Skip to main content
Log in

Synthesis of MoS2/SnWO4 nanocomposite heterostructures: photocatalytic degradation of tetracycline upon visible-light irradiation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, MoS2 and SnWO4 nanocompounds were synthesized by a simple hydrothermal method. Further, three different MoS2/SnWO4 nanocomposites, MSSW-5, MSSW-10, and MSSW-15 were synthesized using MoS2 with various amounts of SnWO4 by a solvothermal method. The crystal phases of the synthesized nanostructures were confirmed by X-ray diffraction (XRD) analysis. Scanning electron microscopy and transmission electron microscopy results demonstrated that the SnWO4 nanoplates were deposited on the MoS2 nanosheets, forming the MoS2/SnWO4 heterostructure. A sufficient band alignment was achieved for the MoS2/SnWO4 nanocomposites owing to the formation of strong interfaces at the heterostructure. The prepared samples were investigated for the degradation of tetracycline (TC) under visible light. MSSW-10 demonstrated the best photocatalytic activity (96.47%) for the degradation of TC under visible light within 80 min. The rate constant of the MSSW-10 nanocomposite is approximately 6.89 and 9.07 times higher than that of pristine MoS2 and SnWO4, respectively. Moreover, the prepared photocatalyst exhibited good reusable properties and high stability. Thus, the MoS2/SnWO4 nanocomposites with a suitable bandgap promoted the efficient electron-hole pair carrier transfer, contributing to the efficient photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. All data used during this study are included in this manuscript and Supplementary Information.

