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Abstract
To investigate the impact of radiotherapy on surface properties of restorative dental materials. A conventional resin composite—
CRC (Aura Enamel), a bulk-fill resin composite—BFRC (Aura Bulk-fill), a conventional glass ionomer cement—CGIC (Riva
self cure), and a resin-modified glass ionomer cement—RMGIC (Riva light cure) were tested. Forty disc-shaped samples from
each material (8mm diameter × 2mm thickness) (n= 10) were produced according to manufacturer directions and then stored in
water distilled for 24 h. Surface wettability (water contact angle), Vickers microhardness, and micromorphology through scanning
electron microscopy (SEM) before and after exposition to ionizing radiation (60 Gy) were obtained. The data were statistically
evaluated using the two-way ANOVA and Tukey posthoc test (p < 0.05). Baseline and post-radiation values of contact angles
were statistically similar for CRC, BFRC, and RMGIC, whilst post-radiation values of contact angles were statistically lower than
baseline ones for CGIC. Exposition to ionizing radiation statistically increased the microhardness of CRC, and statistically
decreased the microhardness of CGIC. The surface micromorphology of all materials was changed post-radiation. Exposure to
ionizing radiation negatively affected the conventional glass ionomer tested, while did not alter or improved surface properties
testing of the resin composites and the resin-modified glass ionomer cement tested.

Graphical Abstract

1 Introduction

The head and neck region is a prevalent site for the occur-
rence of malignant neoplasms which mainly affect several
oral tissues [1, 2]. The treatment of cancer in the head and
neck region is generally based on clinical staging, tumor
location, histological differentiation, and the patient’s clin-
ical conditions [3, 4]. Treatment is performed in most
situations employing surgery or radiotherapy, and there may
be cases that require both association therapy. Radiotherapy
uses a beam of ionizing radiation and aims to destroy tumor
cells, minimizing damage to normal cells [5, 6].

* Boniek Castillo Dutra Borges
boniek.castillo@gmail.com

1 Department of Dentistry, Universidade Federal do Rio Grande do
Norte (UFRN), Av. Salgado Filho, 1787, Lagoa Nova, Natal, RN
CEP: 59056-000, Brazil

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1007/s10856-021-06543-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10856-021-06543-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10856-021-06543-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10856-021-06543-5&domain=pdf
http://orcid.org/0000-0003-4313-5776
http://orcid.org/0000-0003-4313-5776
http://orcid.org/0000-0003-4313-5776
http://orcid.org/0000-0003-4313-5776
http://orcid.org/0000-0003-4313-5776
mailto:boniek.castillo@gmail.com


The management of patients submitted to cervicofacial
radiotherapy requires a multidisciplinary approach, making
the restoration of caries lesions highly challenging for
dentists [7, 8]. The restorative treatment of caries lesions
before radiation therapy is necessary to prevent disease
progression and reduce the burden of microorganisms [9].
This approach is important because adhesion between
restorative materials and dental tissues is compromised by
ionizing radiation so that a post-radiotherapy tooth
restoration might provide an unsuccessful treatment [10].

Regarding the restorative materials available for den-
tists, resin composites, and glass ionomer cement are fre-
quently used to restore caries lesions and esthetic
restorative treatments [11]. Resin-based restorative dental
materials are versatile and have shown constant progress
concerning types of filler particles [12]. However, resin
composites still present unfavorable aspects such as poly-
merization shrinkage stress, marginal infiltration, bio-
compatibility, and the presence of unreacted monomers
[13]. Bulk-fill resins emerged to optimize restorative pro-
cedures with more advantages, such as the single-step
incremental insertion proposal, saving clinical time,
demonstrating a better degree of conversion, and poly-
merization stress in deeper layers [14].

In restorative dentistry, glass ionomer cement is available
in two formulations: conventional glass-ionomer and resin-
modified glass-ionomer [15]. Conventional glass-ionomers
set via an acid-basic reaction and present anti-cariogenic
activity, good adhesion to dental tissues, and long-term
fluoride release [16]. However, the low tensile strength,
susceptibility to dehydration, and low fracture toughness
may limit the use [17]. In an attempt to improve the physical
properties and minimize risk to moisture, resin-modified
ionomer cement has been market, increasing work-time,
control over material prey, and improving the hardening
process [18, 19].

