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ABSTRACT

Different percentages of nanoparticles graphene (G) were mixed with nano-

micron sized silicon (Si) particles as follows: 10, 20, 30 and 40 wt% graphene to

silicon ratios. The crystal structure of pure Si powder pattern has cubic phase

SEM, TEM/SAED and XPS equipments were implemented to study the surface

properties of the prepared G@Si composites. Cyclic voltammetry (CV) mea-

surement for the G@Si cell revealed two broad cathodic peaks, related to the

deposition of Li2O thin layer on Si particles and the lithiation process of Si to

form lithium silicide. Meanwhile, the oxidation of LixSi into Si and Li ionis

confirmed by the anodic strong peak at 0.56 V. Electrochemical impedance

spectroscopy (EIS) measurements revealed high interfacial resistance * 1825 X
for pure Si anode in comparison with that of G@Si composite anode. It is con-

cluded that graphene acts as a conductive shielding pathway to inhibit the large

volume change and minimize the capacity fading during successive galvanos-

tatic cycling of G@Si composite anode materials versus Li/Li?. Accordingly, the

specific discharge capacity of 30%G@Si cell delivered about 1240 and 900

mAhg-1 for 1st and 100th charge–discharge cycles, respectively.

1 Introduction

In the past two decades, Li-ion batteries (LIBs) have

transformed portable electronic gadgets, and they

provided suitable power for electric vehicles [1, 2].

Despite their enormous potential, current LIB tech-

nology (e.g., graphite@LiCoO2 batteries) has not been

capable to satisfy the demands for vehicle electrifica-

tion, which call for batteries with simultaneous high

power/energy densities, and extended cycle lives

[3, 4]. Therefore, there is a pressing need for a variety of

anode materials with large energy density, power

density, and extended cycle life [5, 6]. Silicon is a

promising anode for LIBs owing to its high theoretical

capacity and low voltage profile, which is roughly ten

times greater than that of carbonaceous materials like

graphite, pyrolytic carbon, and mesophase pitch

(around 372 mAh.g-1) for the Li15Si4 phase at ambient
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temperature [7]. Furthermore, as silicon is the second

most abundant element in the earth’s crust, its mass

manufacturing at competitive prices is quite plausible.

The excessive volume change (about 300%) during the

lithiation and de-lithiation processes, the lack of

intrinsic electrical conductivity, and the instability of

the solid electrolyte interface (SEI) are nowobstacles to

the practical use of silicon anodes in LIBs [8, 9]. Particle

pulverization, electricity loss from the active material

or the current collector, and the peeling of the current

collector can happen as a result of the significant vol-

ume change. Repeated volume expansion and con-

traction also cause the SEI layer around the particles to

fracture and reform, which causes an ongoing loss of

electrolyte, a noticeable decay in capacity and an

impedance increase [10–12]. The aforementioned

problems have been the focus of much attention.

Designing and fabrication of different composites of

nanomaterials was known as an effective way to

enhance the electronic and catalytic properties [11–16].

The strategies that have been studied include the

design of Si materials using nanostructures [17–21],

porous structures [22–24], or nanocomposites [25–27].

Additionally, Si thin film designed by electron beam

evaporation was implemented as an anode in lithium

batteries. It was found that the addition of fluo-

roethylene carbonate (3 wt%) to 1.3 M LiPF6 offered a

smoother and more stable solid electrolyte interface

(SEI) layer, resulting in better capacity retention and

coulombic efficiency in lithium cells [28]. Polyacrylic

acid and natural polysaccharides were introduced as

new binders with comparable behavior to car-

boxymethylcellulose (CMC) and poly(vinylidene flu-

oride) (PVDF) binders in Si-based Li batteries [29, 30].

