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Abstract The osteocyte network, through the numerous
dendritic processes of osteocytes, is responsible for sensing
mechanical loading and orchestrates adaptive bone remo-
delling by communicating with both the osteoclasts and the
osteoblasts. The osteocyte network in the vicinity of implant
surfaces provides insight into the bone healing process
around metallic implants. Here, we investigate whether
osteocytes are able to make an intimate contact with topo-
logically modified, but micrometre smooth (S, < 0.5 um)
implant surfaces, and if sub-micron topography alters the
composition of the interfacial tissue. Screw shaped, com-
mercially pure (cp-Ti) titanium implants with (i) machined
(S, =~0.2 um), and (ii) two-step acid-etched (HF/HNO; and
H,SO4/HCI; S, = ~0.5 um) surfaces were inserted in Sprague
Dawley rat tibia and followed for 28 days. Both surfaces
showed similar bone area, while the bone-implant contact
was 73 % higher for the acid-etched surface. By resin cast
etching, osteocytes were observed to maintain a direct inti-
mate contact with the acid-etched surface. Although well
mineralised, the interfacial tissue showed lower Ca/P and
apatite-to-collagen ratios at the acid-etched surface, while
mineral crystallinity and the carbonate-to-phosphate ratios

P4 Furgan A. Shah
furqan.ali.shah @biomaterials.gu.se

Department of Biomaterials, Sahlgrenska Academy at University
of Gothenburg, Goteborg, Sweden

2 BIOMATCELL VINN Excellence Centre of Biomaterials and Cell
Therapy, Goteborg, Sweden

Department of Chemistry, Materials and Surfaces, SP Technical
Research Institute of Sweden, Bords, Sweden

Department of Chemistry and Chemical Engineering, Chalmers
University of Technology, Goéteborg, Sweden

were comparable for both implant surfaces. The interfacial
tissue composition may therefore vary with changes in
implant surface topography, independently of the amount of
bone formed. Implant surfaces that influence bone to have
higher amounts of organic matrix without affecting the
crystallinity or the carbonate content of the mineral phase
presumably result in a more resilient interfacial tissue, better
able to resist crack development during functional loading
than densely mineralised bone.

1 Introduction

The osteocyte network is responsible for sensing mechan-
ical loading and orchestrates adaptive bone remodelling by
communicating with both the osteoclasts and the osteoblasts
[1]. Osteocyte processes (also known as dendrites) reside
within interconnecting channels called canaliculi, and are
frequently extended and retracted [2]. Although osteocytes
may sense mechanical loading in several ways [3], the
dendritic processes are indicated to be of considerable
importance [4]. Furthermore, osteocytes in the vicinity of
implant surfaces provide insight into the bone healing
process around metallic implants [5].

Topographical features such as undercuts on the sub-
micron scale present a three dimensional structure with
which the extracellular matrix of newly formed bone can
establish mechanical interlocking [6], thus strongly influ-
encing the bone-bonding ability of implant surfaces. Sub-
tractive surface modification (i.e., acid-etching) has a
positive effect on the strength of endosseous integration [7].
And indeed, modification of implant surface topography is
frequently carried out by the use of acids such as HCI,
H2SO4, HNO3, and HF [8]
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At early healing times, topologically optimised surfaces
are commonly said to induce advantageous biological
responses, e.g., rapid bone formation. Histological differences
between topologically modified and unmodified (machined)
surfaces are typically less pronounced at late healing times.
Moreover, histological methods employing optical micro-
scopy are less sensitive to subtle localised variations at
smaller length scales (i.e., micron-, sub-micron, and nano-),
e.g., the extracellular matrix composition and ultrastructure. If
specific surface modifications are able to continually induce a
desirable biological response throughout the effective lifetime
of an implanted device, e.g., higher bone remodelling and/or
bone turnover, beyond merely faster initial bone formation,
this may be reflected in the composition and ultrastructure of
not only the interfacial tissue, but also up to several tens of
micrometres from the implant surface.