References

  1. F. Ahmed, I. Ali, S. Kousar, S. Ahmed, Environ. Sci. Pollut 29, 29778 (2022)

    Article  Google Scholar 

  2. W. Guo, B. Pan, S. Sakkiah et al., Int. J. Environ. Res. Public. Health 16, 4361 (2019)

    Article  CAS  Google Scholar 

  3. H. El-taliawy, M. Ekblad, F. Nilsson et al., Chem. Eng. J. 325, 310 (2017)

    Article  CAS  Google Scholar 

  4. T. Jorgensen, L. Weatherley, Water Res. 37, 1723 (2003)

    Article  CAS  Google Scholar 

  5. J. Wang, S. Wang, Appl. Microbiol. Biotechnol. 102, 3573 (2018)

    Article  CAS  Google Scholar 

  6. Y. Xu, R.E. Lebrun, P.-J. Gallo, P. Blond, Sep. Sci. Technol. 34, 2501 (1999)

    Article  CAS  Google Scholar 

  7. S.I.S. Mashuri, M.L. Ibrahim, M.F. Kasim et al., Catalysts 10, 1260 (2020)

    Article  CAS  Google Scholar 

  8. Q. Yang, Y. Gao, J. Ke et al., Bioengineered 12, 7376 (2021)

    Article  Google Scholar 

  9. B.M. Marshall, SB Levy, Clin. Microbiol. Rev. 24, 718 (2011)

    Article  CAS  Google Scholar 

  10. X.-D. Zhu, Y.-J. Wang, R.-J. Sun, D.-M. Zhou, Chemosphere 92, 925 (2013)

    Article  CAS  Google Scholar 

  11. Y. Bessekhouad, D. Robert, J Weber, J. Photochem. Photobiol A: Chem. 163, 569 (2004)

    Article  CAS  Google Scholar 

  12. O.A. Zelekew, P.A. Fufa, F.K. Sabir, AD Duma, Heliyon 7, e07652 (2021)

    Article  CAS  Google Scholar 

  13. C. Hariharan, Appl. Catal. A: Gen. 304, 55 (2006)

    Article  CAS  Google Scholar 

  14. C. Zhu, L. Zhang, B. Jiang et al., Appl. Surf. Sci. 377, 99 (2016)

    Article  CAS  Google Scholar 

  15. Y. Wang, S. Zhou, G. Zhao, C. Li, L. Liu, F Jiao, J. Mater. Sci. Mater. Elec 31, 12269 (2020)

    Article  CAS  Google Scholar 

  16. X. Zhang, Y. Zhuang, W. Sun, X. Li, L. Shan, L. Dong, Dig J Nanomater Biostruct (DJNB) 15, 1025 (2020)

    Article  Google Scholar 

  17. G. Huang, C. Zhang, Y. Zhu, J. Alloys Compd. 432, 269 (2007)

    Article  CAS  Google Scholar 

  18. Y. Chen, H. Sun, W Peng, Nanomaterials 7, 62 (2017)

    Article  Google Scholar 

  19. H. Li, Y. Xiong, Y. Wang et al., J. Colloid Interface Sci. 609, 657 (2022)

    Article  CAS  Google Scholar 

  20. A. Rahimi, I. Kazeminezhad, S.E. Mousavi Ghahfarokhi, J. Mater. Sci. Mater. Elec 29, 4449 (2018)

    Article  CAS  Google Scholar 

  21. S.P. Vattikuti, K. Devarayapalli, P. Nagajyothi, J Shim, J. Alloys Compd. 809, 151805 (2019)

    Article  CAS  Google Scholar 

  22. A.R. Amani-Ghadim, F. Khodam, M.S.S. Dorraji, J. Mater. Chem. A 7, 11408 (2019)

    Article  CAS  Google Scholar 

  23. D. Wang, Y. Xu, F. Sun, Q. Zhang, P. Wang, X. Wang, Appl. Surf. Sci. 377, 221 (2016)

    Article  CAS  Google Scholar 

  24. X. Li, S. Zhang, X.-J. Wang et al., Phys. E: low-dimens Syst Nanostruct 126, 114453 (2021)

    Article  CAS  Google Scholar 

  25. Y. Zeng, N. Guo, H. Li et al., Sci. Total Environ. 659, 20 (2019)

    Article  CAS  Google Scholar 

  26. A.P. Chowdhury, BH Shambharkar, Chem. Eng. J. Adv. 4, 100040 (2020)

    Article  CAS  Google Scholar 

  27. K.J. Pyper, T.C. Evans, B.M. Bartlett, Chin. Chem. Lett. 26, 474 (2015)

    Article  CAS  Google Scholar 

  28. M. Kölbach, IsJo Pereira, K. Harbauer et al., Chem. Mater. 30, 8322 (2018)

    Article  Google Scholar 

  29. A. Kumar, L. Rout, L.S.K. Achary, A. Mohanty, R.S. Dhaka, P Dash, RSC Adv. 6, 32074 (2016)

    Article  CAS  Google Scholar 

  30. R. Koutavarapu, M.R. Tamtam, S.-G. Lee, M. Rao, D.-Y. Lee, J Shim, J. Environ. Chem. Eng. 9, 105893 (2021)

    Article  CAS  Google Scholar 

  31. H.J. Song, S. You, X.H. Jia, J. Yang, Ceram. Int. 41, 13896 (2015)

    Article  CAS  Google Scholar 

  32. S. Yao, M. Zhang, J. Di, Z. Wang, Y. Long, W. Li, Appl. Surf. Sci. 357, 1528 (2015)

    Article  CAS  Google Scholar 

  33. S. Wang, J. Ding, C. Wang et al., Front. Mater. Sci. 9, 889499 (2022)

    Article  Google Scholar 

  34. R. Koutavarapu, K. Syed, S. Pagidi et al., Chemosphere 287, 132015 (2022)

    Article  CAS  Google Scholar 

  35. R. Atla, T.H. Oh, J. Environ. Chem. Eng. 9, 106427 (2021)

    Article  CAS  Google Scholar 

  36. R. Atla, T.H. Oh, Chemosphere 303, 134922 (2022)

    Article  CAS  Google Scholar 

  37. B. Babu, R. Koutavarapu, J. Shim, K. Yoo, Sep. Purif. Technol. 240, 116652 (2020)

    Article  CAS  Google Scholar 

  38. N. Sreeram, V. Aruna, R. Koutavarapu, D.-Y. Lee, J Shim, Chemosphere 299, 134477 (2022)

    Article  CAS  Google Scholar 

  39. S. Guo, H. Luo, Y. Li, J. Chen et al., J. Alloys Compd. 852, 157026 (2021)

    Article  CAS  Google Scholar 

  40. Z. Ma, L. Hu, X. Li, L. Deng et al., Ceram. Int. 45, 15824–15833 (2019)

    Article  Google Scholar 

  41. H. Liang, J. Bai, T. Xu, C. Li, Vacuum 172, 109059 (2020)

    Article  CAS  Google Scholar 

  42. R. Koutavarapu, W.Y. Jang, M.C. Rao. M. Arumugam, J Shim, Chemosphere 305, 135465 (2022)

    Article  CAS  Google Scholar 

  43. W.C. Peng, X.Y. Li, Catal. Commun. 49, 63–67 (2014)

    Article  CAS  Google Scholar 

  44. X. Liu, B. Liang, M. Zhang, Y. Long, W. Li, J. Colloid Interf Sci. 490, 46–52 (2017)

    Article  CAS  Google Scholar 

  45. X. Liu, B. Liang, W. Li, Appl. Surf. Sci. 531, 147379 (2020)

    Article  CAS  Google Scholar 

  46. R. Koutavarapu, M.R. Tamtam, C.R. Myla, M. Cho, J Shim, J. Environ. Sci. 102, 326 (2021)

    Article  CAS  Google Scholar 

  47. R. Koutavarapu, C.V. Reddy, K. Syed et al., J. Hazard. Mater. 423, 127044 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Research Foundation of Korea (NRF) grant funded by the government of Korea (MSIT) (No. 2022R1A2C1004283) provided funding for this study, and the authors are grateful to the Core Research Support Center for Natural Products and Medical Materials (CRCNM) at Yeungnam University for their support.

Funding

This study was supported by  National Research Foundation of Korea, (Grant Number  2022R1A2C1004283).

Author information

Authors and Affiliations

Authors

Contributions

BS: Conceptualization, Methodology, Writing—original draft, Visualization, Investigation, Writing—review and editing. RA: Conceptualization, Formal analysis, Data curation, Writing—original draft, Visualization, Investigation, Writing—review and editing. THO: Formal analysis, Data curation, Supervision, Resources, Writing—review & editing.

Corresponding authors

Correspondence to Baji Shaik, Raju Atla or Tae Hwan Oh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this study.

Ethical approval

The submitted manuscript has not been previously published. Furthermore, no conflicts of interest exist in the submission of this manuscript. The manuscript was approved by all authors for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaik, B., Atla, R. & Oh, T.H. Synthesis of MoS2/SnWO4 nanocomposite heterostructures: photocatalytic degradation of tetracycline upon visible-light irradiation. J Mater Sci: Mater Electron 34, 853 (2023). https://doi.org/10.1007/s10854-023-10285-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10285-1

Navigation