Skip to main content
Log in

Optimization of the discharge performance of silicon–air batteries by aluminum doping

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In recent years, silicon–air batteries have been recognized as a new type of air battery. However, it has been observed that an air battery with a pure silicon anode tends to passivate during discharge, leading to a decreased discharge potential and unstable discharging. In our study, aluminum was doped at different levels into silicon to improve the electrochemical activity of the electrode materials. The change in the constant current discharge, corrosion, and passivation of the full cell after aluminum doping were studied in a 5 mol KOH solution as an electrolyte. It was demonstrated that aluminum-doped silicon–air batteries exhibited a marked enhancement in their electrochemical activity, electrochemical impedance, and discharge performance. One of the cells with Si-1.5 wt% Al as the composite anode exhibited higher, smoother discharge potentials and lower corrosion rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. L.S. Paraschiv, S. Paraschiv, Energy Rep. 9, 535–544 (2023)

    Article  Google Scholar 

  2. X. Chen, K. Tee, M. Elnahass, R. Ahmed, J. Environ. Manage. 345, 118525 (2023)

    Article  CAS  PubMed  Google Scholar 

  3. P. R T, Glob. Environ. Chg. 77, 102605 (2022)

  4. A. Deepti, K. Varshney, J. Phys. Conf. Ser. 1913, 012065 (1913)

    Google Scholar 

  5. N. Y.Lubna, I. Tayyaba, J. Energy Storage 56, 106075 (2022)

    Article  Google Scholar 

  6. T. Li, M. Huang, X. Bai, X. Wang, Prog. Nat. Sci. Mater. Int. 33, 151–171 (2023)

    Article  CAS  Google Scholar 

  7. Z. Divya, G. Das, V. Bhagwat, G. Singh, Mater. Today  Proc. 72, 2300–2305 (2023)

    Article  Google Scholar 

  8. Y. Lei, H.Y.L. Meng, B. Wang, W. Dacheng, Energy Storage Mater. 28, 364–374 (2020)

    Article  Google Scholar 

  9. G. Cohn, D. Starosvetsky, R. Hagiwara, D.D. Macdonald, Y. Ein-Eli, Electrochem. Commun. 11, 1916–1918 (2009)

    Article  CAS  Google Scholar 

  10. G. Cohn, Y. Ein-Eli, J. Power Sources. 195, 4963–4970 (2010)

    Article  CAS  ADS  Google Scholar 

  11. Y.E. Durmus, Ö. Aslanbas, S. Kayser, H. Tempel, F. Hausen, L.G.J. Haart, J.G.Y. Ein-Eli, R.-A. Eichel, H. Kungl, Electrochim. Acta. 225, 215–224 (2017)

    Article  CAS  Google Scholar 

  12. D.W. Park, S. Kim, J.D. Ocon, G.H.A. Abrenica, K.J. Lee, J. Lee, ACS Appl. Mater. Interfaces 7, 3126–3132 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. J.D. Ocon, J.W. Kim, G.H.A. Abrenica, J.K. Lee, J. Lee, Phys. Chem. Chem. Phys. 16, 22487–22494 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. D. Chen, Y. Li, X. Zhang, S. Hu, Y. Yu, J. Ind. Eng. Chem. 112, 271–278 (2022)

    Article  CAS  Google Scholar 

  15. X. Zhong, H. Zhang, J. Bai, Y. Huang, X. Duan, Chem. Sus. Chem. 5, 177–180 (2012)

    Article  CAS  Google Scholar 

  16. Y.E. Durmus, G.S.S. Montiel, Ö. Aslanbas, H. Tempel, F. Hausen, L.G. J.Haart, Y. Ein-Eli, R.A. .Eichel, H. Kungl, Electrochim. Acta. 265, 292–302 (2018)

