Skip to main content
Log in

Effect of sulfur source and temperature on the morphological characteristics and photocatalytic activity of Bi2S3 nanostructure synthesized by microwave irradiation technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Flower-like bismuth sulfide (Bi2S3) nanostructures were synthesized from two sulfur sources, namely thiourea and thioacetamide, by microwave irradiation technique. The synthesized materials were annealed at 300 °C for 3 h. The characteristic properties of the as-prepared and annealed samples S1, AS1 (thiourea source) and S2, AS2 (thioacetamide source) were studied by XRD, SEM with EDS, XPS, UV–Vis spectra and FTIR analysis. The XRD analysis revealed that the annealing process had increased the crystallite size of the Bi2S3 samples. The SEM images showed that the flower-like nanostructure of both the samples (S1and S2) was changed to spherical shape (AS1) and irregular shape (AS2) respectively after annealing. The EDS and XPS results confirm the purity and the presence of the Bi and S. The UV–Vis absorption spectra revealed that the optical band gap values of Bi2S3 were reduced due to the annealing process. The FTIR spectra showed the functional groups present in the as-prepared and annealed Bi2S3 samples. The annealed Bi2S3 nanoparticles (AS1) showed remarkable photocatalytic activity and achieved 98.6% RhB dye degradation in 180 min. The rhodamine B (RhB) photodegradation was determined to follow a pseudo-first-order kinetic model, with a rate constant of 0.02142 min−1 being the highest. After three cycles, the annealed Bi2S3 nano photocatalyst showed excellent reusability and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The finding data will be available based on reasonable request.

References

  1. M. Thiruppathi et al., Ce @ TiO2 nanocomposites: an efficient, stable and affordable photocatalyst for the photodegradation of diclofenac sodium. J. Alloy. Compd. 735, 728–734 (2018). https://doi.org/10.1016/j.jallcom.2017.11.139

    Article  CAS  Google Scholar 

  2. P. Sivasubramanian et al., A review on bismuth-based nanocomposites for energy and environmental applications. Chemosphere 307, 135652 (2022). https://doi.org/10.1016/j.chemosphere.2022.135652

    Article  CAS  Google Scholar 

  3. H. Tong et al., Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24, 229–251 (2012). https://doi.org/10.1002/adma.201102752

    Article  CAS  Google Scholar 

  4. F.H.A. Hamid et al., Progressive freeze concentration in removing methylene blue from dye wastewater. Int. J. Appl. Sci. Eng. 16, 229–239 (2019). https://doi.org/10.6703/IJASE.201911_16(3).229

    Article  Google Scholar 

  5. R. Abirami et al., Preparation of pure PbTiO3 and (Ag–Fe) codoped PbTiO3 perovskite nanoparticles and their enhanced photocatalytic activity. Solid State Commun. 327, 114232 (2021). https://doi.org/10.1016/j.ssc.2021.114232

    Article  CAS  Google Scholar 

  6. V.M. Nkwe et al., Solvothermal synthesis of pure and Sn-doped Bi2S3 and the evaluation of their photocatalytic activity on the degradation of methylene blue. BMC Chem. 15, 1–9 (2021). https://doi.org/10.1186/s13065-021-00792-9

    Article  CAS  Google Scholar 

  7. P. Devendran et al., A novel visible light active rare earth doped CdS nanoparticles decorated reduced graphene oxide sheets for the degradation of cationic dye from wastewater. Chemosphere 287, 132091 (2022). https://doi.org/10.1016/j.chemosphere.2021.132091

    Article  CAS  Google Scholar 

  8. P. Devendran et al., Single-precursor synthesis of sub-10 nm CdS nanoparticles embedded on graphene sheets nanocatalyst for active photodegradation under visible light. Appl. Surf. Sci. 534, 147614 (2020). https://doi.org/10.1016/j.apsusc.2020.147614

    Article  CAS  Google Scholar 

  9. M. Sabarinathan et al., Highly efficient visible-light photocatalytic activity of MoS2–TiO2 mixtures hybrid photocatalyst and functional properties. RSC Adv. 7, 24754–24763 (2017). https://doi.org/10.1039/c7ra03633g

