Skip to main content

Advertisement

Log in

MOF-derived Co–Fe–P@NiCo-layered double hydroxides with high areal capacity for supercapacitor electrodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cobalt iron phosphide (Co–Fe–P), a metalloid-like material with zero band gap and high specific capacity, has received much attention in the field of supercapacitors, but the poor rate performance and cycling stability limit its commercial applications. Herein, we used cobalt-iron metal organic framework as the precursor (under the modulation of the polyvinylpyrrolidone (PVP), the morphology changes from three-dimensions to one-dimension), to synthesize the Co–Fe–P@NiCo-layered double hydroxide (LDH) core–shell nanostructure on conductive nickel foam (NF). Profiting of high conductivity of Co–Fe–P nanowires as the core and large surface area of NiCoLDH nanosheets as the shell, the fabricated Co–Fe–P@NiCoLDH/NF electrode exhibits outstanding electrochemical properties, such as high special capacity of 5.67 C cm−2 at a current density of 1 mA cm−2, remarkable rate capability (78.59% from 1 to 20 mA cm−2). Moreover, the asymmetric supercapacitor assembled by Co–Fe–P@NiCoLDH/NF and activated carbon/NF, also delivers excellent electrochemical performance with high energy density of 0.164 mW h cm−2 (30.4 mW h cm−3) and a superior cyclic life span of 91.67% over 5000 cyclic tests under 20 mA cm−2. This work proposes a unique route for the application of Co–Fe–P with elaborate structures, which may excite new significant findings in the energy storage field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. C. Liu, F. Li, L. Ma, H. Cheng, Advanced materials for energy storage. Adv. Mater. 22(8), E28-62 (2010)

    Article  CAS  Google Scholar 

  2. S. Chou, S. Dou, Next-generation batteries. Adv. Mater. 29(48), 1705871 (2017)

    Article  Google Scholar 

  3. C. Li, X. Zhang, K. Wang, F. Su, C. Chen, F. Liu, Y. Ma, Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors. J. Energy Chem. 54, 352–367 (2021)

    Article  CAS  Google Scholar 

  4. C. Raj, R. Manikandan, M. Rajesh, P. Sivakumar, H. Jung, S. Das, B. Kim, Cornhusk mesoporous activated carbon electrodes and seawater electrolyte: the sustainable sources for assembling sustainable supercapacitor module. J. Power Sources 490, 229518 (2021)

    Article  CAS  Google Scholar 

  5. Y. Deng, Y. Xie, K. Zou, X. Ji, Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J. Mater. Chem. A 4(4), 1144–1173 (2016)

    Article  CAS  Google Scholar 

  6. P. Xie, W. Yuan, X. Liu, Y. Peng, Y. Yin, Y. Li, Z. Wu, Advanced carbon nanomaterials for state-of-the-art flexible supercapacitors. Energy Storage Mater. 36, 56–76 (2021)

    Article  Google Scholar 

  7. M. Beidaghi, Y. Gogotsi, Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 7(3), 867 (2014)

    Article  CAS  Google Scholar 

  8. X. Chang, T. Liu, W. Li, M. He, Z. Ren, J. Bai, Dual modulation of the morphology and electric conductivity of NiCoP on nickel foam by Fe doping as a superior stability electrode for high energy supercapacitors. Nanoscale 13(41), 17442–17456 (2021)

    Article  CAS  Google Scholar 

  9. Q. Wang, Y. Ma, X. Liang, D. Zhang, M. Miao, Novel core-shell CoSe2@PPy nanoflowers for high-performance fiber asymmetric supercapacitors. J. Mater. Chem. A 6(22), 10361–10369 (2018)

    Article  CAS  Google Scholar 

  10. C. Keum, H. Lee, C. Kwon, B. Han, S. Lee, Metal-induced self-assembly template for controlled growth of ZIF-8 nanorods. Chem. Mater. 32(18), 7941–7950 (2020)

    Article  CAS  Google Scholar 

  11. D. Wang, Z. Liang, S. Gao, C. Qu, R. Zou, Metal-organic framework-based materials for hybrid supercapacitor application. Coord. Chem. Rev. 404, 213093 (2020)

