Skip to main content
Log in

Hierarchical flower SnS2/C composites for long-cycle and high-rate sodium ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tin-based are considered ideal anode materials for sodium ion batteries (SIBs) due to their high-theoretical capacity and low cost, among which tin disulfide (SnS2) has been the most widely studied. Here, hierarchical flower SnS2 were prepared by a simple one-step solvothermal method, and SnS2@C was synthesized by carbonization after stirring with dopamine. It is precisely because of this special morphology that the material itself has a larger buffer space, which effectively improves the volume expansion problem, and the composite with carbon materials also greatly improves the poor electrical conductivity of the sulfide itself, serious volume expansion, polysulfide dissolution and other problems. When applied in SIBs anode, hierarchical flower SnS2 structure showed excellent specific capacity of 180.8 mA h g−1 after 500 cycles at a high current density of 5 A g−1. This work provides a new route for realizing high-capacity and long-cycle SnS2@C composite in SIBs anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. J. Helveston, J. Nahm, China’s key role in scaling low-carbon energy technologies. Science. 366, 794–796 (2019)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017)

    Article  CAS  PubMed  Google Scholar 

  3. M.J. Xiao, H. Zhang, B. Ma, Z.Q. Zhang, X.Y. Li, Q. Xiao, Q. Wang, Y. Peng, H.L. Zhang, Template-free synthesis of a yolk–shell Co3O4/nitrogen-doped carbon microstructure for excellent lithium ion storage. J. Mater. Chem. A 9, 24548–24559 (2021)

    Article  CAS  Google Scholar 

  4. M.J. Xiao, B. Ma, H. Zhang, X.Y. Li, Q. Wang, Y. Peng, H.L. Zhang, Hollow NiO/carbon pompons for efficient lithium ion storage. J. Mater. Chem. A 10, 21492–21502 (2022)

    Article  CAS  Google Scholar 

  5. Y. Jiang, J. Dong, S. Tan, Q. Wei, F. Xiong, W. Yang, Y. Shen, Q. Zhang, Z. Liu, Q. An, L. Mai, Surface pseudocapacitance of mesoporous Mo3N2 nanowire anode toward reversible high-rate sodium-ion storage. J. Energy Chem. 55, 295–303 (2021)

    Article  CAS  Google Scholar 

  6. Y. Liu, Z. Sun, K. Tan, D.K. Denis, J. Sun, L. Liang, L. Hou, C. Yuan, Recent progress in flexible non-lithium based rechargeable batteries. J. Mater. Chem. A 7, 4353–4382 (2019)

    Article  CAS  Google Scholar 

  7. N. Wang, C. Chu, X. Xu, Y. Du, J. Yang, Z. Bai, S. Dou, Comprehensive new insights and perspectives into Ti-based anodes for next-generation alkaline metal (Na+, K+) ion batteries. Adv. Energy Mater. 8, 1801888 (2018)

    Article  Google Scholar 

  8. Z. Hao, N. Dimov, J.-K. Chang, S. Okada, Synthesis of bimetallic sulfide FeCoS4@carbon nanotube graphene hybrid as a high-performance anode material for sodium-ion batteries. Chem. Eng. J. 423, 130070 (2021)

    Article  CAS  Google Scholar 

  9. C. Kang, L. Ma, Y. Chen, L. Fu, Q. Hu, C. Zhou, Q. Liu, Metal-organic framework derived hollow rod-like NiCoMn ternary metal sulfide for high-performance asymmetric supercapacitors. Chem. Eng. J. 427, 131003 (2022)

    Article  CAS  Google Scholar 

  10. J. Ye, L. Qi, B. Liu, C. Xu, Facile preparation of hexagonal tin sulfide nanoplates anchored on graphene nanosheets for highly efficient sodium storage. J. Colloid Interface Sci. 513, 188–197 (2017)

    Article  ADS  PubMed  Google Scholar 

  11. C. Guo, R. Zhou, X. Liu, R. Tang, W. Xi, Y. Zhu, Activating the MnS0.5Se0.5 microspheres as high-performance cathode materials for aqueous zinc-ion batteries: insight into in situ electrooxidation behavior and energy storage mechanisms.  Small (2023). https://doi.org/10.1002/smll.202306237

