Skip to main content
Log in

The role of iron oxide on the electronic and electrical properties of nitrogenated reduced graphene oxide: experimental and density functional theory approach

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, nitrogenated reduced graphene oxide (N-rGO) was synthesized and functionalized with iron III oxide (Fe2O3) nanoparticles via a two-step facile sol–gel method. The electrical properties of N-rGO functionalized Fe2O3 nanoparticles showed enhanced electrical conductivity for low Fe2O3 concentration. The I–V characteristics further showed the conversion of p-type to n-type semiconducting features. The enhanced electrical conductivity can be attributed to induced defects arising from the incorporation of Fe2O3 nanoparticles into the N-rGO matrix. Density functional theory calculations showed the formation of unoccupied states below the Fermi level, as well as charge transfer between C, N, Fe, and O atoms. The improved electrical conductivity and conversion of p- to n-type semi-conductivity can be attributed to the hybridization between the C 2p, O 2p, N 2p, and Fe 3d orbitals, and could lead to increased potential of rGO composite for electronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M. Sang, J. Shin, K. Kim, K.J. Yu, Nanomaterials. 9, 374 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Y.J. Yun, J. Ju, J.H. Lee, S. Moon, S. Park, Y.H. Kim, W.G. Hong, D.H. Ha, H. Jang, G.H. Lee, Adv. Funct. Mater. 27, 1701513 (2017)

    Article  Google Scholar 

  3. A. Alazzam, Nanotechnology. 31, 75302 (2019)

    Article  Google Scholar 

  4. H.Y. Mao, Y.H. Lu, J.D. Lin, S. Zhong, A.T.S. Wee, W. Chen, Prog. Surf. Sci. 88, 132 (2013)

    Article  ADS  CAS  Google Scholar 

  5. L. Sygellou, G. Paterakis, C. Galiotis, D. Tasis, J. Phys. Chem. C 120, 281 (2016)

    Article  CAS  Google Scholar 

  6. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. P. Johari, V.B. Shenoy, ACS Nano. 5, 7640 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. T. Van Khai, H.G. Na, D.S. Kwak, Y.J. Kwon, H. Ham, K.B. Shim, H.W. Kim, J. Mater. Chem. 22, 17992 (2012)

    Article  Google Scholar 

  9. D.O. Shpylka, I.V. Ovsiienko, T.A. Len, L.Y. Matzui, S.V. Trukhanov, A.V. Trukhanov, O.S. Yakovenko, Ceram. Int. 48, 19789 (2022)

    Article  CAS  Google Scholar 

  10. S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, A.V. Trukhanov, E.L. Trukhanova, D.I. Tishkevich, V.M. Ivanov, T.I. Zubar, M. Salem, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, Ceram. Int. 44, 290 (2018)

    Article  CAS  Google Scholar 

  11. M.V. Zdorovets, A.L. Kozlovskiy, D.I. Shlimas, D.B. Borgekov, J. Mater. Sci: Mater. Electron. 32, 16694 (2021)

    CAS  Google Scholar 

  12. D.O. Idisi, J.A. Oke, S. Sarma, S.J. Moloi, S.C. Ray, W.F. Pong, A.M. Strydom, J. Appl. Phys. 126, 35301 (2019)

    Article  Google Scholar 

  13. S.I. Ahmed, M.M. Sanad, J. Alloys Compd. 861, 157962 (2021)

    Article  CAS  Google Scholar 

  14. G. Guan, M.-Y. Han, Adv. Sci. 6, 1901837 (2019)

    Article  CAS  Google Scholar 

  15. A.Y. Shenouda, M.M.S. Sanad, J. Electrochem. Energy Convers. Storage. 14, 024501 (2017)

    Article  Google Scholar 

  16. G. Bhattacharya, G. Kandasamy, N. Soin, R.K. Upadhyay, S. Deshmukh, D. Maity, J. McLaughlin, S.S. Roy, RSC Adv. 7, 327 (2017)

    Article  ADS  CAS  Google Scholar 

  17. D.-T. Phan, G.-S. Chung, J. Phys. Chem. Solids. 74, 1509 (2013)

    Article  ADS  CAS  Google Scholar 

  18. A. Bhaumik, J. Narayan, J. Appl. Phys. 121, 125303 (2017)

    Article  ADS  Google Scholar 

  19. D.O. Idisi, C.C. Ahia, E.L. Meyer, J.O. Bodunrin, E.M. Benecha, RSC Adv. 13, 6038 (2023)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. L. Shahriary, A.A. Athawale, Int. J. Renew. Energy Environ. Eng. 2, 58 (2014)

    Google Scholar 

  21. D.O. Idisi, H. Ali, J.A. Oke, S. Sarma, S.J. Moloi, S.C.S.C. Ray, H.T. Wang, N.R.N.R. Jana, W.F. Pong, Appl. Surf. Sci. 483, 106 (2019)

    Article  ADS  CAS  Google Scholar 

  22. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, Z. Für Kristallographie-Crystalline Mater. 220, 567 (2005)

