Skip to main content
Log in

Building g-C3N4/Fe2O3 heterojunctions on carbon nanotubes for enhanced electron conductivity and pseudocapacitive performances

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Transition metal oxides (TMOs), such as Fe2O3 have been comprehensively investigated for high performance pseudocapacitors with a promising theoretical capacitance. However, their applications have been seriously restricted by the low electron conductivity. The construction of heterojunctions can effectively regulate the band structure of TMOs and the electron conductivity can be greatly optimized. In this work, a simple hydrothermal approach is used to synthesize a novel heterostructured g-C3N4/Fe2O3/CNT nanomaterial. The results demonstrate that the synergistic effects between g-C3N4 and Fe2O3 greatly accelerate electron transport speeds in the composite materials. The as-designed electrodes demonstrate a capacitance retention of 72.1% even at a current density of 9 A g−1, with excellent cycle performance and remarkable capacitance of 610 F g−1 at 0.2 A g−1. Meanwhile, the charge storage mechanisms and band structure of g-C3N4/Fe2O3 have been investigated and discussed in detail. This interfacial engineering strategy for making heterostructures offers fresh insights into the development of metal oxide materials for electrodes with high capacitance and excellent rate performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that they have known the research data policy, and the data are available.

References

  1. D.M. Davies, M.G. Verde, O. Mnyshenko et al., Combined economic and technological evaluation of battery energy storage for grid applications. Nat. Energy 4, 42–50 (2018). https://doi.org/10.1038/s41560-018-0290-1

    Article  Google Scholar 

  2. F. Yi, H. Ren, J. Shan, X. Sun, D. Wei, Z. Liu, Wearable energy sources based on 2D materials. Chem. Soc. Rev. 47, 3152–3188 (2018). https://doi.org/10.1039/c7cs00849j

    Article  CAS  Google Scholar 

  3. D.P. Chatterjee, A.K. Nandi, A review on the recent advances in hybrid supercapacitors. J. Mater. Chem. A. 9, 15880–15918 (2021). https://doi.org/10.1039/d1ta02505h

    Article  CAS  Google Scholar 

  4. V.D. Nithya, N.S. Arul, Review on α-Fe2O3 based negative electrode for high performance supercapacitors. J. Power. Sources 327, 297–318 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.033

    Article  CAS  Google Scholar 

  5. C.C. Hu, K.H. Chang, M.C. Lin, Y.T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 6, 2690–2695 (2006). https://doi.org/10.1021/nl061576a

    Article  CAS  Google Scholar 

  6. Z.S. Wu, D.W. Wang, W. Ren et al., Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 20, 3595–3602 (2010). https://doi.org/10.1002/adfm.201001054

    Article  CAS  Google Scholar 

  7. M. Huang, F. Li, F. Dong, Y.X. Zhang, L.L. Zhang, MnO2-based nanostructures for high-performance supercapacitors. J. Mater. Chem. A. 3, 21380–21423 (2015). https://doi.org/10.1039/c5ta05523g

    Article  CAS  Google Scholar 

  8. H.Y. Lee, J.B. Goodenough, Supercapacitor behavior with KCl electrolyte. J. Solid State Chem. 144, 220–223 (1999). https://doi.org/10.1006/jssc.1998.8128

    Article  CAS  Google Scholar 

  9. Q. Tang, W. Wang, G. Wang, The perfect matching between the low-cost Fe2O3 nanowire anode and the NiO nanoflake cathode significantly enhances the energy density of asymmetric supercapacitors. J. Mater. Chem. A. 3, 6662–6670 (2015). https://doi.org/10.1039/c5ta00328h

    Article  CAS  Google Scholar 

  10. Y. Gao, D. Wu, T. Wang et al., One-step solvothermal synthesis of quasi-hexagonal Fe2O3 nanoplates/graphene composite as high performance electrode material for supercapacitor. Electrochim. Acta 191, 275–283 (2016). https://doi.org/10.1016/j.electacta.2016.01.072

    Article  CAS  Google Scholar 

  11. S. Shivakumara, T.R. Penki, N. Munichandraiah, High specific surface area α-Fe2O3 nanostructures as high performance electrode material for supercapacitors. Mate. Lett. 131, 100–103 (2014). https://doi.org/10.1016/j.matlet.2014.05.160

    Article  CAS  Google Scholar 

  12. D. Sarkar, M. Mandal, K. Mandal, Design and synthesis of high performance multifunctional ultrathin hematite nanoribbons. ACS Appl. Mater. Interfaces 5, 11995–12004 (2013). https://doi.org/10.1021/am403762d

    Article  CAS  Google Scholar 

  13. S. Yang, X. Song, P. Zhang, J. Sun, L. Gao, Self-assembled α-Fe2O3 mesocrystals/graphene nanohybrid for enhanced electrochemical capacitors. Small 10, 2270–2279 (2014). https://doi.org/10.1002/smll.201303922