Another study declared that the coating of Si nano-

wires with a thin film of amorphous SiO2 (thick-

ness * 7 nm) via thermal oxidation leads to a large

initial storage capacity * 2279 mAh.g-1 with 83%

retention in the capacity after 50 cycles at 0.2 �C versus

lithium [31]. It is also important to note that previous

trials and achievements to enhance the electrochemical

performance of Si anode have quickly increased in the

recent ten years [32–34]. The design strategies of Si

anode material included different morphologies,

(i) nanoparticles, core-shells and yolk-shells, (ii) por-

ous silicon structures, (iii) nanowires, nanofibers, and

nanotubes (iv) silicon composites, …etc.[35]. The

purpose of the study is to optimize the amount of

graphene nanoparticles that will provide the maxi-

mum protection for silicon from too much expansion

in the structure and hence achieving the best cyclabil-

ity and electrical conductivity for the commercial sili-

con in LIBs. Therefore, the present work introduces a

simple and applicable hybridization method for the

preparation of graphene-shielded silicon particles

using a wet grinding technique. The physicochemical

characterization of the obtained composites was per-

formed to distinguish the differences between pure Si

and its composite. The electrochemical storage

behavior of the developed anode composite was ana-

lyzed and optimized using various advanced tech-

niques e.g., galvanostatic cycling (GC), CV, and EIS.

2 Experimental

2.1 Sample preparation
and characterization

Pure Si powder (BDH) was ground using a planetary

ball mill (400 rpm/3 h) and sieved to about - 10 lm.

The obtained fine Si powder was hybridized with

different weight percentages of graphene

(G) nanoplatelets (Sigma Aldrich) as follows: 10, 20,

30 and 40 wt.%. The hybridization technique was

performed via wet grinding technique of 3 g for each

sample mixture up to 300 rpm/1 h in 100 ml acetone

as a solvent medium. The mixed suspension was left

in an oven at 80 �C overnight to ensure complete

dryness.

The crystallographic features of each sample were

detected and identified by X-ray diffraction (XRD)

spectrum, which operated at 40 kV and 30 mA. The

angle scan rate was about 2�/min. The measurements

of X-ray Photo-electron Spectroscopy (XPS) using

PHI 5600 instruments were performed. The

microstructure of pure Si and 30wt% G@Si samples

were inspected by Field Emission Electron Micro-

scope (FESEM), QUANTAFEG 250 and Transmission

Electron Microscope (TEM) JOEL JEM2010-200 kV.

2.2 Electrochemical cell assembly
and measurements

Firstly, the composition of the electrodes was manu-

factured by wet mixing the active anode material,

and acetylene C-black along with polyvinylidene

difluoride (PVDF) in the conducting solvent

N-methyl-2-pyrrolidine (NMP) according to the

weight ratio (80:10:10). The mixed slurry was semi-
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automatically plated on copper foil using TMAX film

coater. The coated electrodes were dried at 110 �C
under vacuum for 24 h. Cell assembly was done in an

Ar-filled glove box. 1 M solution of LiPF6 dissolved

in propylene carbonate and ethylene carbonate was

injected as battery electrolyte. Electrochemical mea-

surements were conducted for coin cell models

CR2032 using lithium metal as a counter and refer-

ence electrode. Cycling voltammetry (CV) of the cells

was achieved in the potential windows 0.01 and 3.0 V

with a scan rate 0.1 mVs-1 through Biologic Battery

tester Model 205. Furthermore, impedance measure-

ments were applied in the frequency range 2 9 104

and 10–3 Hz and amplitude of 10 mV.

Mott-Schottky measurements were estimated for

the samples in three electrode cell configuration at

frequency 500 Hz. The electrochemical cell consists of

active material@In-SnO-glass (working electrode), Pt-

wire (counter electrode), saturated Ag–AgCl (refer-

ence electrode), and 0.1 M Na2SO4 (supporting elec-

trolyte). UV–Vis-NIR spectrophotometer (JASCO V-,

Japan) was employed to count the light absorption

and diffuse reflectance spectra.