    Article  ADS  CAS  Google Scholar 

  23. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. K. Laasonen, R. Car, C. Lee, D. Vanderbilt, Phys. Rev. B 43, 6796 (1991)

    Article  ADS  CAS  Google Scholar 

  25. M.D. Esrafili, S. Asadollahi, Appl. Surf. Sci. 463, 526 (2019)

    Article  ADS  CAS  Google Scholar 

  26. R.A. Fischer, A.J. Campbell, O.T. Lord, G.A. Shofner, P. Dera, V.B. Prakapenka, Geophys. Res. Lett. (2011). https://doi.org/10.1029/2011GL049800

    Article  Google Scholar 

  27. D.O. Idisi, J.A. Oke, E.M. Benecha, S.J. Moloi, S.C. Ray, Mater. Today: Proc. 44, 5037 (2021)

    CAS  Google Scholar 

  28. T. Wang, L.-X. Wang, D.-L. Wu, W. Xia, D.-Z. Jia, Sci. Rep. 5, 1 (2015)

    Google Scholar 

  29. L. Zhang, X. Yu, H. Hu, Y. Li, M. Wu, Z. Wang, G. Li, Z. Sun, C. Chen, Sci. Rep. 5, 1 (2015)

    Google Scholar 

  30. I.J. Sahib, L.S. Jasim, A.F. Alkaim, Int. J. Appl. Eng. Res. 12, 14874 (2017)

    Google Scholar 

  31. A.L. Kozlovskiy, A. Alina, M.V. Zdorovets, J. Mater. Sci: Mater. Electron. 32, 3863 (2021)

    CAS  Google Scholar 

  32. G. Yasin, M. Arif, M. Shakeel, Y. Dun, Y. Zuo, W.Q. Khan, Y. Tang, A. Khan, M. Nadeem, Adv. Eng. Mater. 20, 1701166 (2018)

    Article  Google Scholar 

  33. L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, I. Bieloshapka, J. Electron Spectrosc. Relat. Phenom. 195, 145 (2014)

    Article  CAS  Google Scholar 

  34. C. Liang, H. Liu, J. Zhou, X. Peng, H. Zhang, J. Chem. 2015, 791829 (2015)

    Article  Google Scholar 

  35. M. Jayashree, M. Parthibavarman, S. Prabhakaran, Ionics. 25, 3309 (2019)

    Article  CAS  Google Scholar 

  36. Y. Zhao, X. Zhai, D. Yan, C. Ding, N. Wu, D. Su, Y. Zhao, H. Zhou, X. Zhao, J. Li, Electrochim. Acta. 243, 18 (2017)

    Article  CAS  Google Scholar 

  37. U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6, 534 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  38. P. Scherrer, Nach Ges Wiss Gottingen. 2, 8 (1918)

    Google Scholar 

  39. J.I. Langford, A.J.C. Wilson, J. Appl. Crystallogr. 11, 102 (1978)

    Article  ADS  CAS  Google Scholar 

  40. N. Yousefi, M.M. Gudarzi, Q. Zheng, X. Lin, X. Shen, J. Jia, F. Sharif, J.-K. Kim, Compos. Part A: Appl. Sci. Manufac. 49, 42 (2013)

    Article  CAS  Google Scholar 

  41. S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, V.A. Khomchenko, V.V. Fedotova, I.O. Troyanchuk, H. Szymczak, Semiconductors. 41, 507 (2007)

    Article  ADS  CAS  Google Scholar 

  42. I. Childres, L. Jauregui, W. Park, H. Cao, Y. Chen, New Develop. Photon Mater. Res. 1, 1 (2013)

    Google Scholar 

  43. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. 22, 3906 (2010)

    Article  CAS  PubMed  Google Scholar 

  44. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, Nat. Nanotechnol. 3, 210 (2008)

    Article  CAS  PubMed  Google Scholar 

  45. G. Dovbeshko, O. Fesenko, A. Dementjev, R. Karpicz, V. Fedorov, O.Y. Posudievsky, Nanoscale Res. Lett. 9, 1 (2014)

    Article  CAS  Google Scholar 

  46. L.E. Armas, V.M. Zamarion, L.T. Quispe, E.P. Otero, J. Menezes, L.B. Zegarra, A. Rahim, K. Araki, H.E. Toma, C. Jacinto, Braz. J. Phys. 48, 477 (2018)

    Article  ADS  CAS  Google Scholar 

  47. D. López-Díaz, M. Lopez Holgado, J.L. García-Fierro, M.M. Velázquez, J. Phys. Chem. C 121, 20489 (2017)

    Article  Google Scholar 

  48. N. Garino, J. Zeng, M. Castellino, A. Sacco, F. Risplendi, M.R. Fiorentin, K. Bejtka, A. Chiodoni, D. Salomon, J. Segura-Ruiz, Npj 2D Materials and Applications. 5, 1 (2021)