In this context, studies report that gamma radiation therapy
affects the glass ionomers and the resin composite properties
[20–22]. It has been demonstrated that gamma radiation
increased the microhardness of a glass ionomer cement [23]
and can produce free radicals that may improve the micro-
hardness of resin-based materials such as conventional resin
composites [24]. However, bulk-fill resin composites were
recently introduced in the market so that it is necessary to
investigate how the gamma radiation would affect their surface
properties in an attempt to provide a safe clinical use in
individuals undergoing radiotherapy. Moreover, changes in the
wettability of dental restorative materials might increase their
susceptibility to microbial adhesion and biofilm formation
[25], so that there is the need to investigate if the exposition to
gamma radiation would become conventional and bulk-fill
resin composites and conventional and resin-modified glass
ionomer cements more wettable.

This study aimed to evaluate the influence of ionizing
radiation on surface wettability, microhardness, and
micromorphology of conventional and bulk-fill resin com-
posites, and conventional and resin-modified glass ionomer
cement. The null hypothesis was that ionizing radiation
would not alter the surface properties of materials tested.

2 Materials and methods

2.1 Experimental design

A factorial design 4 × 2 was developed in this laboratory
investigation. The factors under study were: restorative
dental materials (conventional resin composite—CRC; bulk-
fill resin composite—BFRC; conventional glass ionomer
cement—CGIC; and resin-modified glass ionomer cement—
RMGIC); and timepoint of analysis (before and after expo-
sition to ionizing radiation). Surface microhardness, wett-
ability, and surface morphology were the response variables.
The materials used in this study are shown in Table 1.

2.2 Preparation of the specimens

A schematic representation of the methods is shown in Fig.
1. Forty disc-shaped specimens (n= 10) were produced
(8 mm diameter × 2 mm thickness) according to the mate-
rials used in this study. Resin composites were inserted in a
single increment into the mold and covered with a mylar
strip and a 1-mm thick glass slide before photoactivation for
20 s using a light-emitting diode (Radii-Cal, SDI, Victoria,
Australia—1200 mW/cm2, 440–480 nm). Glass ionomer
cement encapsulated were prepared according to the man-
ufacturer’s instructions. The plunger was placed on a hard
surface and a mechanical mixer (Ultramat S, SDI, Victoria,
Australia, 4600 rpm) was used to mix the capsules for 10 s.
The capsule was then placed into the Riva applicator (SDI
Limited, Bayswater, VIC, Australia). Then, a single portion
of materials was inserted into the mold and covered with a
mylar strip and a 1-mm thick glass slide. The resin-modified
glass ionomer cement was photoactivated for 20 s. The self-
cure glass ionomer cement was kept undisturbed for 6 min
until the entire curing, and the coating agent (Riva Coast,
SDI Limited, Victoria, Australia) was applied and photo-
activated for 20 s. Specimens were stored in water at 37 °C
for 24 h before further analysis.

2.3 Baseline analyses

Micromorphology, wettability, and microhardness were
evaluated in all specimens. Photomicrographs were
obtained through Scanning Electron Microscopy (SEM)
(TM-3000, Hitachi Tabletop, Tokyo, Japan) with 100X

69 Page 2 of 8 Journal of Materials Science: Materials in Medicine (2021) 32:69



magnification on the center of each specimen to observe
how the surfaces of the glass ionomers and resin composites
behaved before and after exposition to ionizing radiation.
The specimens did not need any surface treatment because
an Environmental SEM was used.

Wettability was evaluated by measuring the contact
angle between all materials’ surfaces and distilled water
through the sessile drop method at room temperature [26]
with a drop shape analysis system (Surftens 4.7 Software,
Frankfurt, Germany). A drop of 10 µl of distilled water was
dispensed on the center of each specimen and the contact
angle was measured at three different locations for each
specimen and the average value was reported.

Microhardness was measured using a digital microhard-
ness tester (MV2000A, Pantec, São Paulo, SP, Brazil). Five
indentations were made on the center of specimens ran-
domly under 50 g load for 15 s. The diagonals of Vickers
indentations were measured through the eyepiece of the
optical microscope immediately after indentation. The
means of the diagonals of each indentation were measured
and the mean of five indentations for each surface was
calculated for each specimen.

