Skip to main content
Log in

Effect of Ruthenium doping in tailoring structure, optical and electrical properties of Sb2S3 thin film synthesized via electrodeposition technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Although numerous metal chalcogenide thin films have been explored in photoelectrochemical (PEC) water splitting, antimony sulfide (Sb2S3) has not garnered much friendliness. In this work, we applied a simple electro-deposition technique to synthesize Sb2S3 film and then used a Ruthenium element doping strategy to improve its PEC performance. Experimental studies have been performed to optimize the Ru-doping level and maximize solar hydrogen production from the PEC water splitting technique. XRD patterns reveal the polycrystalline nature of all samples with an orthorhombic crystal structure and a preferred orientation along the (221) lattice plane. Furthermore, the incorporation of Ru3+ ions into the Sb2S3 host lattice was confirmed by a slightly higher 2θ shift of the (221) crystal plane up to 6 at.% Ru. Crystallite size and texture coefficient values were found to vary with Ru substitution. The x-ray photoelectron spectroscopy (XPS) results reveal a redshift caused by the presence of ruthenium, and the deconvoluted spectra of Sb 3d exhibit the presence of an oxide Sb-O phase. In addition, the SEM analysis displays spherical shapes with various sizes of grains in the prepared thin films. The impact of Ru doping on the transport properties of Sb2S3 thin films was assessed using Van der Pauw's method. The Hall analysis predominantly reveals n-type conductivity for all samples, with optimized results obtained at a doping level of 6 at.%. This optimization yields a resistivity of 0.5 × 105 Ω cm, a Hall mobility of 2.49 cm2/V s, and an electron concentration of 4.59 × 1017 cm−3. The optical band gap values were found to change with Ru doping from 1.64 to 1.72 eV. The sample with a Ru-doping level of 6 at.% showed a maximum photocurrent density of ca. 3.35 mA cm−2 at 1.23 V vs. reverse hydrogen electrode (RHE) under AM 1.5 G illumination. The improvement in the PEC performance of Ru-doped Sb2S3 film could be attributed to the synergistic effect of enhanced light absorption and improved concentration of photogenerated charge carriers. We infer that the proposed Ru-doping approach is effective for developing an efficient photoelectrode that can naturally generate hydrogen from water using sunlight, making it a strong future candidate for renewable hydrogen generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Raw data were generated at the Photovoltaic Laboratory, Research and Technology Centre of Energy. Derived data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. J.H. Kim, D. Hansora, P. Sharma, J.W. Jang, J.S. Lee, Toward practical solar hydrogen production - an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 48, 1908–1971 (2019). https://doi.org/10.1039/C8CS00699G

    Article  CAS  Google Scholar 

  2. M. Karczewski, S. Porada, Physically mixed black liquor as a catalytic additive for pressurised steam gasification of different rank bituminous coals. Energy J. 263, 125781 (2023). https://doi.org/10.1016/j.energy.2022.125781

    Article  CAS  Google Scholar 

  3. F. Lin, M. Xu, K.K. Ramasamy, Z. Li, J.L. Klinger, J.A. Schaidle, H. Wang, Catalyst deactivation and its mitigation during catalytic conversions of biomass. ACS Catal. 12, 13555–13599 (2022). https://doi.org/10.1021/acscatal.2c02074

    Article  CAS  Google Scholar 

  4. Z. Liang, D. Chen, S. Xu, Z. Fang, L. Wang, W. Yang, H. Hou, Synergistic promotion of photoelectrochemical water splitting efficiency of TiO2 nanorod arrays by doping and surface modification. J. Mater. Chem. C 9, 12263–12272 (2021). https://doi.org/10.1039/D1TC02816B

    Article  CAS  Google Scholar 

  5. Z. Zhong, G. Zhan, B. Du, X. Lu, Z. Qin, J. Xiao, Design of Ti–Pt Co-doped α-Fe2O3 photoanodes for enhanced performance of photoelectrochemical water splitting. J. Colloid Interface Sci. 641, 91–104 (2023). https://doi.org/10.1016/j.jcis.2023.03.042

    Article  CAS  Google Scholar 

  6. P. Zhang, L. Yu, X.W.D. Lou, Construction of heterostructured Fe2O3–TiO2 microdumbbells for photoelectrochemical water oxidation. Angew. Chem. Int. Ed. 57(46), 15076–15080 (2018). https://doi.org/10.1002/anie.201808104

