction and
antigen-specific IgE induction, which agreed with the pre-
vious report [72]. These results suggested that MS particles
induce no serious adverse effects relating to cytokines and
allergy as compared with typical adjuvants, Poly(i:c) and
Alum, used experimentally and clinically.

5 Conclusion

In this experimental study, acute toxicity and immuno-
toxicity of HMS particles were evaluated. The LDLo and
MTD for HMS particles were basically at the same levels as
those of MS particles reported previously. HMS particles
showed lower inflammation-inducing ability than Poly(i:c)
and almost the same allergy-inducing ability as that of
Alum. In the literature study, we summarized from various
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aspects the toxicity of MS particles administered in i.v., i.p.,
or s.c. routes. From the experimental and literature studies,
it is concluded that the uLOAELs were determined as 0.45,
0.81, and 4.1 mg/kg HED for i.v., i.p., and s.c. adminis-
tration of MS particles, respectively, regardless of size,
shape (sphere or rod), internal structure (dense or hollow),
the presence and absence of labeling agents, and the dif-
ference in elimination method of surfactant. These results
could be helpful for determining an appropriate dose of MS
particles, including the HMS, in clinical study.
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