Skip to main content
Log in

Confirmation of charge carriers’ types based on HOMO-LUMO positions in the active layer of a WORM memory device

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this communication, we have tried to explain the experimental observation of the flow of opposite charge carriers (electrons and holes) in a Write Once Read Many times (WORM) type memory device’s resistive switching phenomena. A thiazine dye namely Toluidine Blue O (TBO) was used as the active layer. Bottom and top electrodes were taken as ITO and Au, respectively. The positions of HOMO and LUMO levels in TBO have been shown to play a crucial role in the flow of charge carriers upon applying a bias voltage. Depending on the positive and negative sweep voltages, the charge carriers have been exchanged. This confirmation was made on the basis of theoretical model, Density functional theory (DFT), and temperature-dependent studies. The devices also showed excellent retention capacity for more than 6 h. Memory window was having of the order of 103 and read endurance of greater than 3300 cycles. The device yield showed almost 80% and an excellent device stability of 90 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The research data those are included in this present work that is the manuscript and in the supplementary material will be made available on reasonable request to the corresponding author.

References

  1. H. Lian, X. Cheng, H. Hao, J. Han, M.T. Lau, Z. Li, Z. Zhou, Q. Dong, W.Y. Wong, Metal-containing organic compounds for memory and data storage applications. Chem. Soc. Rev. 51(6), 1926–1982 (2022)

    Article  CAS  PubMed  Google Scholar 

  2. L. Yuan, S. Liu, W. Chen, F. Fan, G. Liu, Organic memory and memristors: from mechanisms, materials to devices. Adv. Electron. Mater. 7(11), 2100432 (2021). https://doi.org/10.1002/aelm.202100432

    Article  CAS  Google Scholar 

  3. Q. Cao, W. Lü, X.R. Wang, X. Guan, L. Wang, S. Yan, T. Wu, X. Wang, Nonvolatile multistates memories for high-density data storage. ACS Appl. Mater. Interfaces. 12(38), 42449–42471 (2020). https://doi.org/10.1021/acsami.0c10184

    Article  CAS  PubMed  Google Scholar 

  4. D. Ielmini, H.S. Wong, In-memory computing with resistive switching devices. Nat. Electron. 1(6), 333–343 (2018). https://doi.org/10.1038/s41928-018-0092-2

    Article  Google Scholar 

  5. A. Sebastian, Le M. Gallo, R. Khaddam-Aljameh et al., Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020). https://doi.org/10.1038/s41565-020-0655-z

    Article  ADS  CAS  PubMed  Google Scholar 

  6. T. Chen, S. Yang, J. Wang, W. Chen, L. Liu, Y. Wang, S. Cheng, X. Zhao, Flexible artificial memristive synapse constructed from solution-processed MgO–graphene oxide quantum dot hybrid films. Adv. Electron. Mater. 7, 2000882 (2021). https://doi.org/10.1002/aelm.202000882

    Article  CAS  Google Scholar 

  7. J.-Q. Yang, R. Wang, Y. Ren, J.-Y. Mao, Z.-P. Wang, Y. Zhou, S.-T. Han, Neuromorphic engineering: from biological to spike-based hardware nervous systems. Adv. Mater. 32, 2003610 (2020). https://doi.org/10.1002/adma.202003610

    Article  CAS  Google Scholar 

  8. J. Wang, G. Cao, K. Sun, J. Lan, Y. Pei, J. Chen, X. Yan, Alloy electrode engineering in memristors for emulating the biological synapse. Nanoscale. 14(4), 1318–1326 (2022). https://doi.org/10.1039/D1NR06144E

    Article  CAS  PubMed  Google Scholar 

  9. T.F. Schranghamer, A. Oberoi, S. Das, Graphene memristive synapses for high precision neuromorphic computing. Nat. Commun. 11, 5474 (2020). https://doi.org/10.1038/s41467-020-19203-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. J. Wang, F. Qian, S. Huang, Z. Lv, Y. Wang, X. Xing, M. Chen, S. Han, Y. Zhou, Recent progress of protein-based data storage and neuromorphic devices. Adv. Intell. Syst. 3, 2000180 (2021). https://doi.org/10.1002/aisy.202000180

    Article  Google Scholar 

  11. L. Yang, M. Singh, S.-W. Shen, K.-Y. Chih, S.-W. Liu, C.-I. Wu, C.-W. Chu, H.-W. Lin, Transparent and flexible inorganic Perovskite photonic artificial synapses with dual-mode operation. Adv. Funct. Mater. 31, 2008259 (2021). https://doi.org/10.1002/adfm.202008259

    Article  CAS  Google Scholar 

  12. E. Schadt, M. Linderman, J. Sorenson et al., Cloud and heterogeneous computing solutions exist today for the emerging big data problems in biology. Nat. Rev. Genet. 12, 224 (2011). https://doi.org/10.1038/nrg2857-c2