    Article  CAS  Google Scholar 

  10. R. Abargues et al., Enhancing the photocatalytic properties of PbS QD solids: the ligand exchange approach. Nanoscale 11, 1978–1987 (2019)

    Article  CAS  Google Scholar 

  11. R. Kumar, P. Raizada, N. Verma et al., Recent advances on water disinfection using bismuth based modified photocatalysts: Strategies and challenges. J. Clean. Prod. 297, 126617 (2021). https://doi.org/10.1016/j.jclepro.2021.126617

    Article  CAS  Google Scholar 

  12. A. Helal et al., Controlled synthesis of bismuth sulfide nanorods by hydrothermal method and their photocatalytic activity. Mater. Des. 102, 202–212 (2016). https://doi.org/10.1016/j.matdes.2016.04.043

    Article  CAS  Google Scholar 

  13. G.Q. Ma et al., Preparation and characterization of Bi2S3/3DOM-TiO2 for efficient photocatalytic degradation of rhodamine B. Mater. Sci. Semicond. Process. 100, 61–72 (2019). https://doi.org/10.1016/j.mssp.2019.04.031

    Article  CAS  Google Scholar 

  14. S. Majumder et al., Facile fabrication of BiVO4/Bi2S3/NiCoO2 for significant photoelectrochemical water splitting. Appl. Surf. Sci. 574, 151562 (2022). https://doi.org/10.1016/j.apsusc.2021.151562

    Article  CAS  Google Scholar 

  15. R. Sakthivel et al., Facile one-pot sonochemical synthesis of Ni doped bismuth sulphide for the electrochemical determination of promethazine hydrochloride. Ultrason. Sonochem. 54, 68–78 (2019). https://doi.org/10.1016/j.ultsonch.2019.02.013

    Article  CAS  Google Scholar 

  16. X. Li et al., In situ physical examination of Bi2S3 nanowires with a microscope. J. Alloys Compd. 798, 628–634 (2019). https://doi.org/10.1016/j.jallcom.2019.05.319

    Article  CAS  Google Scholar 

  17. H. Bao et al., Photoswitchable semiconductor bismuth sulfide (Bi2S3) nanowires and their self-supported nanowire arrays. J. Phys. Chem. C 111, 12279–12283 (2007). https://doi.org/10.1021/jp073504t

    Article  CAS  Google Scholar 

  18. D.C. Senevirathna et al., Taking bismuthinite to bismuth sulfide nanorods in two easy steps. Dalton Trans. 45, 4998–5000 (2016). https://doi.org/10.1039/C6DT00157B

    Article  CAS  Google Scholar 

  19. B. Caglar et al., Bi2S3 nanorods decorated on bentonite nanocomposite for enhanced visible-light-driven photocatalytic performance towards degradation of organic dyes. J. Alloys Compd. 885, 160964 (2021). https://doi.org/10.1016/j.jallcom.2021.160964

    Article  CAS  Google Scholar 

  20. P. Kumari et al., Flower-like Bi2S3 nanostructures as highly efficient anodes for all-solid-state lithium-ion batteries. RSC Adv. 9, 29549–29555 (2019). https://doi.org/10.1039/c9ra05055h

    Article  CAS  Google Scholar 

  21. G. Konstantatos et al., Sensitive solution-processed Bi2S3 nanocrystalline photodetectors. Nano Lett. 8, 4002–4006 (2008). https://doi.org/10.1021/nl802600z

    Article  CAS  Google Scholar 

  22. D.B. Li et al., Low-temperature-processed amorphous Bi2S3 film as an inorganic electron transport layer for perovskite solar cells. ACS Photonics 3, 2122–2128 (2016). https://doi.org/10.1021/acsphotonics.6b00582

    Article  CAS  Google Scholar 

  23. A.A. Tahir et al., Photoelectrochemical and photoresponsive properties of Bi2S3 nanotube and nanoparticle thin films. Chem. Mater. 22, 5084–5092 (2010). https://doi.org/10.1021/cm101642b

    Article  CAS  Google Scholar 

  24. S.S. Raut et al., SILAR deposited Bi2S3 thin film towards electrochemical supercapacitor. Phys. E Low-Dimens. Syst. Nanostruct. 87, 209–212 (2017). https://doi.org/10.1016/j.physe.2016.09.019