With acid-etching being a frequently employed method
to intentionally roughen implant surfaces, little is known
about the composition of the bone-implant interface in
relation to such surfaces [9]. Roughened surfaces have been
shown to affect both the stiffness and the hardness of bone
[10], and the biomechanical anchorage of the implant in
bone as determined from removal torque measurements [7].
Indeed, mechanical interlocking between the implant sur-
face and bone contributes towards the observed increase in
the force required to disrupt the interface and unscrew the
implant [11]. A key question therefore is whether sub-
micron topography also modulates the molecular composi-
tion of the interfacial tissue. Furthermore, are osteocytes
able to establish and maintain an intimate contact with
topologically modified, but micrometre smooth (S, < 0.5 um
[12]) implant surfaces?

2 Materials and methods

2.1 Implant fabrication and characterisation of surface
morphology

Thirty-six screw-shaped implants were machined from a
commercially pure (cp-Ti) titanium rod (Elos Med-
tech Pinol A/S, Gegrlgse, Denmark). Half of the implants
were dual acid-etched in two steps, using HF/HNO; fol-
lowed by H,SO4/HCI. The remaining implants were left as
machined. All implants were ultrasonically cleaned in Milli-
Q water, organic solvents, and steam sterilised. Two
implants of each type were used for surface characterisation.

Qualitative visualisation of the implant surface mor-
phology was performed using scanning electron microscopy
(SEM; Zeiss SUPRA® 40 VP, Germany) operated in the
secondary electron mode at 5kV acceleration voltage. For
quantitative assessment of surface topography, several
parameters were investigated at the top, flank, and valley
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regions of the implant threads, on two implants of each type
by 3D-SEM. For 3D reconstruction, images were acquired
with an 8° eucentric tilt and processed by software (MeX®
6.0, Alicona Imaging GmbH, Graz).

2.2 Animal surgery and sample preparation

The implants were placed in the proximal and distal tibial
metaphyses of eight skeletally-mature Sprague Dawley rats
(two implants in each tibia) and were followed for four
weeks. The experiment was approved by the local Animal
Ethics Committee at the University of Gothenburg (Dnr 279-
2011). Prior to surgery, the animals were anaesthetised by
isoflurane  inhalation (Isoba® Vet;  Schering-Plough,
Uxbridge, UK) and were administered buprenorphine
hydrochloride (Temgesic, 0.03 mg/kg; Reckitt & Colman,
Hull, UK), subcutaneously, directly postoperatively and for
the following two days. The animals were fed ad libitum. The
animals were euthanised with an intraperitoneal overdose of
sodium pentobarbital (60 mg/mL; ATL Apoteket Production
& Laboratories, Sweden). The fixative solution (~200 mL)
was perfused via the heart. After removing the skin and the
surrounding soft tissue, the implants were retrieved with
surrounding bone, immersion fixed for one week, dehydrated
in a graded series of ethanol and resin embedded [13].

2.3 Qualitative histology

Central ground sections were prepared from selected sample
pairs (n =4) and stained with toluidine blue for qualitative
histology using optical microscopy (Nikon Eclipse E600;
Nikon NIS-Elements software).

2.4 Electron microscopy

Other resin embedded implants were bisected longitudinally
by sawing and polished with 400-2400 grit SiC paper.
Backscattered electron scanning electron microscopy (BSE-
SEM, FEI Quanta 200 FEG ESEM) was performed at low
vacuum, 20kV accelerating voltage and 10 mm working
distance. Images obtained at x500 magnification were used
for quantitative histomorphometry (n=09) to measure the
bone area (BA) and the bone-implant contact (BIC), by
semi-automated segmentation using Adobe Photoshop CS
5.1, ImageJ (imagej.nih.gov/ij), and the Image Edge plugin
for edge detection.

Energy dispersive X-ray spectroscopy (INCA 300 EDX
system, Oxford Instruments GmbH, Wiesbaden, Germany)
was performed at 0-10 keV spectral range to determine the
Ti, Ca, P, and O content of the interfacial tissue at each
implant type (n=2). At high magnification, a 5 x5 point
grid-matrix (enclosing ~1 um?) with equal vertical and
horizontal spacing was placed in an osteocyte-free zone
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<1 pm away from the tissue edge. Owing to the presence of
a separation artefact between the tissue and the implant
surface, the analysis was carried out only in areas that had
separated by <2 um. For each implant (of either type), five
locations along the implant thread were analysed (i.e., a
total of ten locations per group). As a reference (and not
considered for statistical analysis), two locations in the
native bone were also analysed for each implant.