3 Results and discussion

3.1 Structure characterization

XRD diffraction patterns of pure Si and 30wt%G@Si

samples are given in Fig. 1. Five distinct peaks are

observed at (28.4768, 47.3338, 56.1618, 69.1258, and

76.3738), indicating a single cubic phase of Si metal

(PDF card no. 27-1402) [34]. The XRD pattern of

30%G@Si shows the same crystal structure and only a

very weak and broad peak could be observed at 26.59

8 that confirms the presence of graphene. The average

crystallite size of pure Si and 30%G@Si samples are

equal to 42.5 and 31.5 nm, respectively. It is also

found that the inclusion of graphene nanoplates in

the bulk Si induces a small expansion in the cell

volume of Si crystal from 160.3 Å3 to 160.8 Å3 after

Graphene addition.

3.2 Microstructure characterization

FESEM images of pure Si and 30wt%G@Si are shown

in Fig. 2a–d. As inspected in Fig. 1a and b, the shape

of Si crystals appeared as rectangular- or prism-like

morphology with particle size range 0.8–2.0 lm.

FESEM image (Fig. 2c) of the prepared 30wt%G@Si

composite at magnification 5000X reveals the good

interference of both graphene and silicon materials in

which the graphene nanoplates are embedded

between the larger grains of silicon. It can be noticed

also that the average particle size of 30wt%G@Si is

smaller than pure Si sample (Fig. 2d), showing a

good agreement with the XRD results.

Figure 3a, b reveals the TEM images of pure Si

particles and 30wt%G@Si composite, respectively.

Most of Si crystals have undefined geometry with a

wide particle size range 60–150 nm. On the other

hand, TEM image of the composite sample displays a

narrower particle size range 50–100 nm for the Si

crystals. Meanwhile, the dispersed graphene

nanosheets in the composite sample do not exceed

10 nm and cover the outer surface of large Si crystals.

SAED technique can be used to distinguish the pure

Si and its composite sample. Figure 3c depicts the

typical SAED of Si crystals revealing the three par-

allel lines of bright dots, characteristic to the atomic

planes (111), (220), and (400) of the cubic structure

[36]. In addition, the two diffraction rings observed in

the SAED pattern of the G@Si composite (Fig. 3d)

confirm the existence of graphene nanosheets as well

as the bright dots of Si nanocrystals [37].

3.3 XPS surface analysis

The XPS survey analysis was performed to recognize

the atomic levels and oxidation states in the 30%G@Si

composite as given in Fig. 4a. Three main peaks can

be identified in the overall XPS survey, adjusted at

the binding energies of O1s, C1s, and Si2p elements.

Figure 4b depicts the XPS of Si2p that can be fitted

into two main peaks at 103.4 eV (Si2p3/2) and

104.3 eV(Si2p1/2), characteristic for Si–O–C and Si–O

bonds, respectively [38, 39]. The high-resolution XPS

scan of C1s (Fig. 4c) can be deconvoluted into 6 peaks

corresponding to C=C (sp2), C–C (sp3), C–O, C=O,

HO–C=O, and p–p* at 284, 284.7, 285.3, 286.2, 287.2,

and 289.7 eV, respectively [40]. The presence of p–p*
(HOMO–LUMO) transition in XPS spectra of C 1 s

gives a strong indication for the enhanced conduc-

tivity of the composite sample provided by the

availability of p-conjugate delocalized electrons in the

sp2 carbon atoms of graphene nanosheets [41].

Moreover, the detection of minor peaks for carbonyl

and carboxyl groups could be explained by the

cleavage of some C=C bonds into C–O sp3 or C=O sp2
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due to the partial oxidation of graphene sheets into

graphene oxide.

