Skip to main content
Log in

Fabrication of weaving structure copper tube for electromagnetic interference shielding material: effect of annealing temperature on its electromagnetic shielding performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To design and fabricate a novel and low-cost electromagnetic interference shielding material with outstanding performance is becoming extremely popular by scientists over the years, owing to increasingly complex proliferation of electromagnetic waves. In this work, the composite construction that included activation of silver nitrate, electroless copper plating (ECP) and annealing for fabricating weaving structure copper tube was reported to alleviate the problem above. The effect of annealing temperature on its electromagnetic shielding performance was investigated as well. Results manifest the metal particle/ligand structure on weaving cotton surface could promote copper particles to be reduced and deposited on its surface, which can generate weaving copper pipes with face-centered cubic structure spontaneously. The resultant composite, i.e. textured copper tube possessed brilliant shielding effectiveness of 25.2 dB. Interestingly, the electromagnetic shielding performance of annealed ECP cotton was firstly enhanced, and then reduced with the increase of annealing temperature. The 200 °C-annealed ECP cotton exhibited a better shielding effectiveness performance, the values are increased by 38.1% to 34.8 dB, in which the reflection and absorption shielding are increased by 39.9% and 6.7% compared to the one of unannealed sample, corresponding power coefficients of reflection, transmission and absorption were 0.2691, 0.0031, 0.7277, owning to the improvement of Cu tube crystallinity and the introduction of Cu2O particles acted as scattering center of electromagnetic waves. Therefore, it would provide a promising future tendency from the viewpoint of abundant resources and sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Z.X. Shi, Y. Liu, Y.C. Zhang, J. Sun, J.X. Zheng, C.Z. Wei, W.M. Du, L. Liu, C. Cheng, Appl. Surf. Sci. 611, 155758 (2023). https://doi.org/10.1016/j.apsusc.2022.155758

    Article  CAS  Google Scholar 

  2. C.Z. Wei, R. Zhang, X. Zheng, X. Zheng, Q.L. Ru, Q.Y. Chen, C. Cui, G. Li, D.J. Zhang, Inorg. Chem. Front. 5, 3126–3134 (2018). https://doi.org/10.1039/C80101010B

    Article  CAS  Google Scholar 

  3. C.Z. Wei, J. Sun, Y.C. Zhang, Y. Liu, Z.C. Guo, W.M. Du, L. Liu, Y.M. Zhang, Inorg. Chem. Front. 9, 3542–3551 (2022). https://doi.org/10.1039/D2NJ05436A

    Article  CAS  Google Scholar 

  4. Y.X. Lu, L.L. Xue, Compos. Sci. Technol. 72, 828–834 (2012). https://doi.org/10.1016/j.compscitech.2012.02.012

    Article  CAS  Google Scholar 

  5. W.Y. Liu, D. Sun, H.D. Ma, Z.M. Chen, C.M. Gui, J.J. Huang, Fiber Polym. 23, 1309–1317 (2022). https://doi.org/10.1007/s12221-022-4773-0

    Article  CAS  Google Scholar 

  6. C.M. Gui, D. Sun, W.Y. Liu, H.D. Ma, Z.M. Chen, P. Li, J.J. Huang, J. Ind. Text. 51, 3176–3187 (2022). https://doi.org/10.1177/15280837211068205

    Article  Google Scholar 

  7. B.S. Kwak, G.W. Jeong, W.H. Choi, Y.W. Nam, Compos. Struct. 256, 113148 (2021). https://doi.org/10.1016/j.compstruct.2020.113148

    Article  CAS  Google Scholar 

  8. Y.Z. Wan, P.X. Xiong, J.Z. Liu, F.F. Feng, X.W. Xun, F.M. Gama, Q.C. Zhang, F.L. Yao, Z.W. Yang, H.L. Luo, Y.H. Xu, ACS Nano. 15, 8439–8449 (2021). https://doi.org/10.1021/acsnano.0c10666

    Article  CAS  Google Scholar 

  9. M.A. Kazakova, N.V. Semikolenova, E.Y. Korovin, S.I. Moseenkov, A.S. Andreev, A.S. Kachalov, V.L. Kuznetsov, V.I. Suslyaev, M.A. Mats’ko, V.A. Zakharov, Russ J. Appl. Chem. 91, 127135 (2018). https://doi.org/10.1134/S1070427218010202

    Article  Google Scholar 

  10. A.S. Andreev, M.A. Kazakova, A.V. Ishchenko, A.G. Selyutin, O.B. Lapina, V.L. Kuznetsov, Carbon. 114, 39–49 (2017). https://doi.org/10.1016/j.carbon.2016.11.070

