Skip to main content
Log in

In situ electrosynthesis of polypyrrole/nano Bi2O4 composite for supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polypyrrole/Bi2O4 (PPy/Bi2O4) composite is synthesized by an electrochemical process in acetonitrile in the presence of Py monomer and Bi(BF4)3 on the surface of the stainless steel mesh (SSM) for supercapacitor anode via in-situ formation of the components. The properties of the resulting coating are analyzed using various techniques: EIS, cyclic voltammetry, XPS, XRD, TEM, and FESEM. The Bi2O4 interphase with a ratio of 3.2% occurs in the mixed valence states of Bi(III) and Bi(V) from Bi(BF4)3 during the electrosynthesis of PPy. Thus, Bi2O4 nanoparticles are homogeneously encapsulated in partially oxidized PPy clusters and significantly affect the electrical properties of the binder-free coating. The pseudocapacitive contribution (72.3%) in the composite becomes predominant at high scan rates thanks to the fast redox reaction of both components. The PPy/Bi2O4-coated electrode exhibits a specific capacitance of 312 F g−1 (at 50 mV s−1) in 100 mM Li2SO4, a more capacitive response than that of the PPy homopolymer-coated electrode. A solid-state asymmetric cell is constructed using PVA/Li2SO4 electrolyte and two types of electrodes loaded with 10 mg cm−2: one coated with PPy/Bi2O4 and the other coated with PVC/carbon. The device demonstrates specific energy of 19.8 Wh kg−1, specific power of 1380 W kg−1 at 2.5 A g−1, and coulombic efficiency of 97% with high stability of 83% over 5000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request.

References

  1. M. Li, W. Yang, J. Li, M. Feng, W. Li, H. Li, Y. Yu, Nanoscale. 10, 2218 (2018). https://doi.org/10.1039/C7NR08239H

    Article  CAS  Google Scholar 

  2. Z.A. Shaikh, N.M. Shinde, P.V. Shinde et al., Energy Fuels. 37, 4048 (2023). https://doi.org/10.1021/acs.energyfuels.2c03967

    Article  CAS  Google Scholar 

  3. R. Ghanbari, SR Ghorbani, J. Energy Storage. 60, 106670 (2023). https://doi.org/10.1016/j.est.2023.106670

    Article  Google Scholar 

  4. R. BoopathiRaja, S. Vadivel, S. Rathinavel, M. Parthibavarman, M Ezhilarasan, Inorg. Chem. Commun. 151, 110634 (2023). https://doi.org/10.1016/j.inoche.2023.110634

    Article  CAS  Google Scholar 

  5. N. Devi, SS Ray, Mater. Today Commun. 25, 101691 (2020). https://doi.org/10.1016/j.mtcomm.2020.101691

    Article  CAS  Google Scholar 

  6. M. Xu, Y. Niu, X. Teng, S. Gong, L. Ji, Z. Chen, J. Energy Chem. 65, 605 (2022). https://doi.org/10.1016/j.jechem.2021.06.028

    Article  CAS  Google Scholar 

  7. B. Wang, J.Y. Wang, Y. Zhang, Y. Mei, P.C. Lian, Ceram. Int. 43, 9310 (2017). https://doi.org/10.1016/j.ceramint.2017.04.092

    Article  CAS  Google Scholar 

  8. H.M. Guan, Y. Fengb, Mater. Lett. 143, 269 (2015). https://doi.org/10.1016/j.matlet.2014.12.129

    Article  CAS  Google Scholar 

  9. D.P. Wu, X. Zhang, S.W. Liu, Z.Y. Ren, Y.L. Xing, X.Y. Jin, G. Ni, J. Alloys Compd. 909, 164671 (2022). https://doi.org/10.1016/j.jallcom.2022.164671

    Article  CAS  Google Scholar 

  10. Z.N. Kayani, A. Altaf, R. Sagheer, S. Riaz, S. Naseem, Mater. Chem. Phys. 282, 125944 (2022). https://doi.org/10.1016/j.matchemphys.2022.125944

