Skip to main content
Log in

Au nanoparticle-modified ZnO/SnO2 heterojunction nanocomposites for highly sensitive detection of NH3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The development of resistive NH3 gas sensor detection technology has important practical significance for environmental protection and human health monitoring. We prepared a novel gas-sensitive nanocomposite of ZnO/SnO2 heterojunction modified by Au nanoparticles by simple synthesis methods including hydrothermal reduction, solvothermal, and wet impregnation. Then, we analyzed the crystallinity, morphology, and elemental composition of the prepared materials by different characterization means, which proved the successful preparation of Au-ZnO/SnO2 materials. We tested the response performance of the prepared sensor to NH3, and the Au-ZnO/SnO2-2 (Zn/Sn = 0.3wt%) sensor has the best performance. Its response value to 100 ppm NH3 can be up to 11 at the optimal temperature 240 °C, which is about 8 times better performance than the unmodified SnO2 sensor. In addition, it has fast response and recovery performance (1 min/13 min), good repeatability, long-term stability and selectivity. Finally, we analyzed the high sensing properties of Au-ZnO/SnO2-2 materials, which can be attributed to the construction of heterojunction promoting electron transfer and the successful modification of Au nanoparticles increasing the adsorption site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files. It will be made available on request.

References

  1. J. Lu, Q. Zhou, W. Qi, S. Qu, J. Bi, Sci. Total. Environ. 896, 165279 (2023). https://doi.org/10.1016/j.scitotenv.2023.165279

    Article  CAS  PubMed  Google Scholar 

  2. H.B. Møller, P. Sørensen, J.E. Olesen, S.O. Petersen, T. Nyord, S.G. Sommer, Sustainability. (2022). https://doi.org/10.3390/su14031849

    Article  Google Scholar 

  3. Y. Fu, H. Qiao, Q. Feng, K. Chen, Y. Li, C. Xue, Y. Zhang, Constr. Build. Mater. 401, 132901 (2023). https://doi.org/10.1016/j.conbuildmat.2023.132901

    Article  CAS  Google Scholar 

  4. L. Li, Z. Chen, J. Lu, M. Wei, Y. Huang, P. Jiang, ACS Omega 6(5), 3921–3930 (2021). https://doi.org/10.1021/acsomega.0c05778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. K.E. Wyer, D.B. Kelleghan, V. Blanes-Vidal, G. Schauberger, T.P. Curran, J. Environ. Manage. 323, 116285 (2022). https://doi.org/10.1016/j.jenvman.2022.116285

    Article  CAS  PubMed  Google Scholar 

  6. C.C. Chen, J.C. Hsieh, C.H. Chao, W.S. Yang, H.T. Cheng, C.K. Chan, C.J. Lu, H.F. Meng, H.W. Zan, J. Breath Res. 14(3), 036002 (2020). https://doi.org/10.1088/1752-7163/ab728b

    Article  CAS  PubMed  Google Scholar 

  7. H. Torul, M. Durak, I.H. Boyaci, U. Tamer, Electrochim. Acta 426, 140769 (2022). https://doi.org/10.1016/j.electacta.2022.140769

    Article  CAS  Google Scholar 

  8. D. Ripepi, R. Zaffaroni, M. Kolen, J. Middelkoop, F.M. Mulder, Sustain. Energy Fuels 6(8), 1945–1949 (2022). https://doi.org/10.1039/D2SE00123C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. S.M. Majhi, A. Mirzaei, H.W. Kim, S.S. Kim, T.W. Kim, Nano Energy 79, 105369 (2021). https://doi.org/10.1016/j.nanoen.2020.105369

    Article  CAS  PubMed  Google Scholar 

  10. M. Akbari-Saatlu, M. Procek, C. Mattsson, G. Thungström, H.E. Nilsson, W. Xiong, B. Xu, Y. Li, H.H. Radamson, Nanomaterials (2020). https://doi.org/10.3390/nano10112215

    Article  PubMed  PubMed Central  Google Scholar 

  11. Z. Kong, G. Wang, R. Liang, J. Su, M. Xun, Y. Miao, S. Gu, J. Li, K. Cao, H. Lin, B. Li, Y. Ren, J. Li, J. Xu, H.H. Radamson, Nanomaterials (2022). https://doi.org/10.3390/nano12060981

    Article  PubMed  PubMed Central  Google Scholar 

  12. D. Tyagi, H. Wang, W. Huang, L. Hu, Y. Tang, Z. Guo, Z. Ouyang, H. Zhang, Nanoscale 12(6), 3535–3559 (2020). https://doi.org/10.1039/C9NR10178K

    Article  CAS  PubMed  Google Scholar 

  13. D. Zhang, Z. Yang, S. Yu, Q. Mi, Q. Pan, Coord. Chem. Rev. 413, 213272 (2020). https://doi.org/10.1016/j.ccr.2020.213272