An electron transparent specimen (150-200 nm thick)
was prepared across the bone-implant interface using a
focused ion beam in situ lift-out technique (Strata DB235
FIB/SEM; FEI Company, The Netherlands) [14]. Scanning
transmission electron microscopy (STEM) was performed
in the high-angle annular dark field (HAADF) mode (Tec-
nai T20, FEI Company, The Netherlands) to visualise the
adaptation of bone to the sub-micron topography. Elemental
analysis of the newly formed bone was performed using
energy dispersive X-ray spectroscopy (STEM-EDX).

2.5 Direct visualisation of osteocyte morphology

Direct visualisation of osteocytes within the newly formed
bone tissue was enabled after resin cast etching [5]. Briefly,
polished bone-implant blocks were sequentially immersed
in 9 % H3PO, and 5 % NaOCl, air-dried overnight and Au
sputter-coated (~10nm) for high vacuum secondary elec-
tron SEM (Ultra 55 FEG SEM, Leo Electron Microscopy
Ltd, UK).

2.6 Raman spectroscopy

For non-destructive investigation of the mineralisation pro-
cess at the bone-implant interface [15], Raman spectroscopy
(InVia Reflex Raman spectrometer, Renishaw, UK) was

Fig 1 Secondary electron SEM
images of the a acid-etched and
the b machined implant surfaces.
3D-SEM reconstruction of the ¢
acid-etched and the d machined
implant surfaces. The colour-
coding represents the surface
topography superimposed onto
the macro-shape of the implant
thread

performed on polished bone-implant blocks using a 785 nm
excitation laser, an 1800 1/mm grating, and averaging five
scans of 20 s at each location. The nominal spectral resolu-
tion at these conditions is close to 1cm™'. Raman spectra
were processed using the Background Correction program
[16] for MATLAB R2013b (Mathworks Inc., Natick, MA).
The baseline-subtracted spectra were normalised to the
intensity of the v, PO,*~ band at ~960 cm™" using Plot (http:/
plot.micw.eu/). The major peak assignments were 432 cm™
(v, POST), 579em™ (vy POST), 960cm™ (v PO,
1070cm™ (v; COs*), 855cm™  (proline), 875cm™
(hydroxyproline), 1004cm™ (phenylalanine), 1240-1270
cm™' (Amide IIT), 1447 cm™ (methylene 6(CH,) scissoring),
and 1650 cm™ (Amide I). The mineral crystallinity, taken as
the inverse full-width at half-maximum of the v, PO,”~ band
(1I/FWHM) [17], the apatite-to-collagen (v, PO43'/Arnide 1)
ratio [18], and the carbonate-to-phosphate (v; CO5* Iy,
PO,*") ratio [19] were also quantified.

2.7 Statistical analysis

The Kruskal-Wallis test followed by the Mann-Whitney U
test were used for all statistical analyses between the
implant types for quantitative histomorphometry, EDX, and
the Raman metrics (SPSS Statistics, v.23, IBM Corpora-
tion); P values <0.05 were considered statistically sig-
nificant. Mean values + standard deviations are presented.

3 Results

3.1 Surface topography characterisation

The acid-etched surface exhibited morphological changes
attributable to the etching process (Fig. la, b), where
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sub-micron (200-500 nm diameter) pits with sharp walls in-
between dominated the implant surface. The machined
surface mainly displayed scratches and ridges along the
machining direction with a relatively featureless anisotropic
topography. An underlying waviness was observed per-
pendicular to the machining direction, most likely origi-
nating from the microstructure with elongated grains in the
wire drawing direction. Quantitative 3D-SEM confirmed
the higher roughness of the acid-etched surface compared to
the machined surface (Table 1). Based on the S, values,
both implant surfaces are considered smooth in accordance
with Albrektsson and Wennerberg [12].

3.2 Histology and histomorphometry

For both implant surfaces, threads located in cortical bone
were generally completely filled with high amounts of
remodelled, lamellar bone at four weeks of healing (Fig. 2).

The threads located in the marrow space, however, showed
an endosteal downgrowth of bone along the implant sur-
face. Osteocytes were seen in close proximity to the implant
surface. Using BSE-SEM, the acid-etched (38.7 +10 %)
and the machined (45.2 +5.3 %) surfaces showed similar
bone area (P < 0.15). On the other hand, the bone-implant
contact for the acid-etched (83.4 + 5.1 %) surface was sig-
nificantly higher (P <0.001) than the machined (48.3 +
13.5 %) surface.