    Article  PubMed  Google Scholar 

  12. V. Mullaivananathan, N. Kalaiselvi, Sb2S3 added bio-carbon: demonstration of potential anode in lithium and sodium-ion batteries. Carbon. 144, 772–780 (2019)

    Article  CAS  Google Scholar 

  13. W. Sun, X. Rui, D. Yang, Z. Sun, B. Li, W. Zhang, Y. Zong, S. Madhavi, S. Dou, Q. Yan, Two-dimensional tin disulfide nanosheets for enhanced sodium storage. ACS Nano. 9, 11371–11381 (2015)

    Article  CAS  PubMed  Google Scholar 

  14. X. Xiong, C. Yang, G. Wang, Y. Lin, X. Ou, J.-H. Wang, B. Zhao, M. Liu, Z. Lin, K. Huang, SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ. Sci. 10, 1757–1763 (2017)

    Article  CAS  Google Scholar 

  15. Z. Yi, Q. Han, D. Geng, Y. Wu, Y. Cheng, L. Wang, One-pot chemical route for morphology-controllable fabrication of Sn-Sb micro/nano-structures: Advanced anode materials for lithium and sodium storage. J. Power Sources. 342, 861–871 (2017)

    Article  ADS  CAS  Google Scholar 

  16. N. Lin, T. Xu, T. Li, Y. Han, Y. Qian, Controllable self-assembly of micro-nanostructured Si-embedded graphite/graphene composite anode for high-performance li-ion batteries. ACS Appl. Mater. Interfaces. 9, 39318–39325 (2017)

    Article  CAS  PubMed  Google Scholar 

  17. L. Wu, H. Lu, L. Xiao, X. Ai, H. Yang, Y. Cao, Improved sodium-storage performance of stannous sulfide@reduced graphene oxide composite as high capacity anodes for sodium-ion batteries. J. Power Sources. 293, 784–789 (2015)

    Article  ADS  CAS  Google Scholar 

  18. Y. Zhang, P. Wang, Y. Yin, X. Zhang, L. Fan, N. Zhang, K. Sun, Heterostructured SnS-ZnS@C hollow nanoboxes embedded in graphene for high performance lithium and sodium ion batteries. Chem. Eng. J. 356, 1042–1051 (2019)

    Article  CAS  Google Scholar 

  19. L. Xu, X. Xiao, H. Tu, F. Zhu, J. Wang, H. Liu, W. Huang, W. Deng, H. Hou, T. Liu, X. Ji, K. Amine, G. Zou, Engineering functionalized 2D metal–organic frameworks nanosheets with fast Li+conduction for advanced solid Li batteries. Adv. Mater. 35, 2303193 (2023)

    Article  CAS  Google Scholar 

  20. H. Jia, C. Chen, O. Oladele, Y. Tang, G. Li, X. Zhang, F. Yan, Cobalt doping of tin disulfide/reduced graphene oxide nanocomposites for enhanced pseudocapacitive sodium-ion storage. Commun. Chem. 1, 86 (2018)

    Article  Google Scholar 

  21. L. Deng, J. Zhu, X. Chen, M. Ding, H. Liu, Three-dimensional elastic ultrathin reduced graphene oxide coating SnS2 hierarchical microsphere as lithium ion batteries anode materials. J. Alloys Compd. 739, 1015–1024 (2018)

    Article  CAS  Google Scholar 

  22. Y. Liu, X.-Y. Yu, Y. Fang, X. Zhu, J. Bao, X. Zhou, X.W. Lou, Confining SnS2 ultrathin nanosheets in hollow carbon nanostructures for efficient capacitive sodium storage. Joule 2, 725–735 (2018)

    Article  CAS  Google Scholar 

  23. J. Ding, H. Wang, Z. Li, A. Kohandehghan, K. Cui, Z. Xu, B. Zahiri, X. Tan, E.M. Lotfabad, B.C. Olsen, D. Mitlin, Carbon nanosheet frameworks derived from peat moss as high performance sodium ion Battery anodes. ACS Nano. 7, 11004–11015 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. J. Liu, Y. Wen, P.A. van Aken, J. Maier, Y. Yu, In situ reduction and coating of SnS2 nanobelts for free-standing SnS@polypyrrole-nanobelt/carbon-nanotube paper electrodes with superior Li-ion storage. J. Mater. Chem. A 3, 5259–5265 (2015)