    Article  CAS  PubMed  Google Scholar 

  13. T. Wang, Z. Cui, Y. Liu, D. Lu, M. Wang, C. Wan, W.R. Leow, C. Wang, L. Pan, X. Cao, Y. Huang, Z. Liu, A.I.Y. Tok, X. Chen, Mechanically durable memristor arrays based on a discrete structure design. Adv. Mater. 34, 2106212 (2022). https://doi.org/10.1002/adma.202106212

    Article  CAS  Google Scholar 

  14. Q.F. Ou, B.S. Xiong, L. Yu, J. Wen, L. Wang, Y. Tong, In-memory logic operations and neuromorphic computing in non-volatile random access memory. Materials. 13(16), 3532 (2020). https://doi.org/10.3390/ma13163532

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. A. Chung, J. Deen, J.S. Lee, M. Meyyappan, Nanoscale memory devices. Nanotechnology. 21(41), 412001 (2010). https://doi.org/10.1088/0957-4484/21/41/412001

    Article  CAS  PubMed  Google Scholar 

  16. C. Zhang, Y. Li, Z. Li, Y. Jiang, J. Zhang, R. Zhao, J. Zou, Y. Wang, K. Wang, C. Ma, Q. Zhang, Nanofiber architecture engineering implemented by electrophoretic-induced self-assembly deposition technology for flash-type memristors. ACS Appl. Mater. Interfaces 14(2), 3111–3120 (2022). https://doi.org/10.1021/acsami.1c22094

    Article  CAS  PubMed  Google Scholar 

  17. W. Tang, J. Yang, J. Zhang, Y. Jiang, J. Wang, L. Cao, Y. Fu, Write-once-read-many-times memory device based on Pt/BiFeO3/LaNiO3 heterostructures. Appl. Surf. Sci. 618, 156591 (2023). https://doi.org/10.1016/j.apsusc.2023.156591

    Article  CAS  Google Scholar 

  18. E. Zhao, X. Liu, G. Liu, B. Zhou, Triggering WORM/SRAM memory conversion by composite oxadiazole in polymer resistive switching device. J. Nanomater. (2019). https://doi.org/10.1155/2019/9214186

    Article  Google Scholar 

  19. E. Carlos, R. Branquinho, R. Martins, A. Kiazadeh, E. Fortunato, Recent progress in solution-based metal oxide resistive switching devices. Adv. Mater. 33(7), 2004328 (2021). https://doi.org/10.1002/adma.202004328

    Article  CAS  Google Scholar 

  20. A.R. Patil, T.D. Dongale, R.K. Kamat, K.Y. Rajpure, Binary metal oxide-based resistive switching memory devices: a status review. Mater. Today Commun. 9, 105356 (2023). https://doi.org/10.1016/j.mtcomm.2023.105356

    Article  CAS  Google Scholar 

  21. W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing, R. Mahnkopf, More-than-Moore white paper. Version. 2, 14 (2010)

    Google Scholar 

  22. I. Valov, T. Tsuruoka, Effects of moisture and redox reactions in VCM and ECM resistive switching memories. J. Phys. D: Appl. Phys. 51(41), 413001 (2018). https://doi.org/10.1088/1361-6463/aad581

    Article  CAS  Google Scholar 

  23. G. Milano, S. Porro, I. Valov, C. Ricciardi, Adv. Electron. Mater. 5, 1800909 (2019). https://doi.org/10.1002/aelm.201800909

    Article  CAS  Google Scholar 

  24. G. Wen, Z. Ren, D. Sun, T. Zhang, L. Liu, S. Yan, Synthesis of alternating copolysiloxane with terthiophene and perylenediimide derivative pendants for involatile WORM memory device. Adv. Funct. Mater. 24, 3446–3455 (2014). https://doi.org/10.1002/adfm.201304004

    Article  CAS  Google Scholar 

  25. A.D. Yu, C.L. Liu, W.C. Chen, Supramolecular block copolymers: graphene oxide composites for memory device applications. Chem. Commun. 48, 383–385 (2012). https://doi.org/10.1039/C1CC15945C

    Article  CAS  Google Scholar 

  26. T.W. Kim, S.H. Oh, H. Choi, G. Wang, H. Hwang, D.Y. Kim, T. Lee, Reversible switching characteristics of polyfluorenederivative single layer film for nonvolatile memory devices. Appl. Phys. Lett. 92, 231 (2008). https://doi.org/10.1063/1.2952825

    Article  CAS  Google Scholar 

  27. M.N. Awais, K.H. Choi, Resistive switching and current conduction mechanism in full organic resistive switch with the sandwiched structure of poly(3,4-ethylenedioxythiophene): poly-(styrenesulfonate)/poly(4-vinylphenol)/poly(3,4,ethylenedioxythiophene): poly(styrenesulfonate). Electron. Mater. Lett. 10, 601–606 (2014). https://doi.org/10.1007/s13391-014-3149-z