3.3 Direct visualisation of osteocytes

Resin cast etching exposed a single layer of osteocytes
below the bone surface. Osteocytes in close proximity to the
implant surface extended several canaliculi towards and
away from the implant surface (Fig. 3a). A gap (separation
artefact) was observed between the machined implant sur-
face and bone, presumably due to tissue shrinkage during

Table 1 Surface topography

characterisation (mean values + Parameter Sa (nm) Sp (um) Sv (km) Sto, (um) Sdq Sar (%)
SD) Acid-etched  456+80  1.79+0.14  1.66+0.33 321+034 091+0.06  36.09 +4.52
Machined 1994122  0.83+040 054+012 133+£050 046+009  9.65+3.85

Geometric means of values obtained from two separate implants. S,: Arithmetic mean deviation of the
surface, Sp: Maximum peak height of the surface, S,: Maximum valley depth of the surface, S;q,: Ten point
height of the surface, Syq: Root-mean-square slope of the surface, Sy,: Developed surface area ratio

Fig 2 Qualitative histology.
High amounts of remodelled,
lamellar bone within the cortical
threads of the a acid-etched and
the b machined implant surfaces.
Osteocytes are found in close
vicinity to the ¢ acid-etched and
the d machined implant surfaces
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Fig 3 Direct visualisation of osteocytes in close proximity to the
implant surface. a Poor mechanical interlocking between the machined
implant surface and bone results in the formation of a gap (separation
artefact) during sample processing. This gap is subsequently occupied
by the embedding resin, which appears as a thin film at the bone-
implant interface. An osteocyte (Ot) is seen close to the implant sur-
face with several canaliculi extending towards and away from the
implant surface (white arrowheads). In contrast, no gap (separation
artefact) appears adjacent to the acid-etched surface (i.e., a surface that
affords better mechanical interlocking) (b—f). b An osteocyte lies with
its long axis parallel to the implant surface. Several canaliculi extend
towards the implant surface, some stretching up to 20 um (black

sample preparation [20]. This gap is subsequently occupied
by the embedding resin [21, 22], which appears as a thin
film between the mineralised tissue and the implant surface
(Fig. 3a). However, no such gap had formed adjacent to the
acid-etched surface.

Osteocytes closest to the implant surface were generally
aligned with their long axes parallel to the surface
(Fig. 3a—d, f). Numerous canaliculi extended up to 20 um
towards the implant surface (Fig. 3b), some even branching
(Fig. 3c, d), and directly contacting the sub-micron textured
surface. Seen from above, osteocytes were observed resting
directly on the implant surface and numerous canaliculi
were closely adapted (white arrowheads) to the acid-etched
topographical features (Fig. 3e).

3.4 Electron microscopy

Considering only the elements Ti, Ca, P, and O, high
amounts of Ti were found in the interfacial tissue (Fig. 4a)
at both the acid-etched (9.24 + 1.85 at.%) and the machined
(9.41 + 1.07 at.%) implants. However, Ti was also detected
in the native bone outside the acid-etched (1.52 +0.16 at.%)
and the machined (1.79 +0.44 at.%) implant threads. The
Ca/P ratio of the interfacial tissue adjacent to the acid-

arrowhead). ¢, d Several canaliculi extend towards the acid-etched
implant surface, branching (black arrowheads) and making an intimate
contact to the sub-micron texture. e Seen from above, an osteocyte
rests directly on the acid-etched implant surface and numerous
canaliculi are closely adapted (white arrowheads) to the topographical
features. f Osteocyte alignment provides insight into the origins of
lamellar structure of bone adjacent to the implant surface. An osteocyte
extends numerous canaliculi towards the implant surface while
several canaliculi also extend perpendicularly away from the implant
surface. Another, presumably younger, osteocyte (asterisk) lines
the bone marrow (Ma) and is aligned parallel to the lamellar
direction

etched surface (1.28 +0.11) was significantly lower (P =
0.003) than the machined surface (1.47 +0.17). The Ca/P
ratio of the native bone was 1.54 +0.10 (data pooled for
both implant types).

