Skip to main content
Log in

Facile construction of BiOI/Nb2O5 heterojunction films and their excellent photocatalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A conventional hydrothermal method followed by a facile immersion method is used to prepare BiOI/Nb2O5 heterojunction films on the wire mesh made of stainless steel. The results show that sea urchin-like Nb2O5 nanospheres of orthorhombic structure and hierarchical flower-like BiOI with a tetragonal crystal type were formed in the preparation. BiOI and Nb2O5 combined firmly at the micron and nanoscale. They have formed heterojunctions. The optical measurements show that the heterojunction formation markedly extended the visible light absorption wavelength range even to 600 nm. The optical band gap values of the BiOI/Nb2O5 heterojunction films were decreased from 3.05 to ~ 1.63 eV. PL spectra revealed the heterojunction formation significantly inhibited the recombination of photogenerated electron–hole pairs. The electrochemical testing suggests that the photocurrent density of the BiOI/Nb2O5 heterojunction films is nine times that of the individual Nb2O5 film at most. It means that the heterojunction observably improved the separation efficiency of photogenerated charges. Based on the above strategy, the photocatalytic activity in degrading RhB dye in an aqueous solution was enhanced by 6.2 times at most. When the immersion number was 12, the heterojunction film exhibited the most excellent photocatalytic activity. A possible mechanism of photocatalytic performance improvement was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. C.L. Ücker, V. Goetzke, S.R. Almeida, E.C. Moreira, M.M. Ferrer, P.L.G. Jardim, M.L. Moreira, C.W. Raubach, S. Cava, Ceram. Int. 47, 20570–20578 (2021)

    Article  Google Scholar 

  2. K. Sayama, H. Sugihara, H. Arakawa, Chem. Mater. 10, 3825–3832 (1998)

    Article  CAS  Google Scholar 

  3. S.A. O’Neill, I.P. Parkin, R.J.H. Clark, A. Mills, N. Elliott, J. Mater. Chem. 13, 2952–2956 (2003)

    Article  Google Scholar 

  4. H.Y. Wang, P. Xu, T.M. Wang, Thin Solid Films 388, 68–72 (2001)

    Article  CAS  Google Scholar 

  5. X.Y. Chen, T. Yu, X.X. Fan, H.T. Zhang, Z.S. Li, J.H. Ye, Z.G. Zou, Appl. Surf. Sci. 253, 8500–8506 (2007)

    Article  CAS  Google Scholar 

  6. J.L. Chen, H. Wang, G.L. Huang, Z.Q. Zhang, L.F. Han, W. Song, M.Y. Li, Y.H. Zhang, J. Alloy. Compd. 728, 19–28 (2017)

    Article  CAS  Google Scholar 

  7. N.P. de Moraes, R.B. Anselmo, L.O. Sartor, G.V.J. Dantas, L.A. Rodrigues, L.C. e Carvalho. Mater. Lett. 273, 127932 (2020)

    Google Scholar 

  8. K.Y. Su, H.F. Liu, B. Zeng, Z.X. Zhang, N.C. Luo, Z.P. Huang, Z.Y. Gao, F. Wang, ACS Catal. 20, 1324–1333 (2020)

    Article  Google Scholar 

  9. G.T.S.T. da Silva, K.T.G. Carvalho, O.F. Lopes, C. Ribeiro, Appl. Catal. B - Environ. 216, 70–79 (2017)

    Article  Google Scholar 

  10. R.R.M. Silva, J.A. Oliveira, L.A.M. Ruotolo, A.L.A. Faria, C. Ribeiro, F.G.E. Nogueira, Mater. Lett. 273, 127915 (2020)

    Article  CAS  Google Scholar 

  11. J. Yang, J.G. Hao, S.Y. Xu, J. Dai, Y. Wang, X.C. Pang, Chem. Eng. J. 353, 100–115 (2018)

    Article  CAS  Google Scholar 

  12. W.J. Chen, X.J. Sun, Y.B. Liu, M.L. Huang, W.T. Xu, X.Y. Pan, Q.H. Wu, Z.G. Yi, A.C.S. Appl, Nano Mater. 3, 2573–2581 (2020)