    Article  CAS  Google Scholar 

  7. M. Chen, X. Chang, C. Li, H. Wang, L. Jia, Ni-doped BiVO4 photoanode for efficient photoelectrochemical water splitting. J. Colloid Interface Sci. 640, 162–169 (2023). https://doi.org/10.1016/j.jcis.2023.02.096

    Article  CAS  Google Scholar 

  8. T.N. Jahangir, A.Z. Khan, T.A. Kandiel, B.M. El Ali, Insights into the charge transfer kinetics in BiVO4 photoanodes modified with transition metal-based oxygen evolution electrocatalysts. Catal. Today 413–415, 113918 (2023). https://doi.org/10.1016/j.cattod.2022.09.024

    Article  CAS  Google Scholar 

  9. S. Li, M. Zhang, P. Li, L. Ma, K. Peng, J. Zhao, Y. Liu, R. Wang, Boosting visible-light-driven photocatalytic performance by heterostructure of S-doped g-C3N4/MIL-101(Fe). Inorg. Chem. Commun. 151, 110616 (2023). https://doi.org/10.1016/j.inoche.2023.110616

    Article  CAS  Google Scholar 

  10. F. Matamala-Troncoso, C. Sáez-Navarrete, J. Mejía-López, G. García, J. Rebolledo-Oyarce, C.K. Nguyen, D.R. MacFarlane, M. Isaacs, Experimental and theoretical study of synthesis and properties of Cu2O/TiO2 heterojunction for photoelectrochemical purposes. Surf. Interfaces 37, 102751 (2023). https://doi.org/10.1016/j.surfin.2023.102751

    Article  CAS  Google Scholar 

  11. J.A. Christians, D.T. Leighton Jr., P.V. Kamat, Rate limiting interfacial hole transfer in Sb2S3 solid-state solar cells. Energy Environ. Sci. 7, 1148–1158 (2014). https://doi.org/10.1039/C3EE43844A

    Article  CAS  Google Scholar 

  12. W. Zhang, M. Tan, P. Zhang, L.N. Zhang, W.N. Dong, Q.S. Wang, J.W. Ma, E.L. Dong, S.C. Xu, G.Q. Wang, One-pot synthesis of Sb2S3 nanocrystalline films through a PVP-assisted hydrothermal process. Appl. Surf. Sci. 455, 1063–1069 (2018). https://doi.org/10.1016/j.apsusc.2018.06.084

    Article  CAS  Google Scholar 

  13. J.C. Cardoso, C.A. Grimes, X.J. Feng, X. Zhang, S. Komarneni, M.V. Zanoni, N. Bao, Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic–inorganic thin film photovoltaics. Chem. Commun. 48, 2818–2820 (2012). https://doi.org/10.1039/C2CC17573H

    Article  CAS  Google Scholar 

  14. A.D. DeAngelis, K.C. Kemp, N. Gaillard, K.S. Kim, Antimony(III) sulfide thin films as a photoanode material in photocatalytic water splitting. ACS Appl. Mater. Interfaces 8(13), 8445–8451 (2016). https://doi.org/10.1021/acsami.5b12178

    Article  CAS  Google Scholar 

  15. C. Chen, X. Liu, K. Li, S. Lu, S. Wang, S. Li, Y. Lu, J. He, J. Zheng, X. Lin, J. Tang, High-efficient Sb2Se3 solar cell using ZnxCd1−xS n-type layer. Appl. Phys. Lett. 118, 172103 (2021). https://doi.org/10.1063/5.0030430

    Article  CAS  Google Scholar 

  16. U. Wijesinghe, G. Longo, O.S. Hutter, Defect engineering in antimony selenide thin film solar cells. Energy Adv. 2(12), 12–33 (2022). https://doi.org/10.1039/d2ya00232a

    Article  CAS  Google Scholar 

  17. M.A. Farhana, A. Manjceevan, J. Bandara, Recent advances and new research trends in Sb2S3 thin film based solar cells. J. Sci. Adv. Mater. Dev. 8, 100533 (2023). https://doi.org/10.1016/j.jsamd.2023.100533

    Article  CAS  Google Scholar 

  18. J. Zhang, Z. Liu, Z. Liu, Novel WO3/Sb2S3 heterojunction photocatalyst based on WO3 of different morphologies for enhanced efficiency in photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 8, 9684–9691 (2016). https://doi.org/10.1021/acsami.6b00429