In the HAADF-STEM mode, the newly formed bone
appeared well adapted to the sub-micron contour of the
acid-etched implant surface (Fig. 4b), allowing mechanical
interlocking [11]. STEM-EDX analysis indicated high Ca
and P content of bone (Fig. 4c, d). No Ti was detected at a
distance of 100—150 nm from the implant surface.

3.5 Raman spectroscopy

Raman spectra were recorded at 10, 25, 40, 55, 70, 85 and
100 um (1-7, respectively) from the implant surface in
mineralised tissue encompassing two successive lamellar
packets, avoiding visible osteocyte lacunae, cracks and
other unmineralised structures (Fig. 5). The averaged
Raman spectra indicated differences in the composition of
bone formed up to 100 um from the two implant surfaces.
The apatite-to-collagen ratio was higher (P =0.009)
for the machined surface (1.57 +0.2) than the acid-etched
surface (1.23 +0.1). The mineral crystallinity for the
machined and the acid-etched surfaces was comparable

@ Springer
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Fig 4 a Backscattered electron (BSE-SEM) image showing an
osteocyte-free zone along the implant thread where a 5 x 5 point grid-
matrix (equal vertical and horizontal spacing) enclosing ~1 um?> was
placed (white box) for EDX analysis. The arrow indicates separation at
the bone-implant interface attributable to sample processing proce-
dures. b HAADF-STEM image showing the interface tissue well

(FWHM v, PO, =2048+0.70 and 21.08+0.34,
respectively. P =0.085). The carbonate-to-phosphate
ratios were also similar (P=0.141) for the machined
(0.170 +£0.004) and the acid-etched (0.166 + 0.006)
surfaces.

Amide bands represent peptide-linkages within proteins
and indicate that the helical conformation of type-I collagen
molecules remains intact. For the acid-etched surface, the
Amide III bands appeared to resolve into two peaks at
approximately 1240 and 1270 cm™, which are related to
C-N stretching and N-H in-plane deformation modes,
respectively [23]. Corresponding to a variation in the BSE
Z- (atomic number) contrast of the two lamellar packets
analysed, the difference in the §(CH,) and Amide (I and III)
signal intensity at 10—40um vs. 55-100 pm from the
machined surface was quite pronounced (Fig. 5c). In com-
parison, at 70—-100 um from the acid-etched surface, the
Amide III band clearly shows the v(C-N) and 6(N-H)
doublet at ~1245 and ~1268 cm™, respectively. The Amide
I band shows a shoulder at ~1640 cm™" and an intense peak
at ~1664 cm™, assigned to Y(C=C) and 1(C=0) stretching
vibrations, respectively.

Raman signatures attributable to amino acids proline
(Pro), hydroxyproline (Hyp), and phenylalanine (Phe) were
stronger in the bone formed next to the acid-etched surface.
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adapted to the sub-micron topography of the acid-etched surface.
STEM-EDX analysis of the implant ¢ showing high levels of titanium,
and oxygen (black circle in b), and the interfacial tissue d adjacent to
the implant surface (white circle in b) confirming the presence of
mineralised bone

These amino acids are the major constituents of type-I
collagen and therefore represent the organic matrix. A sharp
peak at 1600-1604 cm™ may be assigned to the ring
vibration modes of either tyrosine (Tyr) or phenylalanine
residues [24]. The intensity of this peak (1600—1604 cm_l)
seemingly changes proportionately with the 1004 cm™
phenylalanine peak, both of which were higher for the acid-
etched surface. The 6(CH,) peak was also more intense for
the acid-etched surface.

4 Discussion

After four weeks of healing, the bone-implant contact was
significantly higher for the acid-etched surface (vs. the
machined surface). At this time point, earlier studies have
demonstrated high amounts of bone in direct contact with
the implant surface, biomechanical stability of the bone-
implant interface, and steady-state bone remodelling based
on the relative expression of the genes coding for receptor
activator of nuclear factor kappa-B ligand (RANKL) and
osteoprotegerin (OPG) [25, 26].