    Article  CAS  Google Scholar 

  17. J. Gao, H.F.E. Wang, Y. Song, G. Sun, Electrochim. Acta 353, 136497 (2020)

    Article  CAS  Google Scholar 

  18. M. Yuasa, X. Huang, K. Suzuki, M. Mabuchi, Y. Chino, J. Power Sources. 297, 449–456 (2015)

    Article  CAS  ADS  Google Scholar 

  19. M. Deng, D. Höche, V.S. .Lamaka, D. Snihirova, M. Zheludkevich, J. Power Sources. 396, 109–118 (2018)

    Article  CAS  ADS  Google Scholar 

  20. Y.E. Durmus, S. Jakobi, T. Beuse, A. Özgür, H. Tempel, F. Hausen, L.G.J. Haart, Y. Ein-Eli, A.E.R.H. Kungl, J. Electrochem. Soc. 164, A2310–A2320 (2017)

    Article  CAS  Google Scholar 

  21. N. Wang, R. Wang, C. Peng, B. Peng, Y. Feng, C. Hu, Electrochim. Acta 149, 193–205 (2014)

    Article  CAS  ADS  Google Scholar 

  22. Y. Yu, S. Hu, Chin. Chem. Lett. 32, 3277–3287 (2021)

    Article  CAS  Google Scholar 

  23. R.W. Osório, N. Cheung, E.J. Spinelli, R.P. Goulart, A. Garcia, J. Solid State Electrochem. 11, 1421–1427 (2007)

    Article  Google Scholar 

  24. Y. Zheng, B. Luo, Z. Bai, J. Wang, Y. Yin, Metals 7, 387 (2017)

    Article  Google Scholar 

  25. M. Mirzaeian, P.J. Hall, J. Power Sources. 195, 6817–6824 (2010)

    Article  CAS  ADS  Google Scholar 

  26. H. Arai, S. Müller, O. Haas, J. Electrochem. Soc. 147, 3584–3591 (2019)

    Article  Google Scholar 

  27. X. Zhang, Z. Song, Z. Sun, Y. Li, Mater. Sci. Eng. 44, 6 (2021)

    Google Scholar 

  28. R. Ofer, S. Zachi, H. Rika, Y. Ein-Eli, J. Electrochem. Soc. 157, H281–H (2010)

    Article  Google Scholar 

  29. O. Raz, T. Starosvetsky, R. Nohira, Y. Ein-Eli, Electrochem. Solid State Lett. 10, D25–D28 (2007)

    Article  CAS  Google Scholar 

  30. A. Cohn, R.A. Eichel, Y. Ein-Eli, Phys. Chem. Chem. Phys. 15, 3256–3263 (2013)

    Article  CAS  PubMed  Google Scholar 

  31. S.D.R. Kant, J. Chem. Sci. 129, 1277–1292 (2017)

    Article  Google Scholar 

  32. K. Bandil, H. Vashisth, S. Kumar, L. Verma, A. Jamwal, D. Kumar, K. Singh, K.K. Sadasivuni, P. Gupta, J. Compos. Mater 53, 4215–4223 (2019)

    Article  CAS  ADS  Google Scholar 

Download references

Funding

The authors expressed their sincere gratitude for the financial assistance provided by the National Natural Science Foundation of China (Grant No. 51764028), Research and Development of Key Technologies for Synthesis of Organosilicon Methylchlorosilane Monomer (NO.202002AB080002) and Science, and Technology Program of Yunnan Province (202202AD080008).

Author information

Authors and Affiliations

Authors

Contributions

YS was responsible for the experiment and writing of the article. WY and JY provided the idea of the article. DXL, FC, SL and SY were responsible for the formatting of the paper.

Corresponding author

Correspondence to Jie Yu.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Yu, J., Yang, W. et al. Optimization of the discharge performance of silicon–air batteries by aluminum doping. J Mater Sci: Mater Electron 35, 265 (2024). https://doi.org/10.1007/s10854-023-11917-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11917-2

Navigation