    Article  CAS  Google Scholar 

  11. A. Ansari, M.J. Akhtar, Mater. Res. Express. 4, 16304 (2017). https://doi.org/10.1088/2053-1591/aa570c

    Article  CAS  Google Scholar 

  12. W.J. Tang, L.S. Lu, D. Xing, H.Z.Z. Fang, Q. Liu, K.S. Teh, Compos. Part. B Eng. 152, 8–16 (2018). https://doi.org/10.1016/j.compositesb.2018.06.026

    Article  CAS  Google Scholar 

  13. F. Sharif, M. Arjmand, A.A. Moud, U. Sundararaj, E.P.L. Roberts, ACS Appl. Mater. Inter. 9, 14171–14179 (2017). https://doi.org/10.1021/acsami.6b13986

    Article  CAS  Google Scholar 

  14. H. Zhao, J. Yun, Y.L. Zhang, K.P. Ruan, Y.S. Huang, Y.P. Zheng, L.X. Chen, J.W. Gu, ACS Appl. Mater. Inter. 14, 3233–3243 (2022). https://doi.org/10.1021/acsami.1c22950

    Article  CAS  Google Scholar 

  15. X.K. Zhao, J.J. Wan, D. Sun, G. Li, H.D. Ma, H.L. Li, Z.M. Chen, X. Liu, J.J. Huang, C.M. Gui, Langmuir 39, 3558–3568 (2023). https://doi.org/10.1021/acs.langmuir.2c02830

    Article  CAS  Google Scholar 

  16. B. Joseph, S.V. K, C. Sabu, N. Kalarikkal, S. Thomas, J. Bioresour Bioprod. 5, 223–237 (2020). https://doi.org/10.1016/j.jobab.2020.10.001

    Article  CAS  Google Scholar 

  17. Y.M. Chen, L.J. Zhou, L. Chen, G.G. Duan, C.T. Mei, C.B. Huang, J.Q. Han, S.H. Jiang, Cellulose. 26, 6653–6667 (2019). https://doi.org/10.1007/s10570-019-02557-z

    Article  CAS  Google Scholar 

  18. R. Yang, Q.H. Cao, S. Hong, J.Y. Peng, J.T. Du, Z. Xu, Y. Zhang, J. for. Eng. 5, 13–20 (2020). https://doi.org/10.13360/j.issn.2096-1359.201908015

    Article  CAS  Google Scholar 

  19. J.F. Gao, J.C. Luo, L. Wang, X.W. Huang, H. Wang, X. Song, M.J. Hu, L.C. Tang, H.G. Xue, Chem. Eng. J. 364, 493–502 (2019). https://doi.org/10.1016/j.cej.2019.01.190

    Article  CAS  Google Scholar 

  20. S.V. Dravid, S.D. Bhosale, S. Datar, J. Electron. Mater. 49, 1630–1637 (2020). https://doi.org/10.1007/s11664-019-07535-6

    Article  CAS  Google Scholar 

  21. Y.J. Wan, X.Y. Wang, X.M. Li, S.Y. Liao, Z.Q. Lin, Y.G. Hu, T. Zhao, X.L. Zeng, C.H. Li, S.H. Yu, P.L. Zhu, R. Sun, C.P. Wong, ACS Nano. 14, 14134–14145 (2020). https://doi.org/10.1021/acsnano.0c06971

    Article  CAS  Google Scholar 

  22. G.Q. Yuan, S.K. Yu, J. Jie, C. Wang, Q. Li, H. Pang, Chin. Chem Lett. 31, 1941–1945 (2020). https://doi.org/10.1016/j.cclet.2019.12.034

    Article  CAS  Google Scholar 

  23. E. Luévano-Hipólito, L.M. Torres-Martínez, M.A. Ávila-López, J. Phys. Chem. Solids. 170, 110924 (2022). https://doi.org/10.1016/j.jpcs.2022.110924

    Article  CAS  Google Scholar 

  24. Q.Z. Liu, X.W. He, C. Yi, D.M. Sun, J.H. Chen, D. Wang, K. Liu, M.F. Li, Compos. B Eng. 182, 107614 (2020). https://doi.org/10.1016/j.compositesb.2019.107614

    Article  CAS  Google Scholar 

  25. Y. Li, B. Shen, X.L. Pei, Y.G. Zhang, D. Yi, W.T. Zhai, L.H. Zhang, X.C. Wei, W.G. Zheng, Carbon. 100, 375–385 (2016). https://doi.org/10.1016/j.carbon.2016.01.030

    Article  CAS  Google Scholar 

  26. Q. Yu, Y. Qin, M.Y. Han, F. Pan, L. Han, X.Z. Yin, Z.M. Chen, L.X. Wang, H. Wang, Int. J. Biol. Macromol. 161, 122–131 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.027