    Article  CAS  Google Scholar 

  11. C. Li, Y. Ma, S. Zheng et al., J. Colloid Interface Sci. 576, 291 (2020). https://doi.org/10.1016/j.jcis.2020.02.115

    Article  CAS  Google Scholar 

  12. C.Y. Li, Y.Y. Ma, S.Z. Zheng et al., J. Phys. Chem. Solids. 140, 109376 (2020). https://doi.org/10.1016/j.jpcs.2020.109376

    Article  CAS  Google Scholar 

  13. K. Moolsarn, K.E. Aifantis, A. Phakkhawan et al., J. Mater. Sci. : Mater. Electron. 34, 1324 (2023). https://doi.org/10.1007/s10854-023-10671-9

    Article  CAS  Google Scholar 

  14. M. Sun, S. Li, T. Yan et al., J. Hazard. Mater. 333, 169 (2017). https://doi.org/10.1016/j.jhazmat.2017.03.027

    Article  CAS  Google Scholar 

  15. J. Li, X.Y. Wu, Z. Wan, H. Chen, G.K. Zhang, Appl. Catal. B-Environmental. 243, 667 (2019). https://doi.org/10.1016/j.apcatb.2018.10.067

    Article  CAS  Google Scholar 

  16. J.X. Wang, K. Chen, Y. Shen, X. Wang, Y.F. Guo, X.J. Zhou, R.B. Bai, Res. Chem. Intermed. 44, 3061 (2018). https://doi.org/10.1007/s11164-018-3293-4

    Article  CAS  Google Scholar 

  17. S.G. Zhao, F.Y. Chen, C.C. Hao, Y.B. Tang, W.L. Shi, J. Chem. Technol. Biotechnol. 97, 2466 (2022). https://doi.org/10.1002/jctb.7107

    Article  CAS  Google Scholar 

  18. H.B. Yu, Y.A. Xue, S. Liang, X.H. Wang, J. Photochem. Photobiology a-Chemistry. 432, 114077 (2022). https://doi.org/10.1016/j.jphotochem.2022.114077

    Article  CAS  Google Scholar 

  19. C. Ling, C.L. Yue, R.R. Yuan, J.L. Qiu, F.Q. Liu, J.J. Zhu, Chem. Eng. J. 384, 123278 (2020). https://doi.org/10.1016/j.cej.2019.123278

    Article  CAS  Google Scholar 

  20. Y.Y. Ma, C.Q. Zhang, C.Y. Li et al., Coll. Surf. A: Physicochem. Eng. Asp. (2019). https://doi.org/10.1016/j.colsurfa.2019.123757

    Article  Google Scholar 

  21. C.Q. Zhang, X.Y. Li, S.Z. Zheng et al., Colloids and surfaces a-Physicochemical. Eng. Aspects. 548, 150 (2018). https://doi.org/10.1016/j.colsurfa.2018.03.063

    Article  CAS  Google Scholar 

  22. D. Cheng, M.Q. Teng, Y.F. Chen, G.M. Wang, S.G. Wang, J.J. Yang, J. Phys. Chem. Solids. 152, 109947 (2021). https://doi.org/10.1016/j.jpcs.2021.109947

    Article  CAS  Google Scholar 

  23. Y. Zhang, W.X. Wang, Y.S. Guo, Q.Q. Shen, Z.S. Liu, J. Phys. Chem. Solids. 149, 109766 (2021). https://doi.org/10.1016/j.jpcs.2020.109766

    Article  CAS  Google Scholar 

  24. G. Liu, P. Cui, X.M. Liu et al., J. Solid State Chem. 290, 121542 (2020). https://doi.org/10.1016/j.jssc.2020.121542

    Article  CAS  Google Scholar 

  25. Y. Jia, S. Li, H. Ma et al., J. Hazard. Mater. 382, 121121 (2020). https://doi.org/10.1016/j.jhazmat.2019.121121

    Article  CAS  Google Scholar 

  26. T.G. Jiang, K. Wang, T. Guo, X.Y. Wu, G.K. Zhang, Chin. J. Catal. 41, 161 (2020). https://doi.org/10.1016/S1872-2067(19)63391-7

