Skip to main content
Log in

Sunlight-assisted photocatalytic degradation of organic pollutants using BiOCl/SnO2 Nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein we report a simple and cost effective solution combustion synthesis of BiOCl/SnO2 nanocomposites. The structural, textural, and optical properties of BiOCl/SnO2 nanocomposites were investigated by various analytical techniques such as powder XRD, SEM, TEM, UV–vis DRS, N2 adsorption study, photoluminescence (PL) spectroscopy, and electrochemical impendence spectroscopy (EIS). Our results reveal that the BiOCl nanoflakes have good homogeneity with amorphous SnO2 that form the heterojunction between them. The efficiency of the BiOCl/SnO2 nanocomposites was tested for the degradation of Rhodamine B in the presence of sunlight. The BiOCl/SnO2 heterojunction nanocomposites show high photocatalytic activity compared to individual BiOCl and SnO2 catalyst, which may be due to the supressed recombination of photogenerated electron–hole pairs, which facilitate the charge separation due to electron transfer across the interface of the two compounds. We believe that BiOCl/SnO2 nanocomposites exhibit superior photocatalytic activity due to the well-alloyed interface and reduced the charge transfer resistance which promoted light absorption in the visible region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The data supporting the results of this article are included within this article.

References

  1. A. Hagfeldt, M. Graetzel, Chem. Rev. 95, 49–68 (1995)

    Article  CAS  Google Scholar 

  2. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69–96 (1995)

    Article  CAS  Google Scholar 

  3. A. Kudo, Y. Miseki, Chem. Soc. Rev. 38, 253–278 (2009)

    Article  CAS  Google Scholar 

  4. H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev. 43, 5234–5244 (2014)

    Article  CAS  Google Scholar 

  5. L. Zhang, W. Wang, J. Yang, Z. Chen, W. Zhang, L. Zhou, S. Liu, Appl. Catal. A. Gen 308, 105–110 (2006)

    Article  CAS  Google Scholar 

  6. R. Li, W. Chen, H. Kobayashi, C. Ma, Green Chem. 12, 212–215 (2010)

    Article  CAS  Google Scholar 

  7. K. Gurunathan, Int. J. Hydrogen Energy 29, 933–940 (2004)

    Article  CAS  Google Scholar 

  8. A. Hameed, T. Montini, V. Gombac, P. Fornasiero, J. Am. Chem. Soc. 130, 9658–9659 (2008)

    Article  CAS  Google Scholar 

  9. W. Chen, T.-Y. Liu, T. Huang, X.-H. Liu, J.-W. Zhu, G.-R. Duan, X.-J. Yang, Appl. Surf. Sci. 355, 379–387 (2015)

    Article  CAS  Google Scholar 

  10. J. Yu, A. Kudo, Adv. Funct. Mater. 16, 2163–2169 (2006)

    Article  CAS  Google Scholar 

  11. Y. Ao, J. Xu, P. Wang, C. Wang, J. Hou, J. Qian, Y. Li, Colloids Surf A: Physicochem Eng Aspects 487, 66–74 (2015)

    Article  CAS  Google Scholar 

  12. W. Xu, G. Zhou, J. Fang, Z. Liu, Y. Chen, and C. Cen, Inter. J. of Photoenergy 2013, Article ID 234806, 9 pages (2013)

  13. W.F. Yao, H. Wang, X.H. Xu, J.T. Zhou, X.N. Yang, Y. Zhang, S.X. Shang, Appl. Catal. A. Gen 259, 29–33 (2004)

    Article  CAS  Google Scholar 

  14. P. Bhange, D. Shinde, D. Bhange, G. Gokavi, Int. J. Hydrogen Energy 43, 708–720 (2018)

    Article  CAS  Google Scholar 

  15. L. Yu, X. Zhang, G. Li, Y. Cao, Y. Shao, D. Li, Appl. Catal. B: Environ. 187, 301–309 (2016)

    Article  CAS  Google Scholar 

  16. M. Khairy, M.M. Mohamed, Phys. Chem. Chem. Phys. 17, 21716–21728 (2015)

    Article  CAS  Google Scholar 

  17. X. Zhao, J. Yu, H. Cui, T. Wang, J. Photochem. Photobiol. A: Chem 335, 130–139 (2017)

    Article  CAS  Google Scholar 

  18. D. Li, J. Xue, New J. Chem. 39, 5833–5840 (2015)

    Article  CAS  Google Scholar 

  19. S. Wu, J. Xiong, J. Sun, Z.D. Hood, W. Zeng, Z. Yang, L. Gu, X. Zhang, S.-Z. Yang, ACS Appl. Mater. Interfaces 9, 16620–16626 (2017)