    Article  CAS  Google Scholar 

  27. B. Shen, W.T. Zhai, M.M. Tao, J.Q. Ling, W.G. Zheng, ACS Appl. Mater. Inter. 5, 11383–11391 (2013). https://doi.org/10.1021/am4036527

    Article  CAS  Google Scholar 

  28. J.Y. Liang, Y.Z. Gu, M. Bai, S.K. Wang, M. Li, Z.G. Zhang, Compos. Appl. Sci. Manuf. 121, 289–298 (2019). https://doi.org/10.1016/j. compositesa.2019.03.037

    Article  CAS  Google Scholar 

  29. M. Arjmand, K. Chizari, B. Krause, P. Potschke, U. Sundararaj, Carbon. 98, 358–372 (2016). https://doi.org/10.1016/j. carbon.2015.11.024

    Article  CAS  Google Scholar 

  30. H. Shen, Y.S. Li, W. Yao, S.W. Yang, L. Yang, F. Pan, Z.M. Chen, X.Z. Yin, Compos. B Eng. 222, 109042 (2021). https://doi.org/10.1016/j.compositesb.2021.109042

    Article  CAS  Google Scholar 

  31. Y.H. Zhan, J. Wang, K.Y. Zhang, Y.C. Li, N. Yan, W.K. Wei, F.B. Peng, H.S. Xia, Chem. Eng. J. 344, 184–193 (2018). https://doi.org/10.1016/j.cej.2018.03.085

    Article  CAS  Google Scholar 

  32. R.X. Zhang, C.M. Gui, J.J. Huang, G.S. Yang, J. Taiwan. Inst. Chem. Eng. 125, 424–433 (2021). https://doi.org/10.1016/j.jtice.2021.06.034

    Article  CAS  Google Scholar 

  33. Z.H. Zeng, H. Jin, M.J. Chen, W.W. Li, L.C. Zhou, Z. Zhang, Adv. Funct. Mater. 26, 303–310 (2016). https://doi.org/10.1002/adfm.201503579

    Article  CAS  Google Scholar 

  34. Y. Wang, W. Wang, X.D. Ding, D. Yu, Chem. Eng. J. 380, 122553 (2020). https://doi.org/10.1016/j.cej.2019.122553

    Article  CAS  Google Scholar 

  35. R.S. Li, S. Wang, P.W. Bai, B.B. Fan, B. Zhao, R. Zhang, Mater. Adv. 2, 718–727 (2021). https://doi.org/10.1039/D0MA00751J

    Article  CAS  Google Scholar 

  36. W.L. Song, M.S. Cao, M.M. Lu, S. Bi, L.Z. Fan, Carbon. 66, 67–76 (2014). https://doi.org/10.1016/j.carbon.2013.08.043

    Article  CAS  Google Scholar 

  37. Y.K. Kwon, P. Kim, Phys. Rev. Lett. 84, 4613–4616 (2000). https://doi.org/10.1007/0-387-25100-6_8

    Article  Google Scholar 

  38. C.Z. Wei, Q.Y. Chen, C. Cheng, R. Liu, Q. Zhang, L.P. Zhang, Inorg. Chem. Front. 6, 1851–1860 (2019). https://doi.org/10.1039/C9Q100173E

    Article  CAS  Google Scholar 

  39. Z. Zeng, F. Jiang, Y. Yue, D. Han, J. Wang, Adv. Mater. 32, 1908496 (2022). https://doi.org/10.1002/adma.201908496

    Article  CAS  Google Scholar 

  40. M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj, Carbon. 60, 146–156 (2013). https://doi.org/10.1016/j.carbon.2013.04.008

    Article  CAS  Google Scholar 

  41. J.J. Huang, D. Sun, G. Li, X.K. Wang, H.D. Ma, W.Q. Zhang, Z.M. Chen, H.L. Li, C.M. Gui, Compos. Sci. Technol. 228, 109636 (2022). https://doi.org/10.1016/j.compscitech.2022.109636

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the financial supports by the General project of Guangxi Natural Science Foundation (No: 2022GXNSFAA035607), Youth Fund of Anhui Province (No: 2108085QE186, 2208085QE137 and 2208085QE122), Department of Education team project (No: 2022AH010096).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by WSL and HJJ. The first draft of the manuscript was written by WSL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. LHL Conceptualization, data curation, writing-review and editing, validation, supervision.

Corresponding authors

Correspondence to Junjun Huang or Honglin Li.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval and Consent to participate

This article does not contain any studies involving animals performed by any of the authors. This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wan, J., Tong, H. et al. Fabrication of weaving structure copper tube for electromagnetic interference shielding material: effect of annealing temperature on its electromagnetic shielding performance. J Mater Sci: Mater Electron 34, 2055 (2023). https://doi.org/10.1007/s10854-023-11483-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11483-7

Navigation