    Article  CAS  Google Scholar 

  14. K.K. Lee, S. Deng, H.M. Fan et al., α-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials. Nanoscale 4, 2958–2961 (2012). https://doi.org/10.1039/c2nr11902a

    Article  CAS  Google Scholar 

  15. Z. Ma, X. Huang, S. Dou, J. Wu, S. Wang, One-pot synthesis of Fe2O3 nanoparticles on nitrogen-doped graphene as advanced supercapacitor electrode materials. J. Phys. Chem. C 118, 17231–17239 (2014). https://doi.org/10.1021/jp502226j

    Article  CAS  Google Scholar 

  16. Y. Zheng, J. Liu, J. Liang, M. Jaroniec, S.Z. Qiao, Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energ. Environ. Sci. 5, 6717–6731 (2012). https://doi.org/10.1039/c2ee03479d

    Article  CAS  Google Scholar 

  17. X. Tang, W. Shen, D. Li et al., Research on cobalt-doping sites in g-C3N4 framework and photocatalytic reduction CO2 mechanism insights. J. Alloy. Compd. 954, 170044 (2023). https://doi.org/10.1016/j.jallcom.2023.170044

    Article  CAS  Google Scholar 

  18. Z. Zhu, W. Shen, D. Li et al., Oxygen-doped red carbon nitride: enhanced charge separation and light absorption for robust CO2 photoreduction. Inorg. Chem. 62, 15432–15439 (2023). https://doi.org/10.1021/acs.inorgchem.3c01633

    Article  CAS  Google Scholar 

  19. Y. Hong, L. Yang, Y. Tian et al., Rational design 2D/3D MoS2/In2O3 composites for great boosting photocatalytic H2 production coupled with dye degradation. J. Taiwan Inst. Chem. E. 146, 104862 (2023). https://doi.org/10.1016/j.jtice.2023.104862

    Article  CAS  Google Scholar 

  20. A. Mirzaei, K. Janghorban, B. Hashemi, M. Bonyani, S.G. Leonardi, G. Neri, A novel gas sensor based on Ag/Fe2O3 core-shell nanocomposites. Ceram. Int. 42, 18974–18982 (2016). https://doi.org/10.1016/j.ceramint.2016.09.052

    Article  CAS  Google Scholar 

  21. T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9, 146–151 (2010). https://doi.org/10.1038/nmat2612

    Article  CAS  Google Scholar 

  22. V. Augustyn, J. Come, M.A. Lowe et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013). https://doi.org/10.1038/nmat3601

    Article  CAS  Google Scholar 

  23. R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett. 12, 2559–2567 (2012). https://doi.org/10.1021/nl300779a

    Article  CAS  Google Scholar 

  24. M. Meinert, G. Reiss, Electronic structure and optical band gap determination of NiFe2O4. J. Phys. Condens. Matter 26, 115503 (2014). https://doi.org/10.1088/0953-8984/26/11/115503

    Article  CAS  Google Scholar 

  25. Z.A. Lan, G. Zhang, X. Wang, A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting. Appl. Catal. B Environ. 192, 116–125 (2016). https://doi.org/10.1016/j.apcatb.2016.03.062

    Article  CAS  Google Scholar 

  26. M.M. Ba-Abbad, M.S. Takriff, A. Benamor, A.W. Mohammad, Size and shape controlled of α-Fe2O3 nanoparticles prepared via sol-gel technique and their photocatalytic activity. J. Sol-Gel Sci. Techn. 81, 880–893 (2017). https://doi.org/10.1007/s10971-016-4228-4

    Article  CAS  Google Scholar 

  27. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008). https://doi.org/10.1021/nl802558y

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 52102053), the Fundamental Research Program of Shanxi Province (No. 20210302124655), the Natural Science Foundation of Shanxi Province (No. 20210302123041), the Key Laboratory Research Foundation of North University of China (No. 2022C80303), the Shanxi Key Laboratory of Advanced Carbon Electrode Materials (No. 202104010910019) and the Graduate Science and Technology Project of Chemistry and Chemical Engineering of North University of China (No. 20220404), respectively.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the completion of this paper. The details are as follows: (1) LG’s contributions included investigation, experiment implementation, data processing and analysis, and paper writing. (2) JL’s contributions included research ideas and investigation, paper revision, and providing funding and platforms for research. (3) JS’s contributions were to revise the article. (4) CZ’s contributions were to assist the first author in the testing of the electrochemical impedance.

Corresponding author

Correspondence to Liang Jiachen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This paper comply with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 498 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, G., Chen, Z., Jiangfeng, S. et al. Building g-C3N4/Fe2O3 heterojunctions on carbon nanotubes for enhanced electron conductivity and pseudocapacitive performances. J Mater Sci: Mater Electron 34, 2324 (2023). https://doi.org/10.1007/s10854-023-11745-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11745-4

Navigation