Skip to main content
Log in

ZnFe-MOF derived ZnO/ZnFe2O4 nanocomposite as an electrode material for supercapacitor application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOF) derived transition metal oxides-based nanocomposites have a great potential for electrochemical energy storage application due to their electrical conductivity and high theoretical capacitance. Herein, the ZnO/ZnFe2O4 nanocomposite-based electrode materials were derived from bimetallic metal-organic frameworks (ZnFe-MOFs) through thermal treatment at 300 °C, 500 and 700 °C for electrode application in electrochemical supercapacitor. The structural and morphological of the synthesized electrode materials were studied using powder XRD, HE-SEM, TEM, and XPS characterization techniques. All the thermally treated MOFs converted into ZnO/ZnFe2O4 nanocomposite form and the crystallinity of ZnO/ZnFe2O4 nanocomposite gradually increased with temperatures. Interestingly, the ZnO/ZnFe2O4 electrode material obtained at 500 °C (Zn-Fe-500) exhibits exceptional specific capacitance of 636.14 F g−1 @1 A g−1, surpassing those prepared at both lower (300 °C) and higher (700 °C) temperatures. The enhancement in the specific capacitance of Zn-Fe-500 is due to decreased resistivity when compared with other electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data presented in this article are available at request from the corresponding author.

References

  1. Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, ACS Publ. 111, 3577 (2011)

    CAS  Google Scholar 

  2. B. Dunn, H. Kamath, J.M. Tarascon, Science 334, 928 (2011)

    Article  CAS  Google Scholar 

  3. J. Castro-Gutiérrez, A. Celzard, V. Fierro, Front. Mater. 7, 217 (2020)

    Article  Google Scholar 

  4. R. Akter, M.R.H. Bhuiyan, S.R. Chowdhury, M.M. Rahman, S.M. Rahman, Biomass-Based Supercapacitors 41, 60 (2023)

    Google Scholar 

  5. B.K. Saikia, S.M. Benoy, M. Bora, J. Tamuly, M. Pandey, D. Bhattacharya, Fuel 282, 118796 (2020)

    Article  CAS  Google Scholar 

  6. H. Mohammadian-Sarcheshmeh, M. Mazloum-Ardakani, Energy Appl. 2D Nanomater. 145, 158 (2022)

    Google Scholar 

  7. Y. Liu, X. Zhai, K. Yang, F. Wang, H. Wei, W. Zhang, F. Ren, H. Pang, Front. Chem. 7, 118 (2019)

    Article  CAS  Google Scholar 

  8. X. Bi, M. Li, G. Zhou, C. Liu, R. Huang, Y. Shi, B. Bin Xu, Z. Guo, W. Fan, H. Algadi, S. Ge, Nano Res. 16, 7696 (2023)

    Article  CAS  Google Scholar 

  9. G. Li, Y. Feng, Y. Yang, X. Wu, X. Song, L. Tan, Nano Mater. Sci. (2023). https://doi.org/10.1016/j.nanoms.2023.03.003

    Article  Google Scholar 

  10. Y. Tian, H. Du, S. Sarwar, W. Dong, Y. Zheng, S. Wang, Q. Guo, J. Luo, X. Zhang, Front. Chem. Sci. Eng. 15, 1021 (2021)

    Article  CAS  Google Scholar 

  11. B. Chettiannan, A.K. Srinivasan, G. Arumugam, S. Shajahan, M.A. Haija, R. Rajendran, ACS Omega. 8, 6982 (2023)

    Article  CAS  Google Scholar 

  12. D. Majumdar, T. Maiyalagan, Z. Jiang, ChemElectroChem 6, 4343 (2019)

    Article  CAS  Google Scholar 

  13. Y.R. Ahn, M.Y. Song, S.M. Jo, C.R. Park, D.Y. Kim, Nanotechnology. 17, 2865 (2006)

    Article  CAS  Google Scholar 

  14. Y. Sakamaki, M. Tsuji, Z. Heidrick, O. Watson, J. Durchman, C. Salmon, S.R. Burgin, M. Hassan Beyzavi, J. Chem. Educ. 97, 1109 (2020)

    Article  CAS  Google Scholar 

  15. F.H. Gourji, T. Rajaramanan, A. Kishore, M. Heggertveit, D. Velauthapillai, ACS Omega 8, 23446 (2023)

    Article  CAS  Google Scholar 

  16. C. Kang, L. Ma, Y. Chen, L. Fu, Q. Hu, C. Zhou, Q. Liu, Chem. Eng. J. 427, 131003 (2022)

    Article  CAS  Google Scholar 

  17. C. Li, L. Sha, K. Yang, F. Kong, P. Li, Y. Tao, X. Zhao, H. Chen, Front. Chem. 10, 991230 (2022)

    Article  CAS  Google Scholar 

  18. C. Qu, B. Zhao, Y. Jiao, D. Chen, S. Dai, B.M. Deglee, Y. Chen, K.S. Walton, R. Zou, M. Liu, ACS Energy Lett. 2, 1263 (2017)