    Article  CAS  Google Scholar 

  25. U.V. Kawade et al., Environmental benign enhanced hydrogen production via lethal H2S under natural sunlight using hierarchical nanostructured bismuth sulfide. RSC Adv. 4, 49295–49302 (2014). https://doi.org/10.1039/C4RA07143C

    Article  CAS  Google Scholar 

  26. Q. Han et al., Preparation of uniform Bi2S3 nanorods using xanthate complexes of bismuth (III). J. Phys. Chem. C 111, 14072–14077 (2007). https://doi.org/10.1021/jp0742766

    Article  CAS  Google Scholar 

  27. B.G. Kumar et al., Photo-responsive Bi2S3 nanoflakes: synthesis and device fabrication at ambient conditions. Mater. Res. Bull. 89, 108–115 (2017). https://doi.org/10.1016/j.materresbull.2017.01.029

    Article  CAS  Google Scholar 

  28. Z. Cui et al., Preparation and optical properties of spherical Bi2S3 nanoparticles by in situ thermal sulfuration method. NANO 10, 2–7 (2015). https://doi.org/10.1142/S1793292015500216

    Article  CAS  Google Scholar 

  29. L. Heshmatynezhad et al., UV-assisted sonochemical synthesis and optoelectrical properties of Bi2S3 /rGO nanocomposites. Ceram. Int. 45, 13923–13933 (2019). https://doi.org/10.1016/j.ceramint.2019.04.090

    Article  CAS  Google Scholar 

  30. M. Ebadi et al., Synthesis and characterization of CdS/Bi2S3 nanocomposite via simple microwave approach. J. Ind. Eng. Chem. 20, 3821–3825 (2014). https://doi.org/10.1016/j.jiec.2013.12.085

    Article  CAS  Google Scholar 

  31. T. Wu et al., Bi2S3 nanostructures: a new photocatalyst. Nano Res. 3, 379–386 (2010). https://doi.org/10.1007/s12274-010-1042-0

    Article  CAS  Google Scholar 

  32. W.B. Zhao et al., Photochemical synthesis of Bi2S3 nanoflowers on an alumina template. Inorg. Chem. Commun. 7, 847–850 (2004). https://doi.org/10.1016/j.inoche.2004.04.017

    Article  CAS  Google Scholar 

  33. Y.J. Zhu et al., Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem. Rev. 114, 6462–6555 (2014). https://doi.org/10.1021/cr400366s

    Article  CAS  Google Scholar 

  34. Y. Jiang et al., Rapid synthesis of Bi2S3 nanocrystals with different morphologies by microwave heating. Mater. Lett. 60, 2294–2298 (2006). https://doi.org/10.1016/j.matlet.2005.12.127

    Article  CAS  Google Scholar 

  35. J. Wu et al., Large-scale synthesis of bismuth sulfide nanorods by microwave irradiation. J. Alloys Compd. 509, 2116–2126 (2011). https://doi.org/10.1016/j.jallcom.2010.10.160

    Article  CAS  Google Scholar 

  36. P. Han et al., Interplay between morphology, optical properties, and electronic structure of solution-processed Bi2S3 colloidal nanocrystals. J. Phys. Chem. C 119, 10693–10699 (2015). https://doi.org/10.1021/acs.jpcc.5b01305

    Article  CAS  Google Scholar 

  37. E. Hu et al., Controllable one-pot synthesis of various one-dimensional Bi2S3 nanostructures and their enhanced visible-light-driven photocatalytic reduction of Cr(VI). J. Alloys Compd. 611, 335–340 (2014). https://doi.org/10.1016/j.jallcom.2014.05.075

    Article  CAS  Google Scholar 

  38. C. Tang et al., Synthesis and photocatalytic properties of vertically aligned Bi2S3 platelets. Solid State Sci. 51, 24–29 (2016). https://doi.org/10.1016/j.solidstatesciences.2015.11.004

    Article  CAS  Google Scholar 

  39. J. Chen et al., Shape-controlled solvothermal synthesis of Bi2S3 for photocatalytic reduction of CO2 to methyl formate in methanol. Dalton Trans. 42, 15133–15138 (2013). https://doi.org/10.1039/c3dt51887f