    Article  CAS  Google Scholar 

  27. J. Cheng, X. Wang, Z.Z. Zhang et al., Res. Chem. Intermed. 44, 6569 (2018). https://doi.org/10.1007/s11164-018-3509-7

    Article  CAS  Google Scholar 

  28. K.Y. Cui, X. Wang, M. Tai, B.H. Gao, B. Su, J. Taiwan. Inst. Chem. Eng. 111, 212 (2020). https://doi.org/10.1016/j.jtice.2020.03.007

    Article  CAS  Google Scholar 

  29. H.Y. Wang, Z.S. Liu, Y.L. Zhao, J.N. Niu, P.Z. Feng, Mater. Res. Bull. 89, 253 (2017). https://doi.org/10.1016/j.materresbull.2017.01.051

    Article  CAS  Google Scholar 

  30. D.H. Xia, W.J. Wang, R. Yin et al., Appl. Catal. B-Environmental. 214, 23 (2017). https://doi.org/10.1016/j.apcatb.2017.05.035

    Article  CAS  Google Scholar 

  31. D. Xia, I.M.C. Lo, Water Res. 100, 393 (2016). https://doi.org/10.1016/j.watres.2016.05.026

    Article  CAS  Google Scholar 

  32. X. Dai, S. Yan, L.S. Cui, L. Shi, Ceram. Int. 46, 11261 (2020). https://doi.org/10.1016/j.ceramint.2020.01.151

    Article  CAS  Google Scholar 

  33. H.Y. Wang, Z.S. Liu, L.T. Guo, H.L. Fan, X.Y. Tao, Mater. Sci. Semicond. Process. 77, 8 (2018). https://doi.org/10.1016/j.mssp.2017.12.016

    Article  CAS  Google Scholar 

  34. D. Wu, L.Q. Ye, S.T. Yue, B. Wang, W. Wang, H.Y. Yip, P.K. Wong, J. Phys. Chem. C 120, 7715 (2016). https://doi.org/10.1021/acs.jpcc.6b02365

    Article  CAS  Google Scholar 

  35. S.Z. Zheng, C.Q. Zhang, Y.T. Ma, F. Qin, L. Wei, CY Hu, Ceram. Int. 47, 10574 (2021). https://doi.org/10.1016/j.ceramint.2020.12.169

    Article  CAS  Google Scholar 

  36. Y. Cheng, X.Y. Ren, L.J. Duan, G.H. Gao, J. Mater. Chem. C 8, 8234 (2020). https://doi.org/10.1039/d0tc01039a

    Article  CAS  Google Scholar 

  37. S.H. Gong, B.Q. Wang, Y. Xue et al., J. Colloid Interface Sci. 628, 343 (2022). https://doi.org/10.1016/j.jcis.2022.07.134

    Article  CAS  Google Scholar 

  38. E. Karaca, D. Gökcen, N. Pekmez, K. Pekmez, Synth. Met. 247, 255 (2019). https://doi.org/10.1016/j.synthmet.2018.12.014

    Article  CAS  Google Scholar 

  39. E. Karaca, K. Pekmez, NO Pekmez, Electrochim. Acta. 273, 379 (2018). https://doi.org/10.1016/j.electacta.2018.04.059

    Article  CAS  Google Scholar 

  40. E.A. Sanches, S.F. Alves, J.C. Soares, A.M. Silva, C.G. da Silva, S.M. de Souza, H.O. da Frota, J Nanomaterials. 2015, 1 (2015). https://doi.org/10.1155/2015/129678

    Article  CAS  Google Scholar 

  41. M.S.P. Sudhakaran, R. Raju, Appl. Surf. Sci.  (2023). https://doi.org/10.1016/j.apsusc.2023.156796

    Article  Google Scholar 

  42. J. Yang, J.Y. Cao, Y.D. Peng, M. Bissett, I.A. Kinloch, R.A.W. Dryfe, J. Power Sources. 516, 230663 (2021). https://doi.org/10.1016/j.jpowsour.2021.230663