    Article  CAS  Google Scholar 

  19. Z. Wang, L. Li, L. Hong, X. Shi, Y. Lu, J. Su, Bi-doped Sb2S3 thin film synthesized by a two-step approach with enhanced photoelectrochemical water splitting performance. J. Electrochem. Soc. 169, 066508 (2022). https://doi.org/10.1149/1945-7111/ac6447

    Article  CAS  Google Scholar 

  20. T. Han, M. Luo, Y. Liu, C. Lu, Y. Ge, X. Xue, W. Dong, Y. Huang, Y. Zhou, X. Xu, Sb2S3/Sb2Se3 heterojunction for high-performance photodetection and hydrogen production. J. Colloid Interface Sci. 628, 886–895 (2022). https://doi.org/10.1016/j.jcis.2022.08.072

    Article  CAS  Google Scholar 

  21. E. Khorashadizade, S. Mohajernia, S. Hejazi, H. Mehdipour, N. Naseri, O. Moradlou, A.Z. Moshfegh, P. Schmuki, Intrinsically Ru-doped suboxide TiO2 nanotubes for enhanced photoelectrocatalytic H2 generation. J. Phys. Chem. C 125, 6116–6127 (2021). https://doi.org/10.1021/acs.jpcc.1c00459

    Article  CAS  Google Scholar 

  22. H. Pan, X. Meng, J. Cai, S. Li, G. Qin, 4d transition-metal doped hematite for enhancing photoelectrochemical activity: theoretical prediction and experimental confirmation. RSC Adv. 5, 19353–19361 (2015). https://doi.org/10.1039/C4RA12825G

    Article  CAS  Google Scholar 

  23. A. Chihi, Tailoring the photoelectrochemical water splitting of CuSbS2 thin films by artificial defect engineering based on Bi doping. Eur. Phys. J. Plus 138(9), 803 (2023). https://doi.org/10.1140/epjp/s13360-023-04418-y

    Article  CAS  Google Scholar 

  24. R. Kondrotas, C. Chen, J. Tang, Sb2S3 solar cells. Joule 2, 857–878 (2018). https://doi.org/10.1016/j.joule.2018.04.003

    Article  CAS  Google Scholar 

  25. J. Chen, J. Qi, R. Liu, X. Zhu, Z. Wan, Q. Zhao, S. Tao, C. Dong, G.Y. Ashebir, W. Chen, R. Peng, F. Zhang, S. Yang, X. Tian, M. Wang, preferentially oriented large antimony trisulfide single-crystalline cuboids grown on polycrystalline titania film for solar cells. Commun. Chem. 2, 121 (2019). https://doi.org/10.1038/s42004-019-0225-1

    Article  CAS  Google Scholar 

  26. E. Aslan, M. Zarbali, Preparation of high-performance Sb2S3 based visible-light photodetector with excellent reversibility. Opt. Mater. 133, 113028 (2022). https://doi.org/10.1016/j.optmat.2022.113028

    Article  CAS  Google Scholar 

  27. W. Hou, H. Guo, J. Zhang, J. Xu, L. Liu, Z. Zhang, J. Yang, B. Liang, H. Zhang, Facile synthesis, and hydrazine detection activity of Sb2S3 films on indium tin oxide electrode. Mater. Lett. 216, 73–76 (2018). https://doi.org/10.1016/j.matlet.2017.12.110

    Article  CAS  Google Scholar 

  28. H. Guo, W. Hou, B. Liang, H. Zhang, Fabrication and photocatalytic performance of Sb2S3 film/ITO combination. Catal. Lett. 147(10), 2592–2599 (2017). https://doi.org/10.1007/s10562-017-2154-x

    Article  CAS  Google Scholar 

  29. M. Alimoradi, M. Adelifard, an investigation on the effect of substrate temperature and substrate type on physical properties of Sb2S3 thin films prepared by spray pyrolysis. J. Anal. Appl. Pyrolysis 140, 205–212 (2019). https://doi.org/10.1016/j.jaap.2019.03.016

    Article  CAS  Google Scholar 

  30. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32(5), 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  31. U. Wahl, J.G. Correia, S. Decoster, T. Mendonca, Lattice location of the group V elements As and Sb in ZnO. Physica B 404, 4803–4806 (2009). https://doi.org/10.1016/j.physb.2009.08.174