The detection of O1s XPS spectra means that some

of Si could be oxidized into SiO2 during the grinding

step with graphene and simultaneously, graphene

Fig. 1 XRD of pure Si metal and 30%G@Si composite between 10 and 80� at angle scan rate * 2�.min.-1

Fig. 2 FESEM images of pure Si at two different magnifications: a 50009 & b 500009 and 30%G@Si composite at c 50009 &

d 500009
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partially transformed into graphene oxide. The

deconvolution of O1s spectra into three main peaks at

531.9, 533.2, and 534 eV is related to the Si–O, O–H/

oxygen deficiency, and adsorbed H2O, respectively

[42].

3.4 Electrochemical characterization
and optimization

Figure 5a–d display the CV measurements for the

assembled cells composed of lithium versus G@Si

composite with different graphene ratios (10, 20, 30,

and 40 wt%) in the potential range 0–3 V upon

scanning rate 0.1 mV.s-1. CV diagram for 10%G@Si

cell produces three weak and broad peaks in the

cathodic direction at 0.02 V, 0.19 V and 0.85 V. The

first and second cathodic peaks at 0.02 V and 0.19 V

are attributed to the lithiation step of Si to form

lithium silicide as explained by Eq. 1 [43]:

Si þ x Liþ þ xe� ! LixSi where; x ¼ 3:75 ð1Þ

The broad cathodic peak at 0.85 V indicates the

formation of SEI layer on the electrode surface [44].

The strong anodic oxidation peak can be observed

around 0.56 V due to the oxidation of LixSi into Si

and Li? ion [45] as shown in Fig. 5a. Therefore, Li-ion

is de-intercalated from the LixSi alloy as explained by

Eq. 2:

LixSi ! Si þ x Liþ þ xe� ð2Þ

Similar anodic peaks are recorded with cells of 30%

G@Si as shown in Fig. 5c. However, the cathodic

peaks at the higher potential might be disappeared,

which could be assigned to the loss in the irreversible

Fig. 3 a, b TEM images and c, d SAED patterns of pure Si particles and 30%G@Si composite, respectively
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capacity after incomplete decomposition of SEI and

Li2O or LiOH as seen in Fig. 5b and d. It is also

depicted that the cathodic peaks at higher potentials

in the case of 30% G@Si are overlapped in one strong

peak around 0.7 V leading to lower separation dis-

tance with the corresponding anodic peak, suggest-

ing higher reversibility and lower polarization.

Figure 6a shows the initial charge–discharge pro-

files for the different compositions of graphene@sili-

con anode materials. Electrical capacity

measurements were carried out on each cell in a

voltage window between 0.001 and 3 V, and the

current density applied for cycling was 100 mAg-1

calculated with respect to the total weight of active

material. The cell of pure Si anode delivered a lower

discharge capacity * 375 mAhg-1 than those cells of

all G@Si composites. As a result, the cell of 30@G/Si

anode delivered the maximum discharge and charge

capacities of about 1240 and 820 mAhg-1, respec-

tively. Plainly, each discharge curve reveals two flat

potential regions at higher and lower voltages. The

short plateau at high potentials[ 0.5 V appears due

to the decomposition of electrolyte on the surface to

form the SEI layer, which is confirmed by a small

plateau region at * 0.5 V [46]. Meanwhile, the sec-

ond long flat plateau at low potentials\ 0.5 V cor-

responds to the insertion of Li? ions and formation of

LixSi as explained by Eq. 1 [47]. Figure 6b shows the

profiles of the discharge capacity vs. the cycle num-

ber of all cells cycled at 100 mAg-1 up to 100 cycles.

Generally, all the anode materials made from G@Si

composite show better electrochemical performance

than pure Si anode. However, the cell with 30%G@Si

demonstrates the highest discharge capacity reten-

tion 73%, delivering about 900 mAhg-1 after 100

cycles. Alongside, pure Si and 10%G@Si anode show

the highest capacity fading in comparison with other

G@Si composites. In case of shielding Si particles

with graphene, high reversibility is obtained because

graphene nanoplates act as buffer material to

Fig. 4 a XPS survey of 30%G@Si composite, b Narrow XPS scans of Si2p, c C1s, and d O 1 s, respectively
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minimize the large volume change of Si during

charge/ discharge process [48]. Moreover, the pres-

ence of graphene in a certain amount with Si gives

good mechanical flexibility and high surface area for

improved accommodation of Li in Si crystal lattice.