    Article  CAS  Google Scholar 

  43. D.Y. Aydin, M.G.Ã.R.Ã.F. Akkurt, Cellulose Chem. Technol. 55, 893 (2021)

    Article  CAS  Google Scholar 

  44. E. Karaca, N. Pekmez, K. Pekmez, Electrochim. Acta. 147, 545 (2014)

    Article  CAS  Google Scholar 

  45. C. Tao, F. Zhao, Z.W. Tang et al., J. Solid State Chem. 303, 122489 (2021). https://doi.org/10.1016/j.jssc.2021.122489

    Article  CAS  Google Scholar 

  46. X. Jin, G. Liu, C. Bao et al., Sep. Purif. Technol. 306, 122712 (2023). https://doi.org/10.1016/j.seppur.2022.122712

    Article  CAS  Google Scholar 

  47. Y. Xie, Y. Mu, Electrochim. Acta. 391, 138953 (2021). https://doi.org/10.1016/j.electacta.2021.138953

    Article  CAS  Google Scholar 

  48. T.C. Liu, W.G. Pell, B.E. Conway, S.L. Roberson, J. Electrochem. Soc. 145, 1882 (1998). https://doi.org/10.1149/1.1838571

    Article  CAS  Google Scholar 

  49. A. Cymann-Sachajdak, M. Graczyk-Zajac, G. Trykowski, M. Wilamowska-Zawlocka, Electrochimica Acta (2021). https://doi.org/10.1016/j.electacta.2021.138356

    Article  Google Scholar 

  50. J.L. Aguilar-Charfen, I. Castro-Sayago, J. Turnbull-Agraz, J.G. Ibanez, Chem. Teacher Int. 3, 423 (2021). https://doi.org/10.1515/cti-2021-0002

    Article  Google Scholar 

  51. H.Y. Chen, L. Wu, C. Ren et al., J. Power Sources. 95, 108 (2001). https://doi.org/10.1016/S0378-7753(00)00640-6

    Article  CAS  Google Scholar 

  52. M.S. Martin-Gonzalez, A.L. Prieto, R. Gronsky, T. Sands, A.M. Stacy, J. Electrochem. Soc. 149, C546 (2002). https://doi.org/10.1149/1.1509459

    Article  CAS  Google Scholar 

  53. W.J. Zhang, Y.X. Wang, X.L. Guo et al., J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2020.157394

    Article  Google Scholar 

  54. L.B. Kong, W. Que, L. Liu et al., (2017) Nanomaterials for Supercapacitors, CRC Press

  55. D.X. Zhang, Q. Xiang, J. Am. Ceram. Soc. 105, 5638 (2022). https://doi.org/10.1111/jace.18556

    Article  CAS  Google Scholar 

  56. J. Xu, Z. Meng, Z. Hao et al., J. Colloid Interface Sci. 609, 878 (2022). https://doi.org/10.1016/j.jcis.2021.11.081

    Article  CAS  Google Scholar 

  57. G.N. Sinha, P. Subramanyam, V. Sivaramakrishna, C. Subrahmanyam, Inorg. Chem. Commun. (2021). https://doi.org/10.1016/j.inoche.2021.108627

    Article  Google Scholar 

  58. K. Fedorov, L.H. Jia, X.F. Guo, J.L. Li, J. Nanosci. Nanotechnol. 16, 7490 (2016). https://doi.org/10.1166/jnn.2016.11598

    Article  CAS  Google Scholar 

  59. E. Karaca, K. Saka, D. Gökcen, NÖ Pekmez, Optik. 285, 170945 (2023). https://doi.org/10.1016/j.ijleo.2023.170945

    Article  CAS  Google Scholar 

  60. R.R. Palem, S. Ramesh, C. Bathula et al., Ceram. Int. 47, 26738 (2021). https://doi.org/10.1016/j.ceramint.2021.06.081

    Article  CAS  Google Scholar 

  61. S.A. Mane, A.A. Kashale, G.P. Kamble et al., J. Alloys Compd.  (2022). https://doi.org/10.1016/j.jallcom.2022.166722

    Article  Google Scholar 

  62. S.J. Yang, L.B. Qian, Y.J. Ping et al., Ceram. Int. 47, 8290 (2021). https://doi.org/10.1016/j.ceramint.2020.11.190

    Article  CAS  Google Scholar 

  63. Y.X. Liu, C. Chu, Y.X. Li et al., J. Alloys Compd.  (2022). https://doi.org/10.1016/j.jallcom.2022.165258

    Article  Google Scholar 

  64. Z.A. Shaikh, P.V. Shinde, S.F. Shaikh, A.M. Al-Enizi, R.S. Mane, Solid State Sci. 102. (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106158