2.4 Irradiation

During radiation therapy, oral cancer patients are exposed to a
total radiation dose ranged from 50 to 70.4 Gy [27]. Cobalt-60
or linear accelerator units can be used as a source of radiation
[28]. To simulate the clinical parameters and radiation doses
used during radiotherapy, this in vitro study used a linear
accelerator to apply the radiation dose of 60Gy on forty disc-
shaped specimens in a single session [29], with a gamma beam
of cobalt-60 teletherapy unit (Theratron 760) simulating a
radiotherapy procedure applied to patients with head and neck
cancer. Radiation was performed in a hospital environment.
The specimens were stored in distilled water and irradiated
aiming at the homogeneity of irradiation.

2.5 Post-radiation analyses

Forty-eight hours after irradiation, micromorphology,
wettability, and microhardness were evaluated using the
previously described protocol.

2.6 Statistical analysis

Wettability (contact angles) and microhardness were eval-
uated using two-way ANOVA and Tukey posthoc tests (p <
0.05) since a parametric data distribution was obtained
(Kolmogorov–Smirnov). The software ASSISTAT Beta
(7.7 version) (Campina Grande, PB, Brazil) was used to
perform statistic tests. Micromorphology was descriptively
analyzed.Ta
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3 Results

3.1 Vickers microhardness

Two-way ANOVA revealed statistically significant differ-
ences among restorative dental materials (p < 0.001) and
timepoints of analysis (p < 0.001). The interaction between
“restorative dental material” versus “timepoint of analysis”
was statistically significant (p < 0.001). Multiple compar-
isons among the groups are shown in Table 2. Bulk fill resin
composite and resin-modified glass ionomer cement main-
tained statistically similar values before and after radiation.
In contrast, conventional resin composite showed increased
values, and conventional glass ionomer cement decreased
values at post-radiation. At pre-radiation timepoint, resin
composites showed statistically similar and lower values
than glass ionomer cement. On the other hand, conventional
resin composite showed statistically highest values at post-
radiation timepoint, and conventional glass ionomer cement
statistically the lowest values.

3.2 Wettability

Two-way ANOVA revealed no statistically significant dif-
ferences in time points of analysis (p= 0.3262). However,
there were statistically significant differences among
restorative dental materials (p= 0.0251) and the interaction
between “restorative dental material” versus “timepoint of
analysis” was statistically significant (p= 0.0194). Multiple
comparisons among the groups are shown in Table 3.

Conventional glass ionomer cement showed statistically
lower values post-radiation than at pre-radiation timepoint,
whilst other restorative dental materials maintained statis-
tically similar values between different time points. At pre-
radiation, resin composites showed similar values and sta-
tistically lower than those of glass ionomer cement. On the
other hand, restorative dental materials showed statistically
similar values post-radiation.

3.3 SEM analysis

Figure 2 presents images of the materials before and after
ionizing radiation. In the CGIC, ionizing radiation removed
the resin coating that was applied to the material surface. On

Fig. 1 Schematic representation of the methods used in this study.
Specimens of conventional and bulk-fill resin composites (A), con-
ventional glass ionomer cement (B), and resin-modified glass ionomer
cement (C) were produced according to manufacturers’ directions.

Then, after 24 h of storage in water, micromorphology in Scanning
Electron Microscopy, wettability through the sessile drop method, and
Vickers microhardness were evaluated. Specimens were exposed to
gamma radiation and the same surface parameters were analyzed (D)

Table 2 Mean (standard deviation) of Vickers microhardness number
according to restorative dental material and timepoint of analysis

Restorative dental material Timepoint of analysis

Pre-radiation Post-radiation

Conventional resin composite 61.97 (15.7)Bb 83.65 (16.0)Aa

Bulk fill resin composite 69.88 (3.9)Ab 68.95 (4.6)Abc

Conventional glass
ionomer cement

76.26 (10.6)Aa 56.60 (4.0)Bc

Resin-modified glass
ionomer cement

75.60 (18.5)Aa 73.95 (7.3)Aab

Different capital letters indicate statistically significant differences
between time points within the same restorative dental material (p <
0.05). Different lowercase letters indicate statistically significant
differences among restorative dental materials within the same time
point (p < 0.05)
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the other hand, ionizing radiation did not alter the mor-
phology of RMGIV, which showed similar visual char-
acteristics at baseline and post-radiation. In the CRC,
specimens after ionizing radiation presented more filler
particles exposed on the material surface, which were
covered by the organic matrix at baseline. Specimens of
BFRC after ionizing radiation presented fewer large filler
particles exposed and smaller filler particles exposed than at
baseline.