Furthermore, The tiny Si particle size coated with

graphene aids in lowering the significant volume

change experienced during cycling processes. One of

the key methods for identifying variations in the

behavior of the electrode at the electrode/electrolyte

interface caused by conductivity changes is electro-

chemical impedance spectroscopy (EIS). Figure 6c

displays the EIS spectra for the discharged cells,

which comprise (i) the resistance of the electrolyte, Re

on the real Z0 axis at the high frequency, (ii) the

charge transfer resistance (Rct) in the region of high-

middle frequency, and (iii) the straight line appeared

in the region of low-frequency. Interestingly, a

remarkable decrease in the Rct value can be observed

after the addition of graphene nanoplatelets. The

lithium ions diffuse into the bulk of anode material in

the low-frequency region, which is known as War-

burg diffusion resistance [49].

It is revealed that pure Si electrode has the maxi-

mum Rct value * 1825 X in comparison with various

G@Si composite electrodes. This means that high

graphene loadings provide a conductive pathway to

decrease the charge transfer resistance of Si decreases

until certain concentration of 30%G, achieving Rct-

* 14.8 X. It is also observed that increasing the

graphene concentration up to 40% increases the Rct to

279 X. i.e., the optimum ratio of graphene in prepa-

ration of these samples is 30% G with 70% Si.

Figure 6d shows the relationship between the real

part of the impedance Zre and the reciprocal root

square of the lower angular frequency x-0.5. Equa-

tion 3 explains this relationship as follows:

Zre ¼ Re þ Rct þ rw � w�0:5; ð3Þ

where: rxis the Warburg impedance coefficient

This relation depicts the resistance in the lower

frequency region of the cells according to the diffu-

sion of the Li-ions in the cells. EIS parameters are

recorded in Table 1.

Values of Li? ions diffusion coefficient into the

bulk anode materials are determined from Eq. 4.

Fig. 5 CV profiles of various G@Si composites a 10%, b 20%, c 30%, and d 40% at scan rate 0.1 mV-1 from 0.0 to 3.0 V
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D ¼ 0:5ðRT=AF2rw � CÞ2 ð4Þ

The double-layer capacitance (Cdl) is given by

Eqns. 5 & 6:

Zre ¼ Re þ Rct þ 2r2w � Cdl ð5Þ

x ¼ 1=Rct:Cdl; ð6Þ

where: Rct: resistance of charge transfer, Re: resistance

of the electrolyte, x: angular frequency in the low

range of frequency, D: coefficient of Li-ions diffusion,

Fig. 6 a Capacity—voltage profiles of the first cycle at

100 mA.g-1 b, b Cycle life assessment curves up to 100 cycles,

c EIS spectra of all samples after 1st cycle between 100 mHz and 1

0 kHz, d Relationships between real impedance and the reciprocal

root square of the lower angular frequency for the cells of pure Si

and G@Si composites (G = 10, 20, 30, 40wt%)

Table 1 EIS parameters of Li/

Si-graphene cells with

different ratios

Ratio Rs [X] Rct [X] rx [X..s0.5] i� [A] D [cm2s-1] Cdl [F]

Pure Si 13.98 1.85E ? 03 1119.718 1.39E-05 1.06E-13 6.84E-06

10%G@Si 7.99007 5.17E ? 02 1094.835 4.97E-05 1.07E-13 1.36E-06

20%G@Si 13.3696 1.47E ? 02 776.337 1.75E-04 1.27E-13 1.70E-06

30%G@Si 6.57815 14.8 104.145 1.74E-03 3.47E-13 4.87E-05

40%G@Si 24.5468 2.79E ? 02 920.656 9.20E-05 1.17E-13 2.26E-07
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R: gas constant, T: Kelvin absolute temperature, F:

Faraday’s constant, A: actual area of electrode, and C:

concentration of Li? ions moles [50]. The obtained

diffusion coefficient (3.47 9 10–13 cm2s-1) for the Li/

30% G@Si cell explains the higher mobility of Li? ion

diffusion than that of the other cells.