The appearance of a separation artefact during the sample
processing steps of fixation and dehydration [20] suggests
poor mechanical interlocking between the machined
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Fig 5 Raman spectra recorded at 10, 25, 40, 55, 70, 85 and 100 um
(indicated as 1-7) from the acid-etched a and machined b surfaces at the
deepest part of the implant threads. All spectra are normalised to the
intensity of the v; PO,>~ band at ~960cm™. An averaged spectrum
(Avg) of the seven individual spectra is also shown. While mineral

implant surface and bone. On the other hand, the absence of
such a gap adjacent to the acid-etched surface is in analogy
to previous observations of implant surfaces that yield
superior mechanical interlocking [22, 27]. Sample proces-
sing procedures (e.g., grinding and polishing) also affect the
elemental analysis by SEM-EDX, where titanium could be
detected in the native bone, up to several tens of micro-
metres from the implant surface. In contrast, STEM-EDX
did not reveal the presence of titanium within the interfacial
tissue (100-150 nm from the implant surface), thereby
substantiating the assumption that titanium is smeared
across the bone-implant block during the grinding and
polishing procedures.

Osteocyte alignment provides valuable insight into the
origins of the lamellar structure of bone [28]. During the
transition from a predominantly marrow-like tissue towards
organised lamellar bone, osteocytes closest to the implant
surface originate from the osteoblasts that were the earliest
to be recruited towards the surface. It may be speculated
that osteoblasts (or precursor cells) attach with their long

350 550 750 950 1150 1350 1550 1750
Raman shift (cm™')

1200 1300 1400 1500 1600 1700 1800
Raman shift (cm™')

crystallinity and the carbonate-to-phosphate ratios were comparable for
both implant surfaces, the apatite-to-collagen ratio was marginally higher
for the machined implant surface. ¢ Detail of the 1200—1800 cm™ region
(overlaid spectra: grey acid-etched; black machined), showing subtle
variations in the collagen content

axes parallel to the implant surface and produce extra-
cellular matrix. Later, a second layer of osteoblasts arrives
at the bone formation front while the non-mineralised tissue
gradually recedes. Each successive layer/sheet of osteo-
blasts retains a directional relationship to the underlying
bone surface [29]. It is believed that finger-like cytoplasmic
extensions beneath the osteoblasts (i.e., on the bone face)
form a meshwork of flat processes that assemble collagen
fibrils into compact, regularly polarised bundles through
temporal and spatial synchronism of groups of osteoblasts.
A second set of thinner processes is directed perpendicu-
larly into the depth of the fibrillar matrix, and these pro-
cesses reside within canaliculi after the osteoblast-osteocyte
transformation [30].

The v, PO,>/Amide III ratio is less susceptible to var-
iation with orientation, and therefore provides more accu-
rate information about the composition of bone [31]. In the
present work, we observed differences in the apatite-to-
collagen ratios for bone formed up to 100 um from the
implant surface. However, the CO32_ content remained
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similar. The carbonate-to-phosphate ratio is a measure of
carbonate substitution into the apatite lattice. CO5> pre-
dominantly replaces PO4>~ in biological apatite, known as
B-type carbonate substitution [32], thereby affecting various
physical properties of apatite, e.g., shortening of the a-axis,
elongation of the c-axis, decreases in crystallite size, ther-
mal stability, solubility etc. [33-35]. These observations
suggest that only the mineral fraction varied between the
two types of implant surfaces, but the bone apatite itself was
similar in terms of mineral crystallinity and the degree of
carbonation. While the implant surface may facilitate bone
remodelling and maturation at different rates, an alternative
explanation may be local variations in the structure and
composition of individual packets of lamellar bone, as also
observed by quantitative backscattered electron imaging
(gqBEI) [36].

It may be speculated that implant surfaces that influence
bone to have higher amounts of organic matrix without
affecting the properties of the mineral phase itself (i.e.,
crystallinity and/or carbonate content) allow the interfacial
tissue to be more resilient. Such interfacial tissue may
therefore be better suited for load bearing and load transfer
from a metal implant into the surrounding bone than den-
sely mineralised tissue which may be brittle and susceptible
to crack initiation and propagation.

5 Conclusions

After four weeks of healing, similar amounts of new bone
had formed at both implant types, while the acid-etched
surface showed a 73 % increase in the bone-implant contact.
Osteocytes are able to maintain a direct intimate contact
with topologically modified, but nominally smooth titanium
surfaces prepared by acid-etching. The elemental (e.g., the
Ca/P ratio) and molecular composition (e.g., the apatite-to-
collagen ratio) of the interfacial tissue may vary with
changes in implant surface topography, independently of
the amount of bone formed.
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