    Article  CAS  Google Scholar 

  20. D.-H. Wang, G.-Q. Gao, Y.-W. Zhang, L.-S. Zhou, A.-W. Xu, W. Chen, Nanoscale 4, 7780–7785 (2012)

    Article  CAS  Google Scholar 

  21. K.-L. Zhang, C.-M. Liu, F.-Q. Huang, C. Zheng, W.-D. Wang, Appl. Catal. B: Environ. 68, 125–129 (2006)

    Article  CAS  Google Scholar 

  22. M. Zhang, Y. Liu, L. Li, H. Gao, X. Zhang, Catal. Commun. 58, 122–126 (2015)

    Article  CAS  Google Scholar 

  23. T.B. Li, G. Chen, C. Zhou, Z.Y. Shen, R.C. Jin, J.X. Sun, Dalton Trans. 40, 6751–6758 (2011)

    Article  CAS  Google Scholar 

  24. D.S. Rodriguez, M.G. Mendez Medrano, H. Remita, V.E. Barrios, J. Environ. Chem. Eng. 6, 1601–1612 (2018)

    Article  Google Scholar 

  25. D. Shinde, P. Bhange, R. Jha, D. Bhange, Chem. Select 5, 2618–2626 (2020)

    CAS  Google Scholar 

  26. F. Duo, Y. Wang, X. Mao, X. Zhang, Y. Wang, C.A. Fan, Appl. Surf. Sci. 340, 35–42 (2015)

    Article  CAS  Google Scholar 

  27. X. Jingjing, W. Yu, C. Mindong, T. Fei, Mater. Lett. 222, 176–179 (2018)

    Article  Google Scholar 

  28. L. Shan, Y. Liu, J. Suriyaprakash, C. Ma, Z. Wu, Dong, L. Liu, J. Mol. Catal. A: Chem. 41, 179–187 (2016)

    Article  Google Scholar 

  29. Y. Ma, Z. Chen, D. Qu, J. Shi, Appl. Surf. Sci. 361, 63–71 (2016)

    Article  CAS  Google Scholar 

  30. X. Sun, Y. Zhang, P. Li, D. Guo, H. Zi, G. Guo, Y. Li, J. Alloy Compd 736, 22 (2018)

    Article  CAS  Google Scholar 

  31. H. Man, C. Wang, Y. Sun, Y. Ning, P. Song, W. Huang, J. Materiomics 2, 338–343 (2016)

    Article  Google Scholar 

  32. A.K.L. Sajjad, F. Chen, J. Zhang, S. Shamaila, J. Colloid Interf. Sci. 356, 465–472 (2011)

    Article  Google Scholar 

  33. Y. Zheng, X. Zhang, J. Zhao, P. Yang, Appl. Surf. Sci. 430, 585–594 (2018)

    Article  CAS  Google Scholar 

  34. D. Wu, X. Wang, H. Wang, F. Wang, D. Wang, Z. Gao, X. Wang, F. Xu, K. Jiang, J. Colloid Interf. Sci. 533, 539–547 (2019)

    Article  CAS  Google Scholar 

  35. J.-Q. Chang, Y. Zhong, C.-H. Hu, J.-L. Luo, P.-G. Wang, J. Mol. Struct. 1183, 209–216 (2019)

    Article  CAS  Google Scholar 

  36. X. Tang, C. Ma, M. Liu, C. Liu, S. Liu, Chem. Phys. Lett. 709, 82–87 (2018)

    Article  CAS  Google Scholar 

  37. M. Sun, Q. Zhao, C. Du, Z. Liu, RSC Adv. 5, 22740–22752 (2015)

    Article  CAS  Google Scholar 

  38. E. Fenelon, D.-P. Bui, H.H. Tran, S.-J. You, Y.-F. Wang, T.M. Cao, V.V. Pham, ACS Omega 5(32), 20438–20449 (2020)

    Article  CAS  Google Scholar 

  39. Li. Dai, X. Li, Li. Zhang, P. Ma, J. Guan, Yu. Wei, Adv. Compos. Hybrid Mater. 5, 2285–2296 (2022)

    Article  CAS  Google Scholar 

  40. N. Sun, Y. Qu, S. Chen, R. Yan, M. Humayun, Y. Liu, L. Bai, L. Jing, H. Fu, Environ. Sci-Nano 4, 1147–1154 (2017)

    Article  CAS  Google Scholar 

  41. X. Wen, C. Niu, L. Zhang, G. Zeng, ACS Sustain. Chem. Eng. 5, 5134–5147 (2017)

    Article  CAS  Google Scholar 

  42. P. Weng, M. Cheng, Z. Zhang, J. Saudi. Chem. Soc. 18, 308–316 (2014)

    Article  Google Scholar 

  43. H. Yin, M. Zhang, J. Yao, Y. Luo, P. Li, X. Liu, S. Chen, Mater. Sci. Semicond. Process. 105, 104688 (2020)

    Article  CAS  Google Scholar 

  44. C. Gao, G. Liu, X. Liu, X. Wang, M. Liu, Y. Chen, X. Jiang, G. Wang, Z. Teng, W. Yang, J. Alloy Compd. 929, 167296 (2022)

    Article  CAS  Google Scholar 

  45. Z. Zou, H. Qin, H. Xia, D. Xia, D. Li, H. Xu, Catal. Sci. Technol. 11, 4196–4207 (2021)

    Article  CAS  Google Scholar 

  46. N. Tahmasebi, Z. Maleki, P. Farahnak, Mater. Sci. Semicond. Process. 89, 32–40 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

Authors have no any funding for declaration

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection, and analysis were performed by RM and DSS. ST and KS participated in the data collection, DSB contributed to interpretation of the data. The first draft of the manuscript was written by PDB. The corresponding author, PDB performed revision and refinement of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to P. D. Bhange.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest involved in the current work.

Research involving human and animals participants

There were no studies involving humans or animals in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4242 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhale, R., Shinde, D.S., Bhange, D.S. et al. Sunlight-assisted photocatalytic degradation of organic pollutants using BiOCl/SnO2 Nanocomposites. J Mater Sci: Mater Electron 34, 1049 (2023). https://doi.org/10.1007/s10854-023-10307-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10307-y

Navigation