    Article  Google Scholar 

  65. S. Singh, R.K. Sahoo, N.M. Shinde, J.M. Yun, R.S. Mane, K.H. Kim, Energies (2019). https://doi.org/10.3390/en12173320

    Article  Google Scholar 

  66. C.H. Ng, H.N. Lim, S. Hayase, Z. Zainal, S. Shafie, N.M. Huang, Ind. Eng. Chem. Res. 57, 2146 (2018). https://doi.org/10.1021/acs.iecr.7b04980

    Article  CAS  Google Scholar 

  67. M. Nagaraju, B. Ramulu, S.J. Arbaz, J.S. Yu, J. Alloys Compd. (2023). https://doi.org/10.1016/j.jallcom.2023.169490

    Article  Google Scholar 

  68. Z.L. Yu, S.X. Wang, Y.M. Huang et al., J. Energy Storage (2022). https://doi.org/10.1016/j.est.2022.105486

    Article  Google Scholar 

  69. W.J. Zhang, Y.X. Wang, X.L. Guo et al., J. Alloys Compd. 855, 157394 (2021). https://doi.org/10.1016/j.jallcom.2020.157394

    Article  CAS  Google Scholar 

  70. V. Shanmugapriya, S. Arunpandiyan, G. Hariharan, S. Bharathi, B. Selvakumar, A. Arivarasan, J. Energy Storage (2022). https://doi.org/10.1016/j.est.2022.105739

    Article  Google Scholar 

  71. B.G. Ghule, N.M. Shinde, Y.T. Nakate, J.H. Jang, R.S. Mane, Coll. Surf. A: Physicochem. Eng. Aspects (2022). https://doi.org/10.1016/j.colsurfa.2022.129690

    Article  Google Scholar 

  72. O. Üner, N. Aslan, A. Sarıoğlu, F. Semerci, J. Mater. Sci. : Mater. Electron 32, 15981 (2021). https://doi.org/10.1007/s10854-021-06149-1

    Article  CAS  Google Scholar 

  73. N.M. Shinde, Q.X. Xia, J.M. Yun et al., Electrochim. Acta. 296, 308 (2019). https://doi.org/10.1016/j.electacta.2018.11.044

    Article  CAS  Google Scholar 

  74. M. Moradi, A. Afkhami, T. Madrakian, H.R. Moazami, J. Energy Storage. 71, 108177 (2023). https://doi.org/10.1016/j.est.2023.108177

    Article  Google Scholar 

  75. E. Karaca, D. Gökcen, N. Pekmez, K. Pekmez, Electrochim. Acta. 305, 502 (2019). https://doi.org/10.1016/j.electacta.2019.03.060

    Article  CAS  Google Scholar 

  76. M.G. Çekiç, E. Karaca, N.Ö. Pekmez, Synth. Met. (2023). https://doi.org/10.1016/j.synthmet.2022.117262

    Article  Google Scholar 

  77. X. Chang, Y. Qiu, Z. Cheng, X. Wang, Q. Zhong, H. Huang, Ionics. 28, 4769 (2022). https://doi.org/10.1007/s11581-022-04711-3

    Article  CAS  Google Scholar 

  78. E. Karaca, D. Gökcen, N. Pekmez, K. Pekmez, Int. J. Energy Res. 44, 158 (2019). https://doi.org/10.1002/er.4881

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection and analysis were performed by EK. The first draft of the manuscript was written by EK, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Erhan Karaca.

Ethics declarations

Competing interests

Author Erhan KARACA declares they have no financial interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaca, E. In situ electrosynthesis of polypyrrole/nano Bi2O4 composite for supercapacitor applications. J Mater Sci: Mater Electron 34, 1834 (2023). https://doi.org/10.1007/s10854-023-11270-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11270-4

Navigation