    Article  CAS  Google Scholar 

  19. M. Yi, C. Zhang, C. Cao, C. Xu, B. Sa, D. Cai, H. Zhan, Inorg. Chem. 58, 3916 (2019)

    Article  CAS  Google Scholar 

  20. J. Wang, Q. Zhong, Y. Zeng, D. Cheng, Y. Xiong, Y. Bu, J. Colloid Interface Sci. 555, 42 (2019)

    Article  CAS  Google Scholar 

  21. H. Yang, G.-X. Zhang, H.-J. Zhou, Y.-Y. Sun, H. Pang, Energy Mater. Adv. 4, 0033 (2023)

    Article  CAS  Google Scholar 

  22. R.K. Pandey, ACS Symp. Ser. 1393, 3 (2021)

    Article  CAS  Google Scholar 

  23. P. Zhou, J. Wan, X. Wang, K. Xu, Y. Gong, L. Chen, J. Colloid Interface Sci. 575, 96 (2020)

    Article  CAS  Google Scholar 

  24. G.C. Li, P.F. Liu, R. Liu, M. Liu, K. Tao, S.R. Zhu, M.K. Wu, F.Y. Yi, L. Han, Dalton Trans. 45, 13311 (2016)

    Article  CAS  Google Scholar 

  25. Y.Z. Zheng, H.Y. Ding, M.L. Zhang, Mater. Res. Bull. 44, 403 (2009)

    Article  Google Scholar 

  26. X.Y. Hou, X.L. Yan, X. Wang, Q.G. Zhai, J. Solid State Chem. 263, 72 (2018)

    Article  CAS  Google Scholar 

  27. S. Raha, M. Ahmaruzzaman, Nanoscale Adv. 4, 1868 (2022)

    Article  CAS  Google Scholar 

  28. M.M. Vadiyar, S.S. Kolekar, J.Y. Chang, Z. Ye, A.V. Ghule, ACS Appl. Mater. Interfaces. 9, 26016 (2017)

    Article  CAS  Google Scholar 

  29. Q. Li, W. Lu, Z. Li, J. Ning, Y. Zhong, Y. Hu, Chem. Eng. J. 380, 122544 (2020)

    Article  CAS  Google Scholar 

  30. L.J. Zhou, X.X. Zhang, W.Y. Zhang, Rare Met. 40, 1604 (2021)

    Article  CAS  Google Scholar 

  31. M. Horchani, M. Seif Eddine, A. Omri, A. Benali, M. Taoufik, E. Dhahri, M.A. Valente, B.F.O. Costa, R. Ben, Younes, J. Mater. Sci. 34, 1298 (2023)

    CAS  Google Scholar 

  32. X. Li, C. Han, D. Lu, C. Shao, X. Li, Y. Liu, Sens. Actuators B 297, 126769 (2019)

    Article  CAS  Google Scholar 

  33. X. Xing, Y. Yang, Z. Yan, Y. Hu, T. Zou, Z. Wang, Y. Wang, Ceram. Int. 45, 4322 (2019)

    Article  CAS  Google Scholar 

  34. B. Palanivel, S. devi Mudisoodum perumal, T. Maiyalagan, V. Jayarman, C. Ayyappan, M. Alagiri, Appl. Surf. Sci. 498, 143807 (2019)

    Article  CAS  Google Scholar 

  35. P. Xiong, C. Hu, Y. Fan, W. Zhang, J. Zhu, X. Wang, P. Xiong, C. Hu, Y. Fan, W. Zhang, J. Zhu, X. Wang, JPS 266, 384 (2014)

    CAS  Google Scholar 

  36. R. Roshani, A. Tadjarodi, J. Mater. Sci. 31, 23025 (2020)

    CAS  Google Scholar 

  37. M. Saraf, K. Natarajan, A.K. Gupta, P. Kumar, R. Rajak, S.M. Mobin, Mater. Res. Express. 6, 095534 (2019)

    Article  CAS  Google Scholar 

  38. S. Polat, Cilt. 10, 199 (2021)

    Google Scholar 

  39. L. Li, H. Bi, S. Gai, F. He, P. Gao, Y. Dai, X. Zhang, D. Yang, M. Zhang, P. Yang, Sci. Rep. 7, 43116 (2017)

    Article  CAS  Google Scholar 

  40. T. Putjuso, S. Putjuso, A. Karaphun, P. Moontragoon, I. Kotutha, E. Swatsitang, Klai Kangwon Campus, H. Hin, P. Khiri Khan, Sci. Rep 13, 2531 (2023)

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the financial support through Researchers Supporting Project number (RSP2023R54), King Saud university, Riyadh 11451, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the study’s conception and design. Material preparation, data collection, and analysis were performed by NE, CB, SM, SH, MN, RJR, HA, MS, RR, and PR. The first draft of the manuscript was written by PR, and all authors commented on previous versions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to P. Ramu.

Ethics declarations

Competing interests 

The authors have no relevant financial or no financial interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elumalai, N., Balaji, C., Masilamani, S. et al. ZnFe-MOF derived ZnO/ZnFe2O4 nanocomposite as an electrode material for supercapacitor application. J Mater Sci: Mater Electron 34, 2046 (2023). https://doi.org/10.1007/s10854-023-11494-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11494-4

Navigation