    Article  CAS  Google Scholar 

  14. M.V. Nikolic, V. Milovanovic, Z.Z. Vasiljevic, Z. Stamenkovic, Sensors. (2020). https://doi.org/10.3390/s20226694

    Article  PubMed  PubMed Central  Google Scholar 

  15. M. Zhou, Q. Liu, Z. Cao, X. Yang, Y. Duan, Z. Shen, J. Mater. Sci. Mater. Electron. 34(21), 1570 (2023). https://doi.org/10.1007/s10854-023-10941-6

    Article  CAS  Google Scholar 

  16. Q. Zhang, X.X. Qin, F.P. Duan-Mu, H.M. Ji, Z.R. Shen, X.P. Han, W.B. Hu, Angew. Chem. Int. Ed. 57(30), 9351–9356 (2018). https://doi.org/10.1002/anie.201804319

    Article  CAS  Google Scholar 

  17. J. Liu, L. Zhang, J. Fan, B. Zhu, J. Yu, Sens. Actuators, B Chem. 331, 129425 (2021). https://doi.org/10.1016/j.snb.2020.129425

    Article  CAS  Google Scholar 

  18. B. Zhang, N. Bao, T. Wang, Y. Xu, Y. Dong, Y. Ni, P. Yu, Q. Wei, J. Wang, L. Guo, Y. Xia, J. Alloy. Compd. 867, 159076 (2021). https://doi.org/10.1016/j.jallcom.2021.159076

    Article  CAS  Google Scholar 

  19. J. Shen, S. Xu, C. Zhao, X. Qiao, H. Liu, Y. Zhao, J. Wei, Y. Zhu, ACS Appl. Mater. Interfaces 13(48), 57597–57608 (2021). https://doi.org/10.1021/acsami.1c17695

    Article  CAS  PubMed  Google Scholar 

  20. M. Zhou, F. Guo, F. Duanmu, Z. Shen, J. Mater. Sci. Mater. Electron. 32(22), 26676–26687 (2021). https://doi.org/10.1007/s10854-021-07045-4

    Article  CAS  Google Scholar 

  21. S. Cao, N. Sui, P. Zhang, T. Zhou, J. Tu, T. Zhang, J. Colloid Interface Sci. 607, 357–366 (2022). https://doi.org/10.1016/j.jcis.2021.08.215

    Article  CAS  PubMed  Google Scholar 

  22. P. Li, L. Dong, C. Li, B. Lu, C. Yang, B. Peng, W. Wang, Y. Miao, W. Liu, Nanoscale 15(28), 12105–12115 (2023). https://doi.org/10.1039/D3NR00899A

    Article  CAS  PubMed  Google Scholar 

  23. Y. Ma, L. Dong, P. Li, L. Hu, B. Lu, Y. Miao, B. Peng, A. Tian, W. Liu, ACS Appl. Mater. Interfaces 14(42), 48220–48228 (2022). https://doi.org/10.1021/acsami.2c12266

    Article  CAS  PubMed  Google Scholar 

  24. Y. Masuda, Sens. Actuators B Chem. 364, 131876 (2022). https://doi.org/10.1016/j.snb.2022.131876

    Article  CAS  Google Scholar 

  25. L. Wang, S. Ma, X. Xu, J. Li, T. Yang, P. Cao, P. Yun, S. Wang, T. Han, Sens. Actuators B Chem. 344, 130111 (2021). https://doi.org/10.1016/j.snb.2021.130111

    Article  CAS  Google Scholar 

  26. B. Liu, K. Li, Y. Luo, L. Gao, G. Duan, Chem. Eng. J. 420, 129881 (2021). https://doi.org/10.1016/j.cej.2021.129881

    Article  CAS  Google Scholar 

  27. C. Zang, K. Ma, Y. Yano, S. Li, H. Yamahara, M. Seki, T. Iizuka, H. Tabata, IEEE Sens. J. 23(16), 17925–17931 (2023). https://doi.org/10.1109/JSEN.2023.3294409

    Article  CAS  Google Scholar 

  28. C. Lou, Q. Huang, Z. Li, G. Lei, X. Liu, J. Zhang, Sens. Actuators B Chem. 345, 130429 (2021). https://doi.org/10.1016/j.snb.2021.130429

    Article  CAS  Google Scholar 

  29. M. Akbari-Saatlu, M. Procek, C. Mattsson, G. Thungström, T. Törndahl, B. Li, J. Su, W. Xiong, H.H. Radamson, ACS Appl. Nano Mater. 5(5), 6954–6963 (2022). https://doi.org/10.1021/acsanm.2c00940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. H.H. Radamson, A. Hallén, I. Sychugov, A. Azarov, Analytical Methods and Instruments for Micro- and Nanomaterials (Springer, Berlin, 2023). https://doi.org/10.1007/978-3-031-26434-4