    Article  CAS  Google Scholar 

  25. S. Liu, X. Yin, L. Chen, Q. Li, T. Wang, Synthesis of self-assembled 3D flowerlike SnS2 nanostructures with enhanced lithium ion storage property. Solid State Sci. 12, 712–718 (2010)

    Article  ADS  CAS  Google Scholar 

  26. F. Lu, Q. Chen, Y. Wang, Y. Wu, P. Wei, X. Kuang, Flexible additive-free CC@TiOxNy@SnS2 nanocomposites with excellent stability and superior rate capability for lithium-ion batteries. RSC Adv. 6, 24366–24372 (2016)

    Article  ADS  Google Scholar 

  27. B. Luo, Y. Fang, B. Wang, J. Zhou, H. Song, L. Zhi, Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage. Energy Environ. Sci. 5, 5226–5230 (2012)

    Article  CAS  Google Scholar 

  28. X. Li, X. Sun, Z. Gao, X. Hu, R. Ling, S. Cai, C. Zheng, W. Hu, A simple one-pot strategy for synthesizing ultrafine SnS2nanoparticle/graphene composites as anodes for lithium/sodium-ion batteries. ChemSusChem. 11, 1549–1557 (2018)

    Article  CAS  PubMed  Google Scholar 

  29. X. Jiao, X. Li, X. Jin, Y. Sun, J. Xu, L. Liang, H. Ju, J. Zhu, Y. Pan, W. Yan, Y. Lin, Y. Xie, Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction. J. Am. Chem. Soc. 139, 18044–18051 (2017)

    Article  CAS  PubMed  Google Scholar 

  30. L. Luo, J. Song, L. Song, H. Zhang, Y. Bi, L. Liu, L. Yin, F. Wang, G. Wang, Flexible conductive anodes based on 3D hierarchical Sn/NS-CNFs@rGO network for sodium-ion batteries. Nano-Micro Lett. 11, 63 (2019)

    Article  ADS  CAS  Google Scholar 

  31. Z. Wang, Y. Dong, H. Li, Z. Zhao, H. Bin Wu, C. Hao, S. Liu, J. Qiu, X.W. Lou, Enhancing lithium-sulphur Battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun. 5, 5002 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  32. M. Jia, Y. Qiao, X. Li, F. Qiu, X. Cao, P. He, H. Zhou, Identifying anionic redox activity within the related O3-and P2-type cathodes for sodium-ion Battery. ACS Appl. Mater. Interfaces. 12, 851–857 (2020)

    Article  CAS  PubMed  Google Scholar 

  33. B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y.S. Meng, T. Wang, J.Y. Lee, Layered SnS2-reduced graphene oxide composite a high-capacity, high‐rate, and long‐cycle life sodium‐ion Battery anode material. Adv. Mater. 26, 3854–3859 (2014)

    Article  CAS  PubMed  Google Scholar 

  34. Y. Zheng, T. Zhou, C. Zhang, J. Mao, H. Liu, Z. Guo, Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew. Chem. Int. Ed. 55, 3408–3413 (2016)

    Article  CAS  Google Scholar 

  35. M. Wang, D. Li, G. Li, Y. Li, D.S. Butenko, G. Milinevsky, J. Li, W. Han, Bioconfined SnS2 N-doped carbon fibers with multiwall robust structure for boosting sodium storage. Appl. Surf. Sci. 605, 154633 (2022)

    Article  CAS  Google Scholar 

  36. H. Liu, M. Jia, B. Cao, R. Chen, X. Lv, R. Tang, F. Wu, B. Xu, Nitrogen-doped carbon/graphene hybrid anode material for sodium-ion batteries with excellent rate capability. J. Power Sources. 319, 195–201 (2016)

    Article  ADS  CAS  Google Scholar 

  37. Y. Liu, C. Yang, Q. Pan, Y. Li, G. Wang, X. Ou, F. Zheng, X. Xiong, M. Liu, Q. Zhang, Nitrogen-doped bamboo-like carbon nanotubes as anode material for high performance potassium ion batteries. J. Mater. Chem. A 6, 15162–15169 (2018)

