Skip to main content
Log in

Convenient interface engineering of hierarchical flower spherical Bi-MOF/Bi2WO6 heterostructures for high-performance visible light photocatalytic degradation of tetracycline hydrochloride

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, three-dimensional Bi-MOF/Bi2WO6 microspheres were successfully prepared using Bi2WO6 microspheres as a template with the help of organometallic skeleton (MOF), which has diverse pore structures, abundant active sites, and good redox activity. Tetracycline hydrochloride (TC) degradation was used to gauge the composites performed as photocatalysts under simulating sunlight irradiation. The results show that the Bi-MOF/Bi2WO6 composite could remove most of TC within 60 min with a degradation rate higher than 89.2% and a reaction rate constant k as high as 0.0373 min−1, which is 2.0 times higher than that of pure Bi2WO6. The enhanced light absorption intensity in the UV area, as well as the increased electron/hole separation and compounding efficiency were considered as the reasons for the highly improved photocatalytic performance of the composites. By examining potential electron transport routes, the formation of heterojunction was confirmed. A series of Bi-MOF/Bi2WO6 heterostructures were prepared using Bi-MOF as a hard template to create a close contact heterojunction interface. This study provides a strategy for the design and preparation of highly reactive Bi2WO6-based heterojunction materials that can effectively address the challenges of environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

Data availability

Data are available from the authors upon reasonable request and with permission.

References

  1. Q. Zhang, A. Mirzaei, Y. Wang et al., Extracting hot holes from plasmonic semiconductors for photocatalysis. Appl. Catal. B-Environ. 317, 121792 (2022)

    Article  CAS  Google Scholar 

  2. D. Bidwai, N.K. Sahu, S.J. Dhoble, A. Mahajan, D. Haranath, G. Swati, Review on long afterglow nanophosphors, their mechanism and its application in round-the-clock working photocatalysis. Methods Appl. Fluoresc. 10, 032001 (2022)

    Article  CAS  Google Scholar 

  3. M. Humayun, C. Wang, W. Luo, Recent progress in the synthesis and applications of composite photocatalysts: a critical review. Small Methods 6, 2101395 (2022)

    Article  CAS  Google Scholar 

  4. S. Kohtani, A. Kawashima, H. Miyabe, Stereoselective organic reactions in heterogeneous semiconductor photocatalysis. Front. Chem. 7, 00630 (2019)

    Article  CAS  Google Scholar 

  5. Y. Yu, C.Y. Cao, H. Liu et al., A Bi/BiOCl heterojunction photocatalyst with enhanced electron-hole separation and excellent visible light photodegrading activity. J. Mater. Chem. A 2, 1677–1681 (2014)

    Article  CAS  Google Scholar 

  6. J. Qin, Y. Dou, F. Wu et al., In-situ formation of Ag2O in metal-organic framework for light-driven upcycling of microplastics coupled with hydrogen production. Appl. Catal. B-Environmental. 319, 121940 (2022)

    Article  CAS  Google Scholar 

  7. S. Liang, Y. Chen, W. Han, Y. Jiao, W. Li, G. Tian, Hierarchical S-scheme titanium dioxide@cobalt-nickel based metal-organic framework nanotube photocatalyst for selective carbon dioxide photoreduction to methane. J. Colloid Interface Sci. 630, 11–22 (2023)

    Article  CAS  PubMed  Google Scholar 

  8. C. Liu, T. Bao, L. Yuan et al., Semiconducting MOF@ZnS heterostructures for photocatalytic hydrogen peroxide production: heterojunction coverage matters. Adv. Funct. Mater. 32, 2111404 (2022)

    Article  CAS  Google Scholar 

  9. L. Cheng, M. Xie, Y. Sun, H. Liu, Bi2WO6-wrapped 2D Ni-MOF sheets with significantly improved photocatalytic activity by a direct Z-scheme electron transfer. J. Alloys Compd. 896, 163055 (2022)

    Article  CAS  Google Scholar 

  10. M. Xu, C. Sun, X. Zhao, H. Jiang, H. Wang, P. Huo, Fabricated hierarchical CdS/Ni-MOF heterostructure for promoting photocatalytic reduction of CO2. Appl. Surf. Sci. 576, 151792 (2022)

    Article  CAS  Google Scholar 

  11. Y. Chen, D. Yang, X. Xin et al., Multi-stepwise charge transfer via MOF@MOF/TiO2 dual-heterojunction photocatalysts towards hydrogen evolution. J. Mater. Chem. A 10, 9717–9725 (2022)

    Article  CAS  Google Scholar 

  12. C. Jing, Y. Zhang, J. Zheng et al., In-situ constructing visible light CdS/Cd-MOF photocatalyst with enhanced photodegradation of methylene blue. Particuology. 69, 111–122 (2022)