    Article  ADS  CAS  Google Scholar 

  28. S.K. Bhattacharjee, S.A. Hussain, P.K. Paul, D. Bhattacharjee, Carrier type exchange with the sweep direction in a WORM memory device. ACS Appl. Electron. Mater. (2023). https://doi.org/10.1021/acsaelm.3c00617

    Article  Google Scholar 

  29. P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45), 11623–11627 (1994). https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  30. A.D. Becke, Density-functional thermochemistry. I. The effect of the exchange‐only gradient correction. J. Chem. Phys. 96(3), 2155–2160 (1992). https://doi.org/10.1063/1.462066

    Article  ADS  CAS  Google Scholar 

  31. C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37(2), 785 (1988). https://doi.org/10.1103/.37

    Article  ADS  CAS  Google Scholar 

  32. M. Marlo, V.J. Milman, Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals. Phys. Rev. B 62(4), 2899 (2000). https://doi.org/10.1103/PhysRevB.62.2899

    Article  ADS  CAS  Google Scholar 

  33. S. Sarkar, H. Banik, S. Suklabaidya, B. Deb, S. Majumdar, P.K. Paul, D. Bhattacharjee, S.A. Hussain, Resistive switching of the tetraindolyl derivative in ultrathin films: a potential candidate for nonvolatile memory applications. Langmuir 37, 4449–4459 (2021). https://doi.org/10.1021/acs.langmuir.0c03629

    Article  CAS  PubMed  Google Scholar 

  34. J.Y. Lam, G.W. Jang, C.J. Huang, S.H. Tung, W.C. Chen, Environmentally friendly resistive switching memory devices with DNA as the active layer and bio-based polyethylene furanoate as the substrate. ACS Sustain. Chem. Eng. 8(13), 5100–5106 (2020). https://doi.org/10.1021/acssuschemeng.9b07168

    Article  CAS  Google Scholar 

  35. B. Cho, S. Song, Y. Ji, T.-W. Kim, T. Lee, Organic resistive memory device: performance enhancement, integration, and advanced architectures. Adv. Funct. Mater. 21, 2806–2829 (2011). https://doi.org/10.1002/adfm.201100686

    Article  CAS  Google Scholar 

  36. D. Attianese et al., Switching device based on a thin flm of an azo-containing polymer for application in memory cells. IEEE Electron. Device Lett. 29, 1 (2008). https://doi.org/10.1109/LED.2007.910792

    Article  CAS  Google Scholar 

  37. D.K. Maiti, S. Debnath, S.M. Nawaz, B. Dey, E. Dinda, D. Roy, S. Ray, A. Mallik, S.A. Hussain, Composition-dependent nanoelectronics of amido-phenazines: non-volatile RRAM and WORM memory devices. Sci. Rep. 7(1), 13308 (2017). https://doi.org/10.1038/s41598-017-13754-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chakraborty, I. Panwar, N. Khanna, A. Ganguly U, Space charge limited current with self-heating in Pr0.7Ca0.3MnO3 based RRAM. arXiv:1605.08755, 2016. https://arxiv.org/abs/1605.08755

  39. S. Bhattacharyya, A. Laha, S.B. Krupanidhi, Analysis of leakage current conduction phenomenon in thin SrBi2Ta2O9 films grown by excimer laser ablation. J. Appl. Phys. 91, 4543–4548 (2002). https://doi.org/10.1063/1.1448396

    Article  ADS  CAS  Google Scholar 

  40. P. Dhatshanamurthi, B. Subash, A. Senthilraja, V. Kuzhalosai, B. Krishnakumar, M. Shanthi, Synthesis and characterization of ZnS –T iO2 photocatalyst and its excellent sun light driven catalytic activity. J. Nanosci. Nanotechnol. 14, 4930–4939 (2014). https://doi.org/10.1166/jnn.2014.8693

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

SAH is grateful to DST, for financial support to carry out this research work through DST, Govt. of India project ref. No. CRG/2021/004073. The authors are also grateful to UGC, Govt. of India for financial support to carry out this research work through financial assistance under UGC–SAP program 2016.

Author information

Authors and Affiliations

Authors

Contributions

DB designed the work. Research scholar SKB did all the experimental works. PKP did some theoretical calculations. SKB and DB analysed and wrote the manuscript with valuable inputs from CD, and SAH.

Corresponding author

Correspondence to Debajyoti Bhattachrjee.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1336.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, S.K., Debnath, C., Hussain, S.A. et al. Confirmation of charge carriers’ types based on HOMO-LUMO positions in the active layer of a WORM memory device. J Mater Sci: Mater Electron 35, 143 (2024). https://doi.org/10.1007/s10854-023-11840-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11840-6

Navigation