    Article  CAS  Google Scholar 

  38. K. Ding, B. Gao, J. Fu, W. An, H. Song, X. Li, Q. Yuan, X. Zhang, K. Huo, P.K. Chu, Intertwined nitrogen-doped carbon nanotubes for high‐rate and long‐life sodium‐ion battery anodes. Chemelectrochem 4, 2542–2546 (2017)

    Article  CAS  Google Scholar 

  39. X. Hu, X. Sun, S.J. Yoo, B. Evanko, F. Fan, S. Cai, C. Zheng, W. Hu, G.D. Stucky, Nitrogen-rich hierarchically porous carbon as a high-rate anode material with ultra-stable cyclability and high capacity for capacitive sodium-ion batteries. Nano Energy. 56, 828–839 (2019)

    Article  CAS  Google Scholar 

  40. L. Fu, K. Tang, K. Song, P.A. van Aken, Y. Yu, J. Maier, Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale. 6, 1384–1389 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  41. S. Wang, F. Gong, S. Yang, J. Liao, M. Wu, Z. Xu, C. Chen, X. Yang, F. Zhao, B. Wang, Y. Wang, X. Sun, Graphene oxide-template controlled cuboid‐shaped high‐capacity VS4 nanoparticles as anode for sodium‐ion batteries. Adv. Funct. Mater. 28, 1801806 (2018)

    Article  Google Scholar 

  42. F. Yuan, Y. Huang, J. Qian, M.M. Rahman, P.M. Ajayan, D. Sun, Free-standing SnS/carbonized cellulose film as durable anode for lithium-ion batteries. Carbohydr. Polym. 255, 117400 (2021)

    Article  CAS  PubMed  Google Scholar 

  43. J. Xia, L. Liu, S. Jamil, J. Xie, H. Yan, Y. Yuan, Y. Zhang, S. Nie, J. Pan, X. Wang, G. Cao, Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodium-ion batteries. Energy Storage Mater. 17, 1–11 (2019)

    Article  Google Scholar 

  44. S. Zhang, H. Zhao, M. Wang, Z. Li, J. Mi, Low crystallinity SnS encapsulated in CNTs decorated and S-doped carbon nanofibers as excellent anode material for sodium-ion batteries. Electrochim. Acta. 279, 186–194 (2018)

    Article  CAS  Google Scholar 

  45. P. Xue, N. Wang, Y. Wang, Y. Zhang, Y. Liu, B. Tang, Z. Bai, S. Dou, Nanoconfined SnS in 3D interconnected macroporous carbon as durable anodes for lithium/sodium ion batteries. Carbon. 134, 222–231 (2018)

    Article  CAS  Google Scholar 

  46. X. Zhu, X. Jiang, X. Liu, L. Xiao, X. Ai, H. Yang, Y. Cao, Amorphous CoS nanoparticle/reduced graphene oxide composite as high-performance anode material for sodium-ion batteries. Ceram. Int. 43, 9630–9635 (2017)

    Article  CAS  Google Scholar 

  47. V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon, B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  48. D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen, X. Liu, X. Xia, Y. Zhao, S.V. Savilov, J. Lin, Z.X. Shen, Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano. 10, 10211–10219 (2016)

    Article  CAS  PubMed  Google Scholar 

  49. J. Yao, F. Li, R. Zhou, C. Guo, X. Liu, Y. Zhu, Phosphorous-doped carbon nanotube/reduced graphene oxide aerogel cathode enabled by pseudocapacitance for high energy and power zinc-ion hybrid capacitors. Chin. Chem. Lett. 35, 108354 (2024)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (52064035), the Key Research and Development Program of Gansu Province (22YF7GA157), and the Natural Science Foundation of Zhejiang Province (LGG22E020003).

Author information

Authors and Affiliations

Authors

Contributions

MX and FZ: guided all the experimental design and led the manuscript preparation and revision work. BD: did most of the experiments and data analysis. All of the authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Mingjun Xiao or Fuliang Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, B., Xiao, M., Meng, Y. et al. Hierarchical flower SnS2/C composites for long-cycle and high-rate sodium ion batteries. J Mater Sci: Mater Electron 35, 118 (2024). https://doi.org/10.1007/s10854-023-11893-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11893-7

Navigation