    Article  CAS  Google Scholar 

  12. S. He, F. Guo, Q. Yang, H. Mi, J. Li, N. Yang, J. Qiu, Design and fabrication of hierarchical NiCoP-MOF heterostructure with enhanced pseudocapacitive properties. Small 17(21), e2100353 (2021)

    Article  Google Scholar 

  13. X. Wang, C. Jing, W. Zhang, X. Wang, X. Liu, B. Dong, Y. Zhang, One-step phosphorization synthesis of CoP@NiCoP nanowire/nanosheet composites hybrid arrays on Ni foam for high-performance supercapacitors. Appl. Surf. Sci. 532, 147437 (2020)

    Article  CAS  Google Scholar 

  14. Q. Zhou, Y. Gong, K. Tao, Calcination/phosphorization of dual Ni/Co-MOF into NiCoP/C nanohybrid with enhanced electrochemical property for high energy density asymmetric supercapacitor. Electrochim. Acta 320, 134582 (2019)

    Article  CAS  Google Scholar 

  15. S. Nie, H. Yang, C. Zhou, Y. Liu, C. Pan, J. Luo, Y. Wang, Bimetallic Co0.4Ni1.6P derived from cobalt functionalized a new nickel metal-organic-framework as an advanced electrode for high-performance supercapacitors. Inorg. Chem. Commun. 130, 108733–34 (2021)

    Article  CAS  Google Scholar 

  16. R. Han, L. Guan, S. Zhang, Y. Lin, J. Tao, Boosted cycling stability of CoP nano-needles based hybrid supercapacitor with high energy density upon surface phosphorization. Electrochim. Acta 368, 137690 (2021)

    Article  CAS  Google Scholar 

  17. W. Wang, L. Zhang, G. Xu, H. Song, L. Yang, C. Zhang, D. Jia, Structure-designed synthesis of CoP microcubes from metal–organic frameworks with enhanced supercapacitor properties. Inorg. Chem. 57(16), 10287–10294 (2018)

    Article  CAS  Google Scholar 

  18. Z. Zheng, M. Retana, X. Hu, R. Luna, Y. Ikuhara, W. Zhou, Three-dimensional cobalt phosphide nanowire arrays as negative electrode material for flexible solid-state asymmetric supercapacitors. ACS Appl. Mater. Interfaces 9(20), 16986–16994 (2017)

    Article  CAS  Google Scholar 

  19. M. Kong, Z. Wang, W. Wang, M. Ma, D. Liu, S. Hao, X. Sun, NiCoP nanoarray: a superior pseudocapacitor electrode with high areal capacitance. Chem. Eur. J. 23(18), 4435–4441 (2017)

    Article  CAS  Google Scholar 

  20. X. Xia, D. Chao, Z. Fan, C. Guan, X. Cao, H. Zhang, H. Fan, A new type of porous graphite foams and their integrated composites with oxide/polymer core-shell nanowires for supercapacitors: structural design, fabrication, and full supercapacitor demonstrations. Nano Lett. 14(3), 1651–1658 (2014)

    Article  CAS  Google Scholar 

  21. F. Xu, Q. Xia, G. Du, Z. Fan, N. Chen, Coral-like Ni2P@C derived from metal–organic frameworks with superior electrochemical performance for hybrid supercapacitors. Electrochim. Acta 380, 138200 (2021)

    Article  CAS  Google Scholar 

  22. K. Koczkur, S. Mourdikoudis, L. Polavarapu, S. Skrabalak, Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans 44(41), 17883–17905 (2015)

    Article  CAS  Google Scholar 

  23. G. Tomboc, H. Jadhav, H. Kim, PVP assisted morphology-controlled synthesis of hierarchical mesoporous ZnCo2O4 nanoparticles for high-performance pseudocapacitor. Chem. Eng. J. 308, 202–213 (2017)

    Article  CAS  Google Scholar 

  24. K. Wang, R. Bi, Z. Wang, Y. Chu, H. Wu, Metal-organic frameworks with different spatial dimensions for supercapacitors. New J. Chem. 44(8), 3147–3167 (2020)