    Article  Google Scholar 

  49. G. Witjaksono, M. Junaid, M.H. Khir, Z. Ullah, N. Tansu, M.S.B.M. Saheed, M.A. Siddiqui, S.S. Ba-Hashwan, A.S. Algamili, S.A. Magsi, Molecules. 26, 6424 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. N. Soin, S.C. Ray, S. Sarma, D. Mazumder, S. Sharma, Y.F. Wang, W.F. Pong, S.S. Roy, A.M. Strydom, J. Phys. Chem. C 121, 14073 (2017)

    Article  CAS  Google Scholar 

  51. N. Leonard, W. Ju, I. Sinev, J. Steinberg, F. Luo, A.S. Varela, B.R. Cuenya, P. Strasser, Chem. Sci. 9, 5064 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. N.A. Zubir, C. Yacou, J. Motuzas, X. Zhang, And J. C D Da Costa Scientific Reports. 4, 1 (2014)

    Google Scholar 

  53. W. Liu, G. Speranza, ACS Omega. 6, 6195 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. I. Matanovic, K. Artyushkova, M.B. Strand, M.J. Dzara, S. Pylypenko, P. Atanassov, J. Phys. Chem. C 120, 29225 (2016)

    Article  CAS  Google Scholar 

  55. H. Wu, M. Xu, P. Da, W. Li, D. Jia, G. Zheng, Phys. Chem. Chem. Phys. 15, 16138 (2013)

    Article  CAS  PubMed  Google Scholar 

  56. I.V. Lightcap, S. Murphy, T. Schumer, P.V. Kamat, J. Phys. Chem. Lett. 3, 1453 (2012)

    Article  CAS  PubMed  Google Scholar 

  57. A.P. Singh, P. Garg, F. Alam, K. Singh, R.B. Mathur, R.P. Tandon, A. Chandra, S.K. Dhawan, Carbon. 50, 3868 (2012)

    Article  CAS  Google Scholar 

  58. A. Kozlovskiy, K. Egizbek, M.V. Zdorovets, M. Ibragimova, A. Shumskaya, A.A. Rogachev, Z.V. Ignatovich, K. Kadyrzhanov, Sensors. 20, 4851 (2020)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. S.V. Trukhanov, M.V. Bushinsky, I.O. Troyanchuk, H. Szymczak, J. Exp. Theor. Phys. 99, 756 (2004)

    Article  ADS  CAS  Google Scholar 

  60. Z.-H. Duan, Q.-N. Zhao, C.-Z. Li, S. Wang, Y.-D. Jiang, Y.-J. Zhang, B.-H. Liu, H.-L. Tai, Rare Met. 40, 1762 (2021)

    Article  CAS  Google Scholar 

  61. Y.F. Zhu, W.T. Zheng, Q. Jiang, Appl. Phys. Lett. 95, 83110 (2009)

    Article  Google Scholar 

  62. J. Deb, D. Paul, U. Sarkar, J. Phys. Chem. A 124, 1312 (2020)

    Article  CAS  PubMed  Google Scholar 

  63. S. Ullah, A. Hussain, W. Syed, M.A. Saqlain, I. Ahmad, O. Leenaerts, A. Karim, RSC Adv. 5, 55762 (2015)

    Article  ADS  CAS  Google Scholar 

  64. P. Nath, D. Sanyal, D. Jana, E. Physica, Low-Dimensional Syst. Nanostruct. 56, 64 (2014)

    Article  ADS  CAS  Google Scholar 

  65. A. Debernardi, Semicond. Sci. Technol. 38, 014002 (2022)

    Article  ADS  Google Scholar 

  66. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, C.G. Van de Walle, Rev. Mod. Phys. 86, 253 (2014)

    Article  ADS  Google Scholar 

  67. Y. Duan, C.D. Stinespring, B. Chorpening, ChemistryOpen 4, 642 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. T.T. Pham, T.N. Pham, V. Chihaia, Q.A. Vu, T.T. Trinh, T.T. Pham, RSC Adv. 11, 19560 (2021)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. F. Joucken, L. Henrard, J. Lagoute, Phys. Rev. Mater. 3, 110301 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DOI acknowledge the physics department of the University of South Africa, Florida for the provision of characterization resources and the Govan Mbeki Research and Development Centre of the University of Fort Hare for financial support.

Funding

This work was funded by Govan Mbeki Research and Development Centrem, University of Fort Hare.

Author information

Authors and Affiliations

Authors

Contributions

DOI contribution: Conceptualization, methodology, investigation, formal analysis, data curation, software, initial manuscript draft. ELM: manuscript review and editing. EMB contribution: Data validation, manuscript review, and editing.

Corresponding author

Correspondence to David O. Idisi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests and have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idisi, D.O., Meyer, E.L. & Benecha, E.M. The role of iron oxide on the electronic and electrical properties of nitrogenated reduced graphene oxide: experimental and density functional theory approach. J Mater Sci: Mater Electron 35, 192 (2024). https://doi.org/10.1007/s10854-024-11947-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11947-4

Navigation