4 Discussion

The null hypothesis—that ionizing radiation would not alter
the surface properties of materials—was rejected. In gen-
eral, ionizing radiation promoted changes in the micro-
hardness, wettability, and surface morphology of resin
composites and glass ionomer cements tested.

In this study, a conventional and a resin-modified GIC,
and a conventional and a bulk-fill resin composite were
tested as they are the most commonly used dental materials
to perform direct tooth restorations [11] and can be sub-
jected to ionizing radiation in individuals undergoing head
and neck radiotherapy. CGIC’s are produced by an acid-
base reaction from a powder–liquid mixture [30]. Whilst the
liquid contains mainly water and polyacrylic acid, the
powder contains non silanized fluoro-alumino-silicate fillers
(FASF) and other inorganic components such as strontium,
phosphate, zinc, calcium, or sodium which react with [31].
RMGIC contains the same components as CGIC,
but the FASF are silanized and the liquid includes metha-
crylate monomers, typically 2-hydroxyethyl methacrylate
(HEMA), and camphorquinone as photoinitiator [32]. On
the other hand, resin composites are composed of metha-
crylate monomers, photoinitiators, typically camphorqui-
none, and silanized filler particles [33].

When dental materials are subjected to ionizing radia-
tion, they can interact with their surface and cause structural
changes, which will occur distinctly depending on the sur-
face chemical components of the material. The CGIC tested
was the only one that presented microhardness decreasing
after being exposed to ionizing radiation. Ionizing radiation
likely caused the dissolution of resin coating applied on the
CGIC’s surface and detachment of their non silanized
FASF, exposing a softer material with decreased micro-
hardness. Silane coupling agents are mainly organic sili-
cides (X3SiY) where X may be chlorine, alkoxy or acetoxy
groups and Y may be vinyl, epoxy, amino or mercapto
groups. X groups convert to the alkoxy group via hydrolysis

Table 3 Mean (standard deviation) of contact angles according to
restorative dental material and timepoint of analysis

Restorative dental material Timepoint of analysis

Pre-radiation Post-radiation

Conventional resin composite 48.40 (10.5)Ab 55.20 (6.8)Aa

Bulk fill resin composite 50.10 (6.9)Ab 55.50 (6.1)Aa

Conventional glass
ionomer cement

62.90 (6.2)Aa 55.28 (8.3)Ba

Resin-modified glass
ionomer cement

55.10 (4.2)Aa 57.20 (7.9)Aa

Different capital letters indicate statistically significant differences
between time points within the same restorative dental material (p <
0.05). Different lowercase letters indicate statistically significant
differences among restorative dental materials within the same time
point (p < 0.05)

Fig. 2 Images of the conventional glass ionomer cement (CGIC) Riva
self cure, resin-modified glass ionomer cement (RMGIC) Riva light
cure, conventional resin composite (CRC) Aura Enamel, and bulk-fill
resin composite (BFRC) aura bulk fill with 100× magnification before
(left) and after exposition to ionizing radiation (right)
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and make hydrogen bonding or covalent bonding with the
alkoxy group present on the surface of inorganic filler
particles while Y is reactive groups that bind with organic
monomers and hence improve adhesion of interface [34].
Since FASF are not silanized and CGIC has not metha-
crylate monomers, probably, they were numerously
detached from the material surface, which would have led to
a microhardness decreasing. Conversely, as the RMGIC
tested contains silanized FASF and methacrylate mono-
mers, a more stable bond between monomers and fillers can
be obtained [33] so that they were less detached, and post-
radiation morphology microhardness was maintained.

Concerning CRC and BFRC tested, SEM images showed
that a slight dissolution of materials’ surfaces occurred in
consequence of exposition to ionizing radiation, which
promoted the appearance of subsurface filler particles that
were distributed below the resin-rich surface layer [35, 36].
As it was seen at baseline, the CRC Aura Enamel contains
only microfillers of similar size, which were exposed after
the dissolution of the resin matrix occurred after the spe-
cimens were subjected to ionizing radiation. On the other
hand, the BFRC aura bulk fill presented filler particles with
different sizes even at baseline. Ionizing radiation likely
weakened the bond between larger fillers and resin matrix
due to a larger peripherical area exposed than in smaller
particles. In this way, larger particles would have been
detached from the polymerized resin matrix, appearing
smaller particles that were maintained entrapped into the
polymerized resin matrix.