    Article  CAS  Google Scholar 

  25. D. Chu, X. Song, L. Tan, H. Ma, H. Pang, X. Wang, D. Guo, Polyvinyl pyrrolidone-induced assembly of NiCo-LDHs nanosheets: a facile method for fabricating three-dimensional flower-like microspheres with excellent supercapacitor performance. Inorg. Chem. Commun. 110, 107587 (2019)

    Article  CAS  Google Scholar 

  26. F. Zhang, J. Zhang, J. Ma, X. Zhao, Y. Li, R. Li, Polyvinylpyrrolidone (PVP) assisted in-situ construction of vertical metal-organic frameworks nanoplate arrays with enhanced electrochemical performance for hybrid supercapacitors. J. Colloid Interface Sci. 593, 32–40 (2021)

    Article  CAS  Google Scholar 

  27. G. Saeed, A. Alam, P. Bandyopadhyay, S. Jeong, K. Kim, S. Lim, Metal-organic framework-derived (Mn-1)CoxSy@(Ni-Cu)OHs marigold flower-like core@shell as cathode and (Mn-Fe10)Sx@graphene-foam as anode materials for ultra-high energy-density asymmetric supercapacitor. Mater. Today Chem. 23, 100758 (2022)

    Article  CAS  Google Scholar 

  28. X. Li, H. Wu, A. Elshahawy, L. Wang, S. Pennycook, C. Guan, J. Wang, Cactus-like NiCoP/NiCo-OH 3D architecture with tunable composition for high-performance electrochemical capacitors. Adv. Funct. Mater. 28(20), 1800036 (2018)

    Article  Google Scholar 

  29. Z. Yang, Q. Cheng, W. Li, Y. Li, C. Yang, K. Tao, L. Han, Construction of 2D ZIF-derived hierarchical and hollow NiCo-LDH “nanosheet-on-nanosheet” arrays on reduced graphene oxide/Ni foam for boosted electrochemical energy storage. J. Alloys Compd. 850, 156864 (2021)

    Article  CAS  Google Scholar 

  30. J. Acharya, M. Park, T. Ko, B. Kim, Leaf-like integrated hierarchical NiCo2O4 nanorods@Ni–Co–LDH nanosheets electrodes for high-rate asymmetric supercapacitors. J. Alloys Compd. 884, 161165 (2021)

    Article  CAS  Google Scholar 

  31. M. Zhu, W. Cai, H. Wang, L. He, Y. Wang, Rational construction of MOF-derived Zn–Co–O/NiCo–LDH core–shell nanosheet arrays on nickel foam for high-performance supercapacitors. J. Alloys Compd. 884, 160931 (2021)

    Article  CAS  Google Scholar 

  32. H. Wu, Y. Ni, M. Wang, D. Lu, Shape-controlled synthesis and performance comparison of Ni2P nanostructures. CrystEngComm 18(27), 5155–5163 (2016)

    Article  CAS  Google Scholar 

  33. H. Chen, W. Li, M. He, X. Chang, X. Zheng, Z. Ren, Vertically oriented carbon nanotube as a stable frame to support the Co0.85Se nanoparticles for high performance supercapacitor electrode. J. Alloys Compd. 855, 157506 (2021)

    Article  CAS  Google Scholar 

  34. X. Yin, H. Li, R. Yuan, J. Lu, NiCoLDH nanosheets grown on MOF-derived Co3O4 triangle nanosheet arrays for high-performance supercapacitor. J. Mater. Sci. Technol. 62, 60–69 (2021)

    Article  CAS  Google Scholar 

  35. X. He, R. Li, J. Liu, Q. Liu, R. Chen, D. Song, J. Wang, Hierarchical FeCo2O4@NiCo layered double hydroxide core-shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors. Chem. Eng. J. 334, 1573–1583 (2018)

    Article  CAS  Google Scholar 

  36. L. Wan, Y. Wang, Y. Zhang, C. Du, J. Chen, Z. Tian, M. Xie, FeCoP nanosheets@Ni-Co carbonate hydroxide nanoneedles as free-standing electrode material for hybrid supercapacitors. Chem. Eng. J. 415, 128995 (2021)