    Article  CAS  Google Scholar 

  32. N.A.F.M. Saadon, N. Izza Taib, C.W. Loy, Z. Mohamed, Role of Ca2+ doping on the enhancement of dielectric properties of Sr2−xCaxNiWO6 for energy storage device application. Sci. Rep. 13, 1246 (2023). https://doi.org/10.1038/s41598-023-28296-7

    Article  CAS  Google Scholar 

  33. M. Zhang, D. Yoo, Y. Kang, W. Park, J.I. Lee, Y. Kim, Y.-H. Hwang, D. Lee, Ni addition effects on physical properties of spin-coated Sb2S3 semiconducting compound thin films. Appl. Surf. Sci. 607, 155022 (2023). https://doi.org/10.1016/j.apsusc.2022.155022

    Article  CAS  Google Scholar 

  34. H. Deng, Y. Zeng, M. Ishaq, S. Yuan, H. Zhang, X. Yang, M. Hou, U. Farooq, J. Huang, K. Sun, R. Webster, H. Wu, Z. Chen, F. Yi, H. Song, X. Hao, J. Tang, Quasiepitaxy strategy for efficient full-inorganic Sb2S3 solar cells. Adv. Funct. Mater. 29, 1901720 (2019). https://doi.org/10.1002/adfm.201901720.Adv.Fun

    Article  Google Scholar 

  35. A. Chihi, B. Bessais, Synthesis and characterization of Cu2SnSe3 thin films by electrodeposition route. Superlattices Microstruct. 97, 287–297 (2016). https://doi.org/10.1016/j.spmi.2016.06.036

    Article  CAS  Google Scholar 

  36. Y.C. Wang, Y.Y. Zeng, L.H. Li, C. Qin, Y.W. Wang, Z.R. Lou, F.Y. Liu, Z.Z. Ye, L.P. Zhu, Stable and efficient photocathode using Sb2S3 absorber in near-neutral electrolyte for water splitting. ACS Appl. Energy Mater. 3, 6188–6194 (2020). https://doi.org/10.1021/acsaem.0c00210

    Article  CAS  Google Scholar 

  37. T. Stamenkovi, N. Bundaleski, T. Barudzija, I. Validzi, V. Lojpur, XPS study of iodine and tin-doped Sb2S3 nanostructures affected by non-uniform charging. Appl. Surf. Sci. 567, 150822 (2021). https://doi.org/10.1016/j.apsusc.2021.150822

    Article  CAS  Google Scholar 

  38. S.N. Moger, M.G. Mahesha, Effect of indium doping on the optoelectronic properties of ZnSe films. Thin Solid Films 760, 139492 (2022). https://doi.org/10.1016/j.tsf.2022.139492

    Article  CAS  Google Scholar 

  39. S. Zhai, X. Jiang, D. Wu, L. Chen, Y. Su, H. Cui, F. Wu, Single Rh atom decorated pristine and S-defected PdS2 monolayer for sensing thermal runaway gases in a lithium-ion battery: a first-principles study. Surf. Interfaces 37, 102735 (2023). https://doi.org/10.1016/j.surfin.2023.102735

    Article  CAS  Google Scholar 

  40. H.K. Hassan, N.F. Atta, M.M. Hamed, A. Galal, T. Jacob, Ruthenium nanoparticles-modified reduced graphene prepared by a green method for high-performance supercapacitor application in a neutral electrolyte. RSC Adv. 7, 11286–11296 (2017). https://doi.org/10.1039/C6RA27415C

    Article  CAS  Google Scholar 

  41. J. Yu, J. Yu, W. Ho, Z. Jiang, L. Zhang, Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 14, 3808–3816 (2002). https://doi.org/10.1021/cm020027c

    Article  CAS  Google Scholar 

  42. J. Liu, T. Hisatomi, M. Katayama, T. Minegishi, J. Kubota, K. Domen, Effect of particle size of La5Ti2CuS5O7 on photoelectrochemical properties in solar hydrogen evolution. J. Mater. Chem. A 4, 4848–4854 (2016). https://doi.org/10.1039/C5TA10731H

    Article  CAS  Google Scholar 

  43. A. Chihi, B. Bessais, Characterization and photoelectrochemical properties of CICS thin films grown via an electrodeposition route. RSC Adv. 7, 29469 (2017). https://doi.org/10.1039/C7RA04330A