    Article  CAS  Google Scholar 

  40. J. Arumugam et al., Reaction time dependent investigation on the properties of the Bi2S3 nanoparticles: photocatalytic application. Mater. Today Proc. 5, 16094–16099 (2018)

    Article  CAS  Google Scholar 

  41. C. Sambathkumar et al., Solvothermal synthesis of Bi2S3 nanoparticles for active photocatalytic and energy storage device applications. J. Mater. Sci. Mater. Electron. 32, 20827–20843 (2021). https://doi.org/10.1007/s10854-021-06596-w

    Article  CAS  Google Scholar 

  42. A.K.R. Police et al., Bismuth oxide cocatalyst and copper oxide sensitizer in Cu2O/TiO2/Bi2O3 ternary photocatalyst for efficient hydrogen production under solar light irradiation. Ceram. Int. 44, 11783–11791 (2018). https://doi.org/10.1016/j.ceramint.2018.03.262

    Article  CAS  Google Scholar 

  43. S.V. Prabhakar Vattikuti et al., Surface oxygen vacancy facilitated Z-scheme MoS2/Bi2O3 heterojunctionforenhancedvisible-lightdrivenphotocatalysis-pollutantdegradationandhydrogen production. Int. J. Hydrogen Energy 45, 18961–18975 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.073

    Article  CAS  Google Scholar 

  44. S.V. Prabhakar Vattikuti et al., Fabrication of CdS quantum dot/Bi2S3 nanocomposite photocatalysts for enhanced H2 production under simulated solar light. J. Mater. Sci. Mater. Electron. 30, 5681–5690 (2019). https://doi.org/10.1007/s10854-019-00861-9

    Article  CAS  Google Scholar 

  45. J. Liu et al., Facile fabrication of fibrous Bi4Ti3O12/Bi2S3/MoS2 with enhanced photocatalytic activities towards pollutant degradation under visible light irradiation. J. Mater. Sci. Mater. Electron. 31, 17688–17702 (2020). https://doi.org/10.1007/s10854-020-04324-4

    Article  CAS  Google Scholar 

  46. Q. Wang et al., Ionothermal synthesis of bismuth sulfide nanostructures and their electrochemical hydrogen storage behavior. New J. Chem. 34, 1930–1935 (2010). https://doi.org/10.1039/c0nj00009d

    Article  CAS  Google Scholar 

  47. T.O. Ajiboye et al., Bismuth sulfide based compounds: properties, synthesis and applications. Results Chem. 3, 100151 (2021). https://doi.org/10.1016/j.rechem.2021.100151

    Article  CAS  Google Scholar 

  48. S.M. de la Parra-Arciniega et al., Ultrasonic irradiation-assisted synthesis of Bi2S3 nanoparticles in aqueous ionic liquid at ambient condition. Ultrason. Sonochem. 36, 95–100 (2017). https://doi.org/10.1016/j.ultsonch.2016.11.018

    Article  CAS  Google Scholar 

  49. J. Arumugam et al., Temperature based investigation on structure and optical properties of Bi2S3 nanoflowers by solvothermal approach. Mech. Mater. Sci. Eng. 9, 1–8 (2017). https://doi.org/10.2412/mmse.73.16.231

    Article  Google Scholar 

  50. M. Salavati-Niasari et al., Synthesis of different morphologies of bismuth sulfide nanostructures via hydrothermal process in the presence of thioglycolic acid. J. Alloys Compd. 488, 442–447 (2009). https://doi.org/10.1016/j.jallcom.2009.08.152

    Article  CAS  Google Scholar 

  51. T. Ding et al., 3D hierarchical Bi2S3 nanostructures by polyvinylpyrrolidone (PVP) and chloride ion-assisted synthesis and their photodetecting properties. Nanoscale Res. Lett. 10, 1–8 (2015). https://doi.org/10.1186/s11671-015-0993-1

    Article  CAS  Google Scholar 

  52. J. Chao et al., Facile fabrication of bismuth sulphide microflowers for a novel type of flexible paper laser detector. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 263, 114831 (2020). https://doi.org/10.1016/j.mseb.2020.114831

    Article  CAS  Google Scholar 

  53. M. Zhang et al., D-penicillamine assisted hydrothermal synthesis of Bi2S3 nanoflowers and their electrochemical application. Mater. Sci. Eng. C 33, 3980–3985 (2013). https://doi.org/10.1016/j.msec.2013.05.037

