Retraction Note: Optical characteristics and solar cell performance of $\left(\mathrm{MAPbBr}_{3}\right)_{x}$ ((MACI) $\left.)_{0.28} \mathrm{FA}_{0.98} \mathrm{Cs}_{0.02} \mathrm{PbI}_{3}\right)_{1-x}$ with various composition ratios

A. M. El-naggar ${ }^{1, *}$, M. M. Osman ${ }^{1}$, Anwar Q. Alanazi ${ }^{2}$, Mohamed Bakr Mohamed ${ }^{3, \star}$ (D), A. M. Aldhafiri ${ }^{1}$, Zein K. Heiba ${ }^{3}$, and H. A. Albrithen ${ }^{1}$
${ }^{1}$ Physics and Astronomy Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
${ }^{2}$ National Center for Renewable Energy Technology, KACST, Riyadh 11442, Saudi Arabia
${ }^{3}$ Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt

Published online:
25 July 2023
(C) The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Retraction:

Journal of Materials Science: Materials in Electronics (2022) 33:26484-26494
https://doi.org/10.1007/s10854-022-09327-x
The authors have retracted this article because they used a technique for extracting the optical properties of thin films that does not account for interference
phenomena in the film. The unsuitable methodology affects Figs. 3, 4, 5, 6 and 7. All authors agree to this retraction.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]Address correspondence to E-mail: elnaggar@ksu.edu.sa; mbm1977@yahoo.com

[^0]: The original article can be found online at https://
 doi.org/10.1007/s10854-022-09327-x.