    CAS  Google Scholar 

  13. B. Hu, Y.H. Liu, J. Alloy. Compd. 635, 1–4 (2015)

    Article  CAS  Google Scholar 

  14. S.X. Ge, H.M. Jia, H.X. Zhao, Z. Zheng, L.Z. Zhang, J. Mater. Chem. 20, 3052–3058 (2010)

    Article  CAS  Google Scholar 

  15. X.B. Liu, W.X. Que, Y.L. Xing, Y.W. Yang, X.T. Yin, J.Y. Shao, RSC Adv. 6, 9581–9588 (2016)

    Article  CAS  Google Scholar 

  16. M. Danish, A. Pandey, J. Mater. Sci. Mater. El. 27, 6939–6946 (2016)

    Article  CAS  Google Scholar 

  17. G.Z. Li, H.P. Tang, W.Y. Zhang, G. Li, L.L. Yu, Y.N. Li, Rare Met. 34, 77–80 (2015)

    Article  Google Scholar 

  18. H. Wen, Z.F. Liu, J. Wang, Q.H. Yang, Y.X. Li, J. Yu, Appl. Surf. Sci. 257, 10084–10088 (2011)

    Article  CAS  Google Scholar 

  19. M.E. Lee, S.Y. Cho, H.J. Yoon, Y.S. Yun, H.J. Jin, J. Ind. Eng. Chem. 57, 284–289 (2018)

    Article  CAS  Google Scholar 

  20. A.K. Kulkarni, R.P. Panmand, Y.A. Sethi, S.R. Kadam, S.P. Tekale, G.H. Baeg, A.V. Ghule, B.B. Kale, Int. J. Hydrogen Energ. 43, 19873–19884 (2018)

    Article  CAS  Google Scholar 

  21. X.D. Liu, Y.F. Tang, D. Zhang, G.Y. Liu, X.W. Luo, Y. Shang, X. Li, J.M. Ma, Green Energy Environ. (2022). https://doi.org/10.1016/j.gee.2022.09.009

    Article  Google Scholar 

  22. H.F. Yin, C.Y. Yuan, H.J. Lv, K.Y. Zhang, X. Chen, Y.Z. Zhang, Sep. Purif. Technol. 308, 122815 (2023)

    Article  CAS  Google Scholar 

  23. N.C. Sun, M. Zhou, X.X. Ma, Z.H. Cheng, J. Wu, Y.F. Qi, Y.J. Sun, F.H. Zhou, Y.X. Shen, J CO2 util. 65, 102220 (2022)

    Article  CAS  Google Scholar 

  24. Y.Y. Chu, J.R. Fan, R. Wang, C. Liu, X.L. Zheng, Sep. Purif. Technol. 300, 121867 (2022)

    Article  CAS  Google Scholar 

  25. P. Kamakshi, C. Joshitha, S. Chella, S. Selvaraj, Inorg. Chem. Commun. 150, 110545 (2023)

    Article  CAS  Google Scholar 

  26. B. Liu, H.Y. Huang, Z.J. Xiao, J.L. Yang, Sep. Purif. Technol. 310, 123183 (2023)

    Article  CAS  Google Scholar 

  27. G.H. Huang, Z.S. Li, K. Liu, Y.J. Zhang, X.K. Tang, Q. Peng, J. Huang, G.F. Zhang, J. Water Process Eng. 46, 102636 (2022)

    Article  Google Scholar 

  28. H.J. Zhang, Q. Wu, C. Guo, Y. Wu, T.H. Wu, ACS Sustain. Chem. Eng. 5, 3517–3523 (2017)

    Article  CAS  Google Scholar 

  29. C.J. Chang, Y.C. Chen, Z.T. Tsai, Int. J. Hydrogen Energ. 47, 40777–40786 (2022)

    Article  CAS  Google Scholar 

  30. H.J. Li, D.D. Wang, C. Miao, F.W. Xia, Y.B. Wang, Y.T. Wang, C.B. Liu, G.B. Che, J. Environ. Chem. Eng. 10, 108201 (2022)

    Article  CAS  Google Scholar 

  31. Z.H. Wu, J.F. Jing, K.F. Zhang, W.L. Li, J. Yang, J. Shen, S.M. Zhang, K.Q. Xu, S.Y. Zhang, Y.F. Zhu, Appl. Catal. B - Environ. 307, 121153 (2022)

    Article  CAS  Google Scholar 

  32. M.Y. Wang, A. Kafizas, S. Sathasivam, M.O. Blunt, B. Moss, S. Gonzalez-Carrero, C.J. Carmalt, Appl. Catal. B - Environ. 331, 122657 (2023)

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (Grant No. 51404170), Tianjin Enterprise Science & Technology Commissioner Project (Grant No. 21YDTPJC00450), Natural Science Foundation of Jiangsu Province (Grant No. BK20201467) and Scientific Research Funding Project of “333 High-level Training Project” of Jiangsu Province (Grant No. BRA2020260). The authors also thank sci-go Co., Ltd. and zkbaice.Co., Ltd. for their professional materials characterization and analysis.

Author information

Authors and Affiliations

Authors

Contributions

RJ: Formal analysis, Data curation. LH: Conceptualization, Formal analysis, Writting—orginal draft, Writting—review & editing, Supervision, Project administration, Funding acquisition. TH: Methodology, Investigation, Formal analysis. YH: Visualization, Investigation, Data curation. JW: Visualization, Software. YL: Visualization, Conceptualization, Software, Validation.

Corresponding author

Correspondence to Liang Hao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, R., Hao, L., Hu, T. et al. Facile construction of BiOI/Nb2O5 heterojunction films and their excellent photocatalytic activity. J Mater Sci: Mater Electron 34, 2268 (2023). https://doi.org/10.1007/s10854-023-11700-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11700-3

Navigation