    Article  CAS  Google Scholar 

  13. Z. Hang, H. Yu, L. Luo, X. Huai, Nanoporous g-C3N4/MOF: high-performance photoinitiator for UV-curable coating. J. Mater. Sci. 54, 13959–13972 (2019)

    Article  CAS  Google Scholar 

  14. Z. Lei, Y. Wu, L. Tang, J. Chen, Preparation of MOF-Zn@ZnO composite and its properties in SBR. Polym. Compos. 43, 8749–8760 (2022)

    Article  CAS  Google Scholar 

  15. X. Zhao, X. He, A. Hou et al., Growth of Cu2O nanoparticles on two-dimensional zr-ferrocene- metal-organic framework nanosheets for photothermally enhanced chemodynamic antibacterial therapy. Inorg. Chem. 61, 9328–9338 (2022)

    Article  CAS  PubMed  Google Scholar 

  16. Q.X. Wang, G. Li, Bi(iii) MOFs: syntheses, structures and applications. Inorg. Chem. Front. 8, 572–589 (2021)

    Article  CAS  Google Scholar 

  17. Y.B. Huang, J. Liang, X.S. Wang, R. Cao, Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions. Chem. Soc. Rev. 46, 126–157 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. F. Chen, H.F. Drake, L. Feng et al., Metal–organic frameworks as versatile platforms for organometallic chemistry. Inorganics 9, 27 (2021)

    Article  CAS  Google Scholar 

  19. S. Liu, Y.Y. Sun, Y.P. Wu et al., Common strategy: mounting the rod-like Ni-based MOF on hydrangea-shaped nickel hydroxide for superior electrocatalytic methanol oxidation reaction. ACS Appl. Mater. Interfaces 13, 26472–26481 (2021)

    Article  CAS  PubMed  Google Scholar 

  20. S. Liu, X. Wang, H.G. Yu et al., Two new pseudo-isomeric nickel (II) metal-organic frameworks with efficient electrocatalytic activity toward methanol oxidation. Rare Met. 40, 489–498 (2021)

    Article  CAS  Google Scholar 

  21. C.Y. Sun, Q.H. Xu, Y. Xie et al., High-efficient one-pot synthesis of carbon quantum dots decorating Bi2MoO6 nanosheets heterostructure with enhanced visible-light photocatalytic properties. J. Alloys Compd. 723, 333–344 (2017)

    Article  CAS  Google Scholar 

  22. R.A. He, D.F. Xu, B. Cheng, J.G. Yu, W.K. Ho, Review on nanoscale bi-based photocatalysts. Nanoscale Horizons. 3, 464–504 (2018)

    Article  CAS  PubMed  Google Scholar 

  23. F.Y. Qin, P.Z. Cui, L. Hu et al., Construction of multi-shelled Bi2WO6 hollow microspheres with enhanced visible light photo-catalytic performance. Mater. Res. Bull. 99, 331–335 (2018)

    Article  CAS  Google Scholar 

  24. Y. Ding, J. Wang, M. Liao et al., Deep oxidative desulfurization of dibenzothiophene by novel POM-based IL immobilized on well-ordered KIT-6. Chem. Eng. J. 418, 151–161 (2021)

    Article  Google Scholar 

  25. H. Jiang, J. He, C. Deng, X. Hong, B. Liang, Advances in Bi2WO6-based photocatalysts for degradation of organic pollutants. Molecules 27, 8698 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. S. Pinchujit, A. Phuruangrat, S. Wannapop et al., Bi2WO6 thin nanoplates decorated with pt nanoparticles possessing enhanced visible-light-driven photocatalytic performance for rhodamine B degradation. Russ. J. Inorg. Chem. 67, S199–S209 (2022)

    Article  Google Scholar 

  27. H. Yi, L. Qin, D.L. Huang et al., Nano-structured bismuth tungstate with controlled morphology: fabrication, modification, environmental application and mechanism insight. Chem. Eng. J. 358, 480–496 (2019)

    Article  CAS  Google Scholar 

  28. J. Di, C. Chen, C. Zhu et al., Bismuth vacancy mediated single unit cell Bi2WO6 nanosheets for boosting photocatalytic oxygen evolution. Appl. Catal. B-Environ. 238, 119–125 (2018)

    Article  CAS  Google Scholar 

  29. J.G. Hou, S.Y. Cao, Y.Z. Wu et al., Simultaneously efficient light absorption and charge transport of phosphate and oxygen-vacancy confined in bismuth tungstate atomic layers triggering robust solar CO2 reduction. Nano Energy. 32, 359–366 (2017)