    Article  CAS  Google Scholar 

  54. X.H. Liao et al., Preparation of Bi2S3 nanorods by microwave irradiation. Mater. Res. Bull. 36, 2339–2346 (2001). https://doi.org/10.1016/S0025-5408(01)00734-6

    Article  CAS  Google Scholar 

  55. E.B. Díaz-Cruz et al., Morphology control in microwave synthesized bismuth sulfide by using different bismuth salts. Mater. Sci. Semicond. Process. 75, 311–318 (2018). https://doi.org/10.1016/j.mssp.2017.10.042

    Article  CAS  Google Scholar 

  56. C. Martínez-Alonso et al., Purity and crystallinity of microwave synthesized antimony sulfide microrods. Mater. Chem. Phys. 186, 390–398 (2017). https://doi.org/10.1016/j.matchemphys.2016.11.010

    Article  CAS  Google Scholar 

  57. J.P. Tierney et al., Microwave assisted organic synthesis. Microw. Assist. Org. Synth. 57, 1–280 (2009). https://doi.org/10.1002/9781444305548

    Article  Google Scholar 

  58. H. Zhang et al., Synthesis and characterization of Bi2S3 nanorods by solvothermal method in polyol media. Mater. Lett. 61, 1667–1670 (2007). https://doi.org/10.1016/j.matlet.2006.07.095

    Article  CAS  Google Scholar 

  59. T. Thongtem et al., Characterization of Bi2S3 with different morphologies synthesized using microwave radiation. Mater. Lett. 64, 122–124 (2010). https://doi.org/10.1016/j.matlet.2009.10.006

    Article  CAS  Google Scholar 

  60. P.K. Panigrahi et al., The growth of bismuth sulfide nanorods from spherical-shaped amorphous precursor particles under hydrothermal condition. J. Nanopart. (2013). https://doi.org/10.1155/2013/367812

    Article  Google Scholar 

  61. Y. Jiang et al., Synthesis and visible light responsed photocatalytic activity of Sn doped Bi2S3 microspheres assembled by nanosheets. RSC Adv. 6, 39810–39817 (2016). https://doi.org/10.1039/c6ra02621d

    Article  CAS  Google Scholar 

  62. M.P. Motaung et al., The heat-up synthesis of monodispersed Bi2S3 and Cu7S4 nanoparticles from novel precursor complexes and their characterizations. Mater. Sci. Semicond. Process. 99, 92–98 (2019). https://doi.org/10.1016/j.mssp.2019.04.024

    Article  CAS  Google Scholar 

  63. Y.R. Reynoso et al., Bi2S3 nanoparticles by facile chemical synthesis: role of pH on growth and physical properties. Adv. Powder Technol. 29, 3561–3568 (2018). https://doi.org/10.1016/j.apt.2018.09.037

    Article  CAS  Google Scholar 

  64. C. Tang et al., Controlled synthesis of urchin-like Bi2S3 via hydrothermal method. Solid State Sci. 12, 1352–1356 (2010). https://doi.org/10.1016/j.solidstatesciences.2010.05.007

    Article  CAS  Google Scholar 

  65. H. Wang et al., Sonochemical method for the preparation of bismuth sulfide nanorods. J. Phys. Chem. B 106, 3848–3854 (2002). https://doi.org/10.1021/jp0135003

    Article  CAS  Google Scholar 

  66. R. Dou et al., The polyvinylpyrrolidone functionalized rGO/Bi2S3 nanocomposite as a near-infrared light-responsive nanovehicle for chemo-photothermal therapy of cancer. Nanoscale 8, 11531–11542 (2016). https://doi.org/10.1039/c6nr01543c

    Article  CAS  Google Scholar 

  67. S.V.P. Vattikuti et al., Synthesis, characterization, and optical properties of visible light-driven Bi2S3 nanorod photocatalysts. J. Mater. Sci. Mater. Electron. 28, 14282–14292 (2017). https://doi.org/10.1007/s10854-017-7287-6

    Article  CAS  Google Scholar 

  68. J. Arumugam et al., Solvothermal synthesis of Bi2S3 nanoparticles and nanorods towards solar cell application. Mater. Lett. 220, 28–31 (2018). https://doi.org/10.1016/j.matlet.2018.02.123