    Book  Google Scholar 

  31. C. Wang, J. Bai, H. Wang, Y. Li, Y. Li, F. Liu, X. Liang, P. Sun, G. Lu, Sens. Actuators B Chem. 351, 130900 (2022). https://doi.org/10.1016/j.snb.2021.130900

    Article  CAS  Google Scholar 

  32. J.F. Tang, C.C. Fang, C.L. Hsu, Appl. Surf. Sci. 613, 156094 (2023). https://doi.org/10.1016/j.apsusc.2022.156094

    Article  CAS  Google Scholar 

  33. C. Sun, H. Liu, J. Shao, G. Pan, X. Yang, M. Wang, J. Dong, M. Zhu, Y. Qi, Sens. Actuators B Chem. 376, 132951 (2023). https://doi.org/10.1016/j.snb.2022.132951

    Article  CAS  Google Scholar 

  34. L. Zhou, X. Chang, W. Zheng, X. Liu, J. Zhang, Chem. Eng. J. 475, 146300 (2023). https://doi.org/10.1016/j.cej.2023.146300

    Article  CAS  Google Scholar 

  35. W. Wang, J. Xian, J. Li, M. Yu, Q. Duan, C.M. Leung, M. Zeng, X. Gao, Sens. Actuators B Chem. 398, 134724 (2024). https://doi.org/10.1016/j.snb.2023.134724

    Article  CAS  Google Scholar 

  36. X. Song, R. Hu, S. Xu, Z. Liu, J. Wang, Y. Shi, J. Xu, K. Chen, L. Yu, ACS Appl. Mater. Interfaces 13(12), 14377–14384 (2021). https://doi.org/10.1021/acsami.1c00585

    Article  CAS  PubMed  Google Scholar 

  37. J.S. Niu, I.P. Liu, K.H. Chen, J.H. Tsai, W.C. Hsu, W.C. Liu, Sens. Actuators B Chem. 369, 132241 (2022). https://doi.org/10.1016/j.snb.2022.132241

    Article  CAS  Google Scholar 

  38. H.I. Chen, C.Y. Hsiao, W.C. Chen, C.H. Chang, T.C. Chou, I.P. Liu, K.W. Lin, W.C. Liu, Sens. Actuators B Chem. 256, 962–967 (2018). https://doi.org/10.1016/j.snb.2017.10.032

    Article  CAS  Google Scholar 

  39. N.V. Toan, C.M. Hung, N.V. Duy, N.D. Hoa, D.T.T. Le, N.V. Hieu, Mater. Sci. Eng. B 224, 163–170 (2017). https://doi.org/10.1016/j.mseb.2017.08.004

    Article  CAS  Google Scholar 

  40. J.H. Tsai, J.S. Niu, W.C. Shao, W.C. Liu, Sens. Actuators, B Chem. 371, 132589 (2022). https://doi.org/10.1016/j.snb.2022.132589

    Article  CAS  Google Scholar 

  41. W. Wei, H. Zhang, T. Tao, X. Xia, Y. Bao, M. Lourenço, K. Homewood, Z. Huang, Y. Gao, Energy Environ. Mater. 6(3), e12570 (2023). https://doi.org/10.1002/eem2.12570

    Article  CAS  Google Scholar 

  42. R. Wu, T. Liu, X. Chen, X.T. Yin, J. Alloy. Compd. 960, 170527 (2023). https://doi.org/10.1016/j.jallcom.2023.170527

    Article  CAS  Google Scholar 

  43. N. Van Duy, D.T.T. Trang, D.T.T. Le, C.M. Hung, M. Tonezzer, H. Nguyen, N.D. Hoa, Thin Solid Films 767, 139682 (2023). https://doi.org/10.1016/j.tsf.2023.139682

    Article  CAS  Google Scholar 

  44. Z. Deng, Y. Zhang, Z. Song, D. Xu, B. Zi, P. Zhu, Q. Lu, J. Zhang, J. Zhao, Q. Liu, ACS Sensors. 7(11), 3501–3512 (2022). https://doi.org/10.1021/acssensors.2c01840

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge financially support by the National Natural Science Foundation of China (21872102 and 22172080).

Funding

This work was supported by the National Natural Science Foundation of China (21872102 and 22172080).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by QL, RZ, HZ, and YS. The first draft of the manuscript was written by QL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yang Song, Yingnan Duan or Zhurui Shen.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

No declaration.

Informed consent

All authors agreed to participate.

Consent for publication

All authors agreed to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1060 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Zhao, R., Zhan, H. et al. Au nanoparticle-modified ZnO/SnO2 heterojunction nanocomposites for highly sensitive detection of NH3. J Mater Sci: Mater Electron 35, 626 (2024). https://doi.org/10.1007/s10854-024-12398-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12398-7

Navigation