    Article  CAS  Google Scholar 

  30. S. Khanam, S.K. Rout, Plasmonic metal/semiconductor heterostructure for visible light-enhanced H2 production. Acs Omega 7, 25466–25475 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. H. Liang, H. Sun, Y. Zhu, L. Fan, Q. Xu, Bi/Bi2WO6 plasmonic composites with enhanced photocatalytic activity for degradation of gasphase toluene. Catal. Lett. 153, 559–569 (2023)

    Article  CAS  Google Scholar 

  32. C. Yang, Y. Wang, J. Yu, S. Cao, Ultrathin 2D/2D Graphdiyne/Bi2WO6 heterojunction for gas-phase CO2 photoreduction. Acs Appl. Energy Mater. 4, 8734–8738 (2021)

    Article  CAS  Google Scholar 

  33. H. Zeng, J. Yi, L. Zhang, H. Wu, K. Wu, J. Guo, Fabrication of MIL-53(Fe)/Ag3PO4 cooperative photoreduction of Ag-0 particles with outstanding efficiency for photodriven H2 evolution and pollutant degradation. Reaction Chem. Eng. 7, 2593–2610 (2022)

    Article  CAS  Google Scholar 

  34. K. Wu, S.J. Song, H.D. Wu, J. Guo, L.F. Zhang, Facile synthesis of flower-like Bi2WO6/C3N4/CNT ternary composite with enhanced photoactivity: influencing factors and mechanism. J. Mater. Sci. 55, 15945–15962 (2020)

    Article  CAS  Google Scholar 

  35. A.K. Inge, M. Koppen, J. Su et al., Unprecedented topological complexity in a metal–organic framework constructed from simple building units. J. Am. Chem. Soc. 138, 1970–1976 (2016)

    Article  CAS  PubMed  Google Scholar 

  36. M.A. Hink, Fluorescence correlation spectroscopy. Methods Mole Biol 1251, 135–150 (2015)

    Article  CAS  Google Scholar 

  37. X.Y. Liao, W.J. Wei, Y.Q. Zhou et al., A Ti-based bi-MOF for the tandem reaction of H2O2 generation and catalytic oxidative desulfurization. Catal. Sci. Technol. 10, 1015–1022 (2020)

    Article  CAS  Google Scholar 

  38. Y.X. Deng, M.Y. Xing, J.L. Zhang, An advanced TiO2/Fe2TiO5/Fe2O3 triple-heterojunction with enhanced and stable visible-light-driven fenton reaction for the removal of organic pollutants. Appl. Catal. B-Environ. 211, 157–166 (2017)

    Article  CAS  Google Scholar 

  39. P. Kumar, S. Verma, N.C. Korosin, B. Zener, U.L. Stangar, Increasing the photocatalytic efficiency of ZnWO4 by synthesizing a Bi2WO6/ZnWO4 composite photocatalyst. Catal. Today. 397, 278–285 (2022)

    Article  Google Scholar 

  40. X.D. Zhu, F.Q. Qin, X.P. Zhang et al., Synthesis of tin-doped three-dimensional flower-like bismuth tungstate with enhanced photocatalytic activity. Int. J. Mol. Sci. 23, 8422 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This project was financially supported by the National Natural Science Foundation of China [Grant No. 22272124], Scientific Research Fund of Zhejiang Provincial Education Department [Grant No. Y202250028], Natural Science Foundation of Huzhou City [Grant No. 2022YZ07], and Graduate Innovative Fund of Wuhan Institute of Technology [Grant No. CX2022006].

Author information

Authors and Affiliations

Authors

Contributions

Fengrui Li contributed toward methodology, validation, formal analysis, and writing original draft. Xiao Dai contributed toward methodology, validation, formal analysis, and writing original draft. Linfeng Zhang contributed toward supervision, visualization, and writing review and editing. Zhe Zhang contributed toward investigation, data curation, and writing review and editing. Huadong Wu contributed toward idea, investigation, visualization, and writing original draft. Jianding Li contributed toward supervision, visualization, and writing review and editing. Jia Guo contributed toward supervision, visualization, and writing review and editing.

Corresponding authors

Correspondence to Linfeng Zhang, Jianding Li or Jia Guo.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Informed consent

The present work does not involve any animal or human participants.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1899.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Dai, X., Zhang, L. et al. Convenient interface engineering of hierarchical flower spherical Bi-MOF/Bi2WO6 heterostructures for high-performance visible light photocatalytic degradation of tetracycline hydrochloride. J Mater Sci: Mater Electron 35, 463 (2024). https://doi.org/10.1007/s10854-024-12258-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12258-4

Navigation