    Article  CAS  Google Scholar 

  44. W. Nugraha, O. Tamura, T. Itoh, K. Amemiya, J.I. Suto, Nishizawa, Growth and crystal properties of Tl-doped PbTe crystals grown by Bridgman method under Pb and Te vapor pressure. J. Cryst. Growth 222, 38–43 (2001). https://doi.org/10.1016/S0022-0248(00)00875-7

    Article  CAS  Google Scholar 

  45. Z. Yang, X. Wang, Y. Chen, Z. Zheng, Z. Chen, W. Xu, W. Liu, Y. Yang, J. Zhao, T. Chen, H. Zhu, Ultrafast self-trapping of photoexcited carriers sets the upper limit on antimony trisulfide photovoltaic devices. Nat. Commun. 10, 4540 (2019). https://doi.org/10.1038/s41467-019-12445-6

    Article  CAS  Google Scholar 

  46. N.S. Tezel, F.M. Tezel, İA. Kariper, Surface and electro-optical properties of amorphous Sb2S3 thin films. J. Appl. Phys. A 125, 198 (2019). https://doi.org/10.1007/s00339-019-2475-2

    Article  CAS  Google Scholar 

  47. T. Fujita, K. Kurita, K. Takiyama, T. Oda, the fundamental absorption edge and electronic structure in Sb2S3. J. Phys. Soc. Jpn. 56, 3734–3739 (1987). https://doi.org/10.1143/JPSJ.56.3734

    Article  CAS  Google Scholar 

  48. S.N. Nazrin, M.K. Halimah, F.D. Muhammad, J.S. Yip, L. Hasnimulyati, M.F. Faznny, M.A. Hazlin, I. Zaitizila, The effect of erbium oxide in physical and structural properties of zinc tellurite glass system. J. Non-Solids 490, 35–43 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.03.017

    Article  CAS  Google Scholar 

  49. S. Ito, K. Tsujimoto, D.-C. Nguyen, K. Manabe, H. Nishino, Doping effects in Sb2S3 absorber for full-inorganic printed solar cells with 5.7% conversion efficiency. Int. J. Hydrog. Energy 38, 16749 (2013). https://doi.org/10.1016/j.ijhydene.2013.02.069

    Article  CAS  Google Scholar 

  50. K. Tian, L. Wu, B. Yang, H. Chai, L. Gao, M. Wang, J. Jin, Anchored lithium-rich manganese nanoparticles boosting Nd–BiVO4 photoanode for efficient solar-driven water splitting. Colloids Surf. A 662, 130976 (2023). https://doi.org/10.1016/j.colsurfa.2023.130976

    Article  CAS  Google Scholar 

  51. H. Sun, W. Hua, S. Liang, Y. Li, J.G. Wang, Boosting photoelectrochemical activity of bismuth vanadate by implanting oxygen-vacancy-rich cobalt (oxy)hydroxide. J. Colloid Interface Sci. 611, 278–286 (2022). https://doi.org/10.1016/j.jcis.2021.12.086

    Article  CAS  Google Scholar 

  52. H. Dotan, K. Sivula, M. Grätzel, A. Rothschild, S.C. Warren, Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ. Sci. 4, 958–964 (2011). https://doi.org/10.1039/C0EE00570C

    Article  CAS  Google Scholar 

  53. S.D. Tilley, M. Schreier, J. Azevedo, M. Stefik, M. Graetzel, Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes. Adv. Funct. Mater. 24(3), 303–311 (2014). https://doi.org/10.1002/adfm.201301106

    Article  CAS  Google Scholar 

  54. M.A. Hassan, J.-H. Kang, M.A. Johar, J.-S. Ha, S.-W. Ryu, High-performance ZnS/GaN heterostructure photoanode for photoelectrochemical water splitting applications. Acta Mater. 146, 171–175 (2018). https://doi.org/10.1016/j.actamat.2017.12.063

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge financial support from the Center of Research and Technology of Energy, Technopole of Borj Cedria, Tunisia.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Chihi.

Ethics declarations

Conflict of interest

I confirm that there are no known competing financial interests or personal relationships associated with this publication that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chihi, A. Effect of Ruthenium doping in tailoring structure, optical and electrical properties of Sb2S3 thin film synthesized via electrodeposition technique. J Mater Sci: Mater Electron 34, 2087 (2023). https://doi.org/10.1007/s10854-023-11516-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11516-1

Navigation