    Article  CAS  Google Scholar 

  69. D. Ayodhya et al., Investigation of structural, optical, catalytic, fluorescence studies of eco-friendly synthesized Bi2S3 nanostructures. Superlattices Microstruct. 102, 103–118 (2017). https://doi.org/10.1016/j.spmi.2016.12.027

    Article  CAS  Google Scholar 

  70. C. Qu et al., Bi2S3/rgo composite based electrochemical sensor for ascorbic acid detection. Chemosensors 9, 1–15 (2021). https://doi.org/10.3390/chemosensors9080190

    Article  CAS  Google Scholar 

  71. S.V. Prabhakar Vattikuti et al., Sacrificiallate-free synthesis of core-shell C@Bi2S3 heterostructures for efficient supercapacitor and H2 production applications. Sci. Rep. 8, 1–16 (2018). https://doi.org/10.1038/s41598-018-22622-0

    Article  CAS  Google Scholar 

  72. K. Liang et al., Capacitive and photocatalytic performance of Bi2S3 nanostructures synthesized by solvothermal method. Phys. Lett. Sect A Gen. At. Solid State Phys. 381, 652–657 (2017). https://doi.org/10.1016/j.physleta.2016.12.005

    Article  CAS  Google Scholar 

  73. L. Ma et al., Controlled assembly of Bi2S3 architectures as schottky diode, supercapacitor electrodes and highly efficient photocatalysts. RSC Adv. 40, 41636–41641 (2014). https://doi.org/10.1039/c4ra07169g

    Article  Google Scholar 

  74. M. Purnachander Rao et al., Rice grain like Bi2S3 nanorods and its photocatalytic performance. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 268, 115144 (2021). https://doi.org/10.1016/j.mseb.2021.115144

    Article  CAS  Google Scholar 

  75. J. Arumugam et al., Role of surfactant in tailoring the properties of Bi2S3 nanoparticles for photocatalytic degradation of methylene blue dye. J. Mater. Sci. Mater. Electron. 33, 8946–8957 (2022). https://doi.org/10.1007/s10854-021-07007-w

    Article  CAS  Google Scholar 

  76. F. Chen et al., Facile synthesis of Bi2S3 hierarchical nanostructure with enhanced photocatalytic activity. J. Colloid. Interface Sci. 404, 110–116 (2013). https://doi.org/10.1016/j.jcis.2013.04.013

    Article  CAS  Google Scholar 

  77. S. Sharma et al., Hierarchical Bi2S3 nanoflowers: a novel photocatalyst for enhanced photocatalytic degradation of binary mixture of rhodamine B and methylene blue dyes and degradation of mixture of p-nitrophenol and p-chlorophenol. Adv. Powder Technol. 29, 3336–3347 (2018). https://doi.org/10.1016/j.apt.2018.09.012

    Article  CAS  Google Scholar 

  78. A. Khalid et al., Bismuth sulfide photocatalysis water treatment under visible irradiation. Res. Chem. Intermed. 47, 3395–3409 (2021). https://doi.org/10.1007/s11164-021-04471-1

    Article  CAS  Google Scholar 

  79. S. Sharma et al., Sensitization of narrow band gap Bi2S3 hierarchical nanostructures with polyaniline for its enhanced visible-light photocatalytic performance. Colloid Polym. Sci. 296, 1479–1489 (2018). https://doi.org/10.1007/s00396-018-4362-3

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SS; MB: conceptualization, methodology, writing—original draft preparation. SS; MB: investigation, writing—original draft preparation. SS; MK; J-HC: investigation, writing—original draft preparation. SS; MM; ST: analysis, writing—original draft preparation. MB: conceptualization, supervision, project administration.

Corresponding author

Correspondence to M. Balakrishnan.

Ethics declarations

Conflict of interest

The author declares no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasikala, S., Balakrishnan, M., Kumar, M. et al. Effect of sulfur source and temperature on the morphological characteristics and photocatalytic activity of Bi2S3 nanostructure synthesized by microwave irradiation technique. J Mater Sci: Mater Electron 34, 997 (2023). https://doi.org/10.1007/s10854-023-10421-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10421-x

Navigation