Additionally, the current density for the exchange

of electrons is given by Eq. (7):

i� ¼ RT=nF; ð7Þ

where n: the involved electrons in the electrochemical

reaction.

Accordingly, the cell with 30%G@Si has the lowest

Warburg impedance coefficient (rx * 104.14 X.s0.5)
and the highest double-layer capacitance (Cdl-

* 4.87E-05 F). In general, the optimum impedance

parameters are obtained with this percentage of

graphene. Therefore, the charge transfer reaction of

Li/ 30% G@Si electrode demonstrates the best elec-

trochemical performance than that of the other elec-

trodes having different ratios of G and Si.

The Mott-Schottky (M–S) characterization for the

prepared samples can give us an indication about the

value of the bottom level value of the conduction

band, namely flat band potential (Efb) [51]. Obvi-

ously, the flat band potential (Efb) can be determined

from the intercept of the extrapolated line with the

x-axis at 1/C2 = 0, as displayed in M–S plot (Fig. 7). It

is found that the corresponding (Efb) of pure Si is

about 0.67 V, suugesting a strong p-type conduction

behavior. Meanwhile, the 30% G@Si possesses more

negative value * - 0.015 V, which suggest the

Fig. 7 Mott–Schottky plots of pure Si a and 30% G@Si composite b measured at 500 Hz

Fig. 8 Direct band gap energy plots of pure Si (a) and 30% G@Si composite (b)
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conversion of electrical conduction of pure Si mate-

rial into P–N type semiconductor. The obtained M–S

results are comparable to the previous literature

[52, 53].

The direct band gap energy of each sample can be

obtained from the diffuse reflectance spectra of solid

samples and the corresponding Tauc’s plots (Fig. 8a

and b) using kubelka–munk Eq. (8): F Rð Þ ¼
1 � Rð Þ2=2R [54]. It is seen that the estimated band

gap energy of pure Si sample for direct transitions is

about 3.25 eV which is close to the reported value

[55]. Meanwhile, the composite sample 30% G@Si

indicates two band gap energy values 2.9 and 1.6 eV,

which are related to the presence of major silicon and

minor graphene phases. This means that the addition

of graphene enhanced the electronic transitions by

creating lower energy levels which improved the

electrical conductivity of pure silicon. The assembled

coin cell 2032 prototypes in this work is suitable for

applications in small electronic devices such as elec-

tronic toys, laser pointers, digital calculators, LED

flashlights, …etc.

4 Conclusions

Various compositions of graphene@silicon anode

materials were prepared via physical in-situ plane-

tary milling technique. XPS spectra of O1s suggest

the partial oxidation of graphene and silicon into

graphene oxide and silicon dioxide. The cell of

30%@G/Si anode delivered the maximum discharge

and charge capacities of about 1240 and 820 mAhg-1,

respectively. EIS measurements revealed that

30%@G/Si anode has the highest value of Li? ion

diffusion coefficient (D * 3.47 9 10-13cm2s-1) and

the lowest value of charge transfer resistance (Rct-

* 14.8X) in comparison with other composite

materials. Accordingly, a critical amount of graphene

is needed to be mixed with Si to provide high

mechanical flexibility in the silicon crystals and high

surface area for deep accommodation of Li? ions in

the Si lattice. Furthermore, the small particle size of Si

decorated with graphene help in decreasing of the

large volume change during the cycling steps.
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