    Article  CAS  Google Scholar 

  37. X. Sun, P. Yang, S. Wang, C. Jin, M. Ren, H. Xing, Fabrication of nanoflower-like MCoP (M = Fe and Ni) composites for high-performance supercapacitors. Langmuir 37(35), 10403–10412 (2021)

    Article  CAS  Google Scholar 

  38. L. Wan, Y. Wang, Y. Zhang, C. Du, J. Chen, M. Xie, W. Zhang, Designing FeCoP@NiCoP heterostructured nanosheets with superior electrochemical performance for hybrid supercapacitors. J. Power Sources 506, 230096 (2021)

    Article  CAS  Google Scholar 

  39. X. Gao, Y. Zhang, Y. Zhao, S. Yin, J. Gui, C. Sun, S. Guo, Heterointerface engineering and piezoelectric effect enhanced performance of self-charging supercapacitors power cell. Nano Energy 91, 106701 (2022)

    Article  CAS  Google Scholar 

  40. Y. Wang, Y. Zhang, C. Du, J. Chen, Z. Tian, M. Xie, L. Wan, Rational synthesis of CoFeP@nickel-manganese sulfide core-shell nanoarrays for hybrid supercapacitors. Dalton Trans 50(46), 17181–17193 (2021)

    Article  CAS  Google Scholar 

  41. X. Gao, Y. Zhao, K. Dai, J. Wang, B. Zhang, X. Shen, NiCoP nanowire@NiCo-layered double hydroxides nanosheet heterostructure for flexible asymmetric supercapacitors. Chem. Eng. J. 384, 123371 (2020)

    Article  Google Scholar 

  42. Y. Jing, W. Li, D. Wang, X. Chang, M. He, Z. Ren, B-site regulated bimetallic perovskite fluoride NaCo1-xNixF3/reduced graphene oxide as the enhanced performance electrode material for supercapacitors. J. Alloys Compd. 905, 164188 (2022)

    Article  CAS  Google Scholar 

  43. Y. Liu, K. Zhong, C. Liu, Y. Yang, Z. Zhao, T. Li, Q. Lu, Size-controlled Ag quantum dots decorated on binder-free hierarchical NiCoP films by magnetron sputtering to boost electrochemical performance for supercapacitors. Nanoscale 13(16), 7761–7773 (2021)

    Article  CAS  Google Scholar 

  44. J. Huang, J. Xie, L. Wang, J. Zhang, P. Wang, P. Sun, Y. Yang, Boosted electrochemical performance of honeycomb-like NiCu-LDH nanosheets anchoring on NiCo2S4 nanotube arrays for flexible solid-state hybrid supercapacitors. Energy Fuels 34(10), 13157–13166 (2020)

    Article  CAS  Google Scholar 

  45. C. Kang, J. Fang, X. Liu, S. Li, S. Wan, L. Fu, Q. Liu, A novel fabricated conductive substrate for enhancing the mass loading of NiCoLDH nanosheets for high areal specific capacity in hybrid supercapacitors. Electrochim. Acta 368, 137621 (2021)

    Article  CAS  Google Scholar 

  46. B. Liang, Z. Zheng, M. Retana, K. Lu, T. Wood, Y. Ai, W. Zhou, Synthesis of FeP nanotube arrays as negative electrode for solid-state asymmetric supercapacitor. Nanotechnology 30(29), 295401 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported from the National Natural Science Foundation of China (Grant No. 11874299), the Key Project of Research & Development of Shaanxi Province in China (Grant No. 2018ZDCXL-GY-08-05), and Natural Science Foundation of Shaanxi Province (Grant No. 2021JM-302).

Author information

Authors and Affiliations

Authors

Contributions

RG: Data curation, writing—original draft preparation. HL: Validation, investigation, and formal analysis. WL: Conceptualization, writing—reviewing and editing. MH: Methodology and software. ZR: Resources, project administration, and funding acquisition.

Corresponding authors

Correspondence to Weilong Li or Zhaoyu Ren.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4968 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, R., Lei, H., Li, W. et al. MOF-derived Co–Fe–P@NiCo-layered double hydroxides with high areal capacity for supercapacitor electrodes. J Mater Sci: Mater Electron 34, 1136 (2023). https://doi.org/10.1007/s10854-023-10545-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10545-0

Navigation