In summary, the hardness of restorative materials
depends on the number of exposed filler particles [37].
Thus, the higher exposition of filler particles provided
increased surface hardness values in the conventional
resin composite tested. Also, a glass ionomer cement is
softer than other restorative materials [38]. In this way,
the resin coat remotion in the conventional glass ionomer
cement post-radiation exposed a softer and more hydro-
philic material with a decreased hardness and increased
wettability. Also, conventional glass ionomer cement is
softer and more hydrophilic than other restorative mate-
rials [39].

At the moment that ionizing radiation can cause a dis-
solution of the resin matrix, it can improve linking among
polymerized chains after photoactivation through molecular
excitation and continuous polymerization of the non-
polymerized surface layer [25, 40]. Polymerized chains
can form crosslinks through hydrogen bonds between OH
or NH groups and ether or carbonyl groups, as well as
among themselves, especially for hydroxyl-hydroxyl
groups of monomers [41, 42]. In this way, resin compo-
sites containing a higher percentage of dimethacrylate
monomers that present these groups, such as bisphenol
A diglycidyl methacrylate (Bis-GMA), diurethane

dimethacrylate (UDMA), and ethoxylated bisphenol A
dimethacrylate (Bis-EMA). Since only the CRC showed
increased microhardness at post-radiation, Aura Enamel
probably contains an increased percentage of monomers
that can form post-polymerization crosslinks than the BFRC
aura bulk fill. It is reasonable to assume that the decreased
microhardness of resin composites at post-radiation
obtained previously [20], different from the present inves-
tigation, may be attributed to the lower percentage of
crosslinker monomers in the materials tested. From a clin-
ical point of view, it is supposed that Eura Enamel may
provide increased clinical longevity of tooth restorations in
individuals undergoing head and neck radiotherapy, once
microhardness is related to the material’s strength [43].

Another important parameter that influences the long-
evity of resin composite restorations is how distilled water
interacts with the material surface. High contact angle
values imply lesser staining, biofilm accumulation, and
pathogen adhesion/proliferation and, ultimately, lower the
risk of caries in the restoration margins and progression
[44]. Conversely, increased wettability (low contact angle
values) of the restorative material can favor continuous
penetration of water or oral solvents, chemical degradation,
and pore formation [45]. The fact that CFIC presented lower
contact angles after exposition to ionizing radiation indi-
cates that the material became more wettable. As resin
composites and resin-modified glass ionomer cement con-
tain organic monomers, they can have maintained the
wettability of these materials at post-radiation. In this way,
one can presume that the use of this CGIC to restore
decayed teeth of individuals undergoing head and neck
radiotherapy would not guarantee clinical longevity for
dental restoration.

In a general way, the CRC showed the best behavior for
all properties tested, although BFRC and CGIC were not
negatively affected by ionizing radiation. Since individuals
undergoing head and neck radiotherapy are more prone to
have caries in the restoration margins [46], the ideal mate-
rial to restore their decayed teeth should present mechanical
strength, resistance to erosion, and inhibit the formation of
caries lesions. Thus, although glass ionomer cement can
release fluoride which contributes to inhibiting the forma-
tion of caries lesion [46], further in vivo studies should be
performed to evaluate the behavior of the materials tested in
this study. In clinical conditions, dental materials and tooth
restorations are exposed to radiotherapy in the presence of
saliva. However, the specimens were stored in distilled
water in this study following previous investigations
[24, 29, 47, 48]. Clinical variables associated with indivi-
dual biology or oral hygiene such as hyposalivation, caries
appearance, and longevity of restorative materials were not
evaluated and, therefore, need to be evaluated in further
clinical trials.
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5 Conclusion

The conventional glass ionomer tested was the only material
tested which was negatively affected by exposition to
ionizing radiation. Exposition to ionizing radiation posi-
tively affected the microhardness of the conventional resin
composite tested, while did not alter its wettability, and
maintained microhardness and wettability of the resin-
modified glass ionomer cement and the